
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2016 

Vision Based Extraction of Nutrition Information from Skewed Vision Based Extraction of Nutrition Information from Skewed 

Nutrition Labels Nutrition Labels 

Tanwir Zaman 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Zaman, Tanwir, "Vision Based Extraction of Nutrition Information from Skewed Nutrition Labels" (2016). 
All Graduate Theses and Dissertations. 4893. 
https://digitalcommons.usu.edu/etd/4893 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/77521953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4893&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F4893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4893?utm_source=digitalcommons.usu.edu%2Fetd%2F4893&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


VISION BASED EXTRACTION OF NUTRITION INFORMATION 

 

FROM SKEWED NUTRITION LABELS 

  

by 

 

Tanwir Zaman 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree 

 

of 

 

DOCTOR OF PHILOSOPHY 

 

in 

 

Computer Science 

 

 

Approved: 

 

 

______________________________        ________________________________ 

Dr. Vladimir Kulyukin          Dr. Nicholas Flann 

Major Professor           Committee Member 

 

 

______________________________        ___________________________________ 

Dr. Xiaojun Qi                                                       Dr. Haitao Wang 

Committee Member                                               Committee Member                                        

 

 

______________________________                   ________________________________ 

Dr. David Paper           Dr. Mark R. McLellan 

Committee Member         Vice President for Research and 

                                                                              Dean of the School of Graduate Studies 

 

 

UTAH STATE UNIVERSITY 

Logan, Utah 

 

2016 

 

 

 



         ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright   © Tanwir Zaman 2016 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



         iii 

 

ABSTRACT 

Vision Based Extraction Of Nutrition Information 

 

From Skewed Nutrition Labels 
 

by 

 

Tanwir Zaman, Doctor of Philosophy 

 

Utah State University, 2016 

 

 

Major Professor: Dr. Vladimir Kulyukin 

Department: Computer Science 

 

 

 An important component of a healthy diet is the comprehension and retention of 

nutritional information and understanding of how different food items and nutritional 

constituents affect our bodies. In the U.S. and many other countries, nutritional 

information is primarily conveyed to consumers through nutrition labels (NLs) which can 

be found in all packaged food products. However, sometimes it becomes really 

challenging to utilize all this information available in these NLs even for consumers who 

are health conscious as they might not be familiar with nutritional terms or find it 

difficult to integrate nutritional data collection into their daily activities due to lack of 

time, motivation, or training. So it is essential to automate this data collection and 

interpretation process by integrating Computer Vision based algorithms to extract 

nutritional information from NLs because it improves the user’s ability to engage in 

continuous nutritional data collection and analysis.  To make nutritional data collection 

more manageable and enjoyable for the users, we present a Proactive NUTrition 

Management System (PNUTS). PNUTS seeks to shift current research and clinical 
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practices in nutrition management toward persuasion, automated nutritional information 

processing, and context-sensitive nutrition decision support.   

 PNUTS consists of two modules, firstly a barcode scanning module which runs 

on smart phones and is capable of vision-based localization of One Dimensional (1D) 

Universal Product Code (UPC) and International Article Number (EAN) barcodes with 

relaxed pitch, roll, and yaw camera alignment constraints. The algorithm localizes 

barcodes in images by computing Dominant Orientations of Gradients (DOGs) of image 

segments and grouping smaller segments with similar DOGs into larger connected 

components. Connected components that pass given morphological criteria are marked as 

potential barcodes. The algorithm is implemented in a distributed, cloud-based system. 

The system’s front end is a smartphone application that runs on Android smartphones 

with Android 4.2 or higher.  The system’s back end is deployed on a five node Linux 

cluster where images are processed. The algorithm was evaluated on a corpus of 7,545 

images extracted from 506 videos of bags, bottles, boxes, and cans in a supermarket. The 

DOG algorithm was coupled to our in-place scanner for 1D UPC and EAN barcodes. The 

scanner receives from the DOG algorithm the rectangular planar dimensions of a 

connected component and the component’s dominant gradient orientation angle referred 

to as the skew angle. The scanner draws several scan lines at that skew angle within the 

component to recognize the barcode in place without any rotations. The scanner coupled 

to the localizer was tested on the same corpus of 7,545 images. Laboratory experiments 

indicate that the system can localize and scan barcodes of any orientation in the yaw 

plane, of up to 73.28 degrees in the pitch plane, and of up to 55.5 degrees in the roll 
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plane. The videos have been made public for all interested research communities to 

replicate our findings or to use them in their own research. The front end Android 

application is available for free download at Google Play under the title of NutriGlass. 

This module is also coupled to a comprehensive NL database from which nutritional 

information can be retrieved on demand. Currently our NL database consists of more than 

230,000 products.          

