308 research outputs found

    Efficient Encoding and Transmission of Digital Receipts for Mobile Commerce

    Get PDF
    to discuss products and purchases in real-time. However, the transmission of digital receipts is still a problem, since often Internet connectivity is not available at the point of sale which hampers a real-time interaction. To overcome this problem with current technology, this paper presents a way to efficiently transmit a complete receipt in a QR-code, a certain kind of 2D matrix code (often also called “2D barcode”). Thereby, only a smartphone equipped with a camera is needed and Internet connectivity is not a problem anymore. However, due to size constraints, the encoding of a full receipt needs to be as efficient as possible. We present a custom, domain-specific encoding that was developed exactly for this purpose and show that our prototype implementation performs better than sophisticated, general purpose compression algorithms on this kind of data

    my2cents: enabling research on consumer-product interaction

    Get PDF
    Barcode scanners for smartphones enable mobile product-centric services for consumers. We have developed a mobile app that enables consumers to share their use of and opinions about products with their friends and others. Our goal is to establish a product-centric information stream generated by users to benefit other consumers and retail businesses and to enable large-scale research on consumer-product interaction. This paper describes our approach to create a sustainable service. We report first experiences and an initial evaluation after releasing the app to the public, give an overview over possible business models, and discuss some of the challenges we experienced during implementatio

    Universal Barcode Detector via Semantic Segmentation

    Full text link
    Barcodes are used in many commercial applications, thus fast and robust reading is important. There are many different types of barcodes, some of them look similar while others are completely different. In this paper we introduce new fast and robust deep learning detector based on semantic segmentation approach. It is capable of detecting barcodes of any type simultaneously both in the document scans and in the wild by means of a single model. The detector achieves state-of-the-art results on the ArTe-Lab 1D Medium Barcode Dataset with detection rate 0.995. Moreover, developed detector can deal with more complicated object shapes like very long but narrow or very small barcodes. The proposed approach can also identify types of detected barcodes and performs at real-time speed on CPU environment being much faster than previous state-of-the-art approaches

    2D-barcode for mobile devices

    Get PDF
    2D-barcodes were designed to carry significantly more data than its 1D counterpart. These codes are often used in industrial information tagging applications where high data capacity, mobility, and data robustness are required. Wireless mobile devices such as camera phones and Portable Digital Assistants (PDAs) have evolved from just a mobile voice communication device to what is now a mobile multimedia computing platform. Recent integration of these two mobile technologies has sparked some interesting applications where 2D-barcodes work as visual tags and/or information source and camera phones performs image processing tasks on the device itself. One of such applications is hyperlink establishment. The 2D symbol captured by a camera phone is decoded by the software installed in the phone. Then the web site indicated by the data encoded in a symbol is automatically accessed and shown in the display of the camera phone. Nonetheless, this new mobile applications area is still at its infancy. Each proposed mobile 2D-barcode application has its own choice of code, but no standard exists nor is there any study done on what are the criteria for setting a standard 2D-barcode for mobile phones. This study intends to address this void. The first phase of the study is qualitative examination. In order to select a best standard 2D-barcode, firstly, features desirable for a standard 2D-barcode that is optimized for the mobile phone platform are identified. The second step is to establish the criteria based on the features identified. These features are based on the operating limitations and attributes of camera phones in general use today. All published and accessible 2D-barcodes are thoroughly examined in terms of criteria set for the selection of a best 2D-barcode for camera phone applications. In the second phase, the 2D-barcodes that have higher potential to be chosen as a standard code are experimentally examined against the three criteria: light condition, distance, whether or not a 2D-barcode supports VGA resolution. Each sample 2D-barcode is captured by a camera phone with VGA resolution and the outcome is tested using an image analysis tool written in the scientific language called MATLAB. The outcome of this study is the selection of the most suitable 2D-barcode for applications where mobile devices such as camera phones are utilized

    UPC barcode apps for drug registered verification

    Get PDF
    In pharmacology, drug is used to prevent and cure diseases and to improve the physical or mental well-being. All medicinal products must be registered with Drug Control Authority (DCA) of Malaysia before being marketed. However, there are still numerous unregistered products being sold in night markets and grocery stalls that contained unknown materials that could harm our bodies. As nowadays most people own smartphones, thus it will be great if the smartphone is being utilized to become a mobile apps that can prevent consumers from buying unregistered products. This study described the process of creating a barcode reader application for drug registered verification. The application is created using Android Studio software, Java programming language and source code from GitHub, which is then synchronized with the database of some medicinal products. The barcode scanner is then tested to read the UPC barcode on the products and the result of registration confirmation will be shown on the screen of the smartphone. Thus, it will aware the user from buying the unregistered products

    QR Code Approach for Examination Process

    Get PDF
    Using the QR codes is one of the most intriguing ways of digitally connecting consumers to the internet via mobile phones since the mobile phones have become a basic necessity thing of everyone The detection of QR codes, a type of 2D barcode, as described in the literature consists merely in the determination of the boundaries of the symbol region in images obtained with the specific intent of highlighting the symbol .In order to improve the practical application property of the two-dimensional barcode Quick Response (QR) code, we investigate the coding and decoding process of the QR code image. The barcode is a real mechanism for data reads. Data can be stored, embedded and through the scanning device to show. The store of data which being read. In this paper, we present a methodology for creating QR code approach for virtual word examination process by using different techniques like SHA256, encoding, decoding, and Error correction. DOI: 10.17762/ijritcc2321-8169.15024

    Vision Based Extraction of Nutrition Information from Skewed Nutrition Labels

    Get PDF
    An important component of a healthy diet is the comprehension and retention of nutritional information and understanding of how different food items and nutritional constituents affect our bodies. In the U.S. and many other countries, nutritional information is primarily conveyed to consumers through nutrition labels (NLs) which can be found in all packaged food products. However, sometimes it becomes really challenging to utilize all this information available in these NLs even for consumers who are health conscious as they might not be familiar with nutritional terms or find it difficult to integrate nutritional data collection into their daily activities due to lack of time, motivation, or training. So it is essential to automate this data collection and interpretation process by integrating Computer Vision based algorithms to extract nutritional information from NLs because it improves the user’s ability to engage in continuous nutritional data collection and analysis. To make nutritional data collection more manageable and enjoyable for the users, we present a Proactive NUTrition Management System (PNUTS). PNUTS seeks to shift current research and clinical practices in nutrition management toward persuasion, automated nutritional information processing, and context-sensitive nutrition decision support. PNUTS consists of two modules, firstly a barcode scanning module which runs on smart phones and is capable of vision-based localization of One Dimensional (1D) Universal Product Code (UPC) and International Article Number (EAN) barcodes with relaxed pitch, roll, and yaw camera alignment constraints. The algorithm localizes barcodes in images by computing Dominant Orientations of Gradients (DOGs) of image segments and grouping smaller segments with similar DOGs into larger connected components. Connected components that pass given morphological criteria are marked as potential barcodes. The algorithm is implemented in a distributed, cloud-based system. The system’s front end is a smartphone application that runs on Android smartphones with Android 4.2 or higher. The system’s back end is deployed on a five node Linux cluster where images are processed. The algorithm was evaluated on a corpus of 7,545 images extracted from 506 videos of bags, bottles, boxes, and cans in a supermarket. The DOG algorithm was coupled to our in-place scanner for 1D UPC and EAN barcodes. The scanner receives from the DOG algorithm the rectangular planar dimensions of a connected component and the component’s dominant gradient orientation angle referred to as the skew angle. The scanner draws several scan lines at that skew angle within the component to recognize the barcode in place without any rotations. The scanner coupled to the localizer was tested on the same corpus of 7,545 images. Laboratory experiments indicate that the system can localize and scan barcodes of any orientation in the yaw plane, of up to 73.28 degrees in the pitch plane, and of up to 55.5 degrees in the roll plane. The videos have been made public for all interested research communities to replicate our findings or to use them in their own research. The front end Android application is available for free download at Google Play under the title of NutriGlass. This module is also coupled to a comprehensive NL database from which nutritional information can be retrieved on demand. Currently our NL database consists of more than 230,000 products. The second module of PNUTS is an algorithm whose objective is to determine the text skew angle of an NL image without constraining the angle’s magnitude. The horizontal, vertical, and diagonal matrices of the (Two Dimensional) 2D Haar Wavelet Transform are used to identify 2D points with significant intensity changes. The set of points is bounded with a minimum area rectangle whose rotation angle is the text’s skew. The algorithm’s performance is compared with the performance of five text skew detection algorithms on 1001 U.S. nutrition label images and 2200 single- and multi-column document images in multiple languages. To ensure the reproducibility of the reported results, the source code of the algorithm and the image data have been made publicly available. If the skew angle is estimated correctly, optical character recognition (OCR) techniques can be used to extract nutrition information

    A Novel Method for Barcode Localization in Image Domain

    Get PDF
    Barcode localization is an essential step of the barcode reading process. For industrial environments, having high-resolution cameras and eventful scenarios, fast and reliable localization is crucial. Images acquired in those setups have limited parameters, however, they vary at each application. In earlier works we have already presented various barcode features to track for localization process. In this paper, we present a novel approach for fast barcode localization using a limited set of pixels in image domain
    • …
    corecore