 The second module of PNUTS is an algorithm whose objective is to determine the 

text skew angle of an NL image without constraining the angle’s magnitude. The 

horizontal, vertical, and diagonal matrices of the (Two Dimensional) 2D Haar Wavelet 

Transform are used to identify 2D points with significant intensity changes. The set of 

points is bounded with a minimum area rectangle whose rotation angle is the text’s skew. 

The algorithm’s performance is compared with the performance of five text skew 

detection algorithms on 1001 U.S. nutrition label images and 2200 single- and multi-

column document images in multiple languages. To ensure the reproducibility of the 

reported results, the source code of the algorithm and the image data have been made 

publicly available. If the skew angle is estimated correctly, optical character recognition 

(OCR) techniques can be used to extract nutrition information. 

      

  (110 pages) 
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PUBLIC ABSTRACT 

 

Vision Based Extraction Of Nutrition Information 

 

From Skewed Nutrition Labels 
 

by 

 

Tanwir Zaman, Doctor of Philosophy 

 

Utah State University, 2016 

 

 

Major Professor: Dr. Vladimir Kulyukin 

Department: Computer Science 

 

             Vision-based extraction of nutritional information from nutrition labels (NLs) 

available on most product packages is critical to proactive nutrition management, because 

it improves the user’s ability to engage in continuous nutritional data collection and 

analysis. However, even users who are health conscious find it difficult to keep track of 

their nutrition intake due to lack of time, motivation, or training. In order to make 

nutrition management more proactive we present a Proactive NUTrition Management 

System (PNUTS), which aims to make nutrition management more user friendly and 

proactive using computer vision techniques running on smartphones which are ubiquitous 

and powerful computers at the same time. There are essentially two modules in PNUTS. 

First of all, a skewed barcode scanning module capable of reading barcodes irrespective 

of the camera alignment and a second module which can detect the skew angle of text in 

nutrition labels and eventually read the text using optical character recognition. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 The U.S. Department of Agriculture estimates that U.S. residents have increased 

their caloric intake by 530 calories per day since 1970 [1]. According to the World  

Health Organization  (www.who.int), obesity causes such diseases as diabetes, kidney 

failures, and strokes and predicts that these diseases will be a major cause of  death  

worldwide [2]. Mismanaged diets are estimated to account for 30-35 percent of cancer 

cases. While there is no permanent cure for diabetes or cancer as of now, many 

nutritionists and dieticians consider proactive nutrition management to be a key factor in 

reducing and controlling cancer, diabetes, and other illnesses related to or caused by 

mismanaged diets. In this regard, a proper understanding of nutrition labels (NLs) is 

essential to ensure eating a healthy, balanced diet. Many products sold worldwide have 

nutrition labels (NLs). In the U.S., the display of nutrition information is mandated by the 

Nutrition Education and Labeling Act (NLEA) of 1990 [3]. Similar initiatives and acts 

(e.g., EU FLABEL [4]) exist in other countries. These labels provide information on the 

amounts of thirteen core nutrients and calories in an amount of food, along with a daily 

value indicator to help people make informed decisions over food choices [5]. This data 

is presented in the form of a standardized table. Familiarity with the terms of the NLs 

allows a consumer to make a better decision while shopping for packaged food products 

and comparing one product with another. However, sometimes the data in such labels 

may be difficult to interpret by the common user who may find it difficult to locate and to 

comprehend nutritional terms on many products [6].     
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 Technology can play a key role in this comprehension process and provide the 

consumers the ability to choose what is right for them by making the nutrition 

information more suited to user interpretation. In a grocery store environment a readily 

available means of technology is the mobile phone which remains severely under-

utilized. The immense processing power of such devices can be put to use to extract 

nutritional information from  NLs available on most product packages, using computer 

vision based techniques to implement a proactive nutrition management system which 

will improve the user’s ability to engage in continuous nutritional data collection and 

analysis.          

 Modern nutrition management systems assume that patients understand how to 

collect nutritional data and can be triggered into data collection with digital prompts (e.g., 

email or SMS) [7]. Such systems often underperform, because many patients find it 

difficult to integrate nutritional data collection into their daily activities due to lack of 

time, motivation, or training. Eventually they turn off or ignore digital stimuli [8]. To 

overcome these challenges, we have begun to develop a Persuasive NUTrition 

Management System (PNUTS). PNUTS seeks to shift current research and clinical 

practices in nutrition management toward persuasion, automated nutritional information 

extraction and processing, and context-sensitive nutrition decision support. PNUTS is 

based on a nutrition management approach inspired by the Fogg Behavior Model (FBM) 

[8], which states that motivation alone is insufficient to stimulate target behaviors. Even a 

motivated user must have both the ability to execute a behavior and a trigger to engage in 

that behavior at an appropriate place and time. Many nutrition management system 
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designers assume that consumers and patients are either more skilled than they actually 

are or that they can be trained to obtain the required skills. Since training is difficult and 

time consuming, a more promising path is to make target behaviors easier and more 

intuitive to execute. PNUTS utilizes the relative advantages of mobile and cloud 

computing to improve nutrition information comprehension and automate real-time 

vision-based NL analysis and nutrition intake recording [9, 10].   

 In PNUTS, there are two kinds of nutrition information extraction techniques:    

1) Utilizing barcode localization and scanning to extract nutrition information from 

online product information databases and 2) Extraction of nutrition information from 

localized NLs using real time OCR. 

1.2 Barcode Scanning        

 Two algorithms for in-place vision-based skewed barcode scanning were 

designed and developed which do not require any smartphone camera alignment. The 

first algorithm localizes skewed barcodes in captured frames by computing dominant 

orientations of gradients (DOGs) of image segments and collecting smaller segments 

with similar DOGs into larger connected components. The second algorithm localizes 

skewed barcodes by growing edge alignment trees (EATs) on binary images with 

detected edges. Since our experiments showed that the DOG algorithm outperformed the 

EAT algorithm [10], the current version of PNUTS uses the DOG algorithm for barcode 

localization. The localized barcodes are then scanned without any image rotation. Our 

current barcode scanning algorithm handles both UPC and EAN formats. Unlike other 
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barcode scanning solutions (e.g., https://github.com/zxing/zxing, http://redlaser.com), our 

algorithm does not require the user to align the smartphone’s camera with the barcode 

and can detect skewed or aligned barcodes anywhere in the image. Recognized barcodes 

are used to retrieve NLs from a database of NLs. More than 230,000 packed food 

products have been indexed and a database of NLs has been created after crawling and 

screen scraping public websites. The NLs are referenced using the product barcode. A 

smartphone app has been launched on Google play [11] where a user can scan a barcode 

and get searchable nutrition label, provided the product is present in our database. The 

problem with this arrangement is that of a constant need to update the database and 

reliance upon commercial web sites which currently permit crawlers but may prohibit 

them in the future.          

 There is a plethora of similar nutrition related smartphone apps available 

nowadays that seem to help consumers become more alert about their diet and keep track 

of their daily nutrition intake. Most of these apps allow the users to scan the aligned 

product barcodes and retrieve the nutrition information. [http://www.fooducate.com/]. 

However, the primary problem with these nutrition apps is that they too rely on pre-

populated databases of food products and may not have updated information.  

 It is hard to keep adding newer food products to a database as there is a huge if 

not unlimited supply of products available in supermarkets. The only solution for the 

consumer would be to not rely on pre-populated databases and scan the information 

directly from product packages and extract as much information as possible in real time 

https://github.com/zxing/zxing
http://redlaser.com/
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to maintain a record of food products consumed, thereby keeping track of daily food 

intake and maintain a healthy lifestyle.  

1.3  Nutrition Label Scanning       

 Vision based scanning of NLs utilizes the smartphone cameras to capture images 

of NLs for subsequent processing and extraction of nutrition information. This includes 

localizing the NL in the image and using an OCR engine to read the text data from the 

NL. Varying degrees of skew may be introduced into the images while capturing 

especially using handheld cameras or smartphones. Skew angle is the angle that the text 

lines in the digital image makes with the horizontal direction. Text in such cases is 

rotated or distorted and degrades the performance of further processing and may seriously 

affect the performance of subsequent stages of segmentation and recognition, since the 

contemporary OCR systems cannot handle rotated text and perform well only in 

recognizing texts that are linearly aligned. While the horizontally aligned text is easily 

detected and recognized, skewed text poses a challenge to recognition. In most existing 

OCR systems, a skew correction process is often performed prior to recognition, should a 

need arise. Most skew estimation techniques deal with small skew angles less than 15 

degrees but perform poorly for images, which contain text lines that are oriented in 

arbitrary directions.          

 In our previous research, we developed a vision-based localization algorithm for 

horizontally or vertically aligned nutrition labels (NLs) on smartphones [12]. Our next 

NL processing algorithm  [13] improved on the algorithm proposed in [12] in that it 
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handled not only aligned NLs but also NLs skewed up to 35-40 degrees from the vertical 

axis of the captured frame. A limitation of that algorithm was its inability to handle 

arbitrary text skew angles. In this  dissertation an algorithm is presented whose objective 

is to determine the text skew angle of an NL in the image without constraining the 

angle’s magnitude.  

1.3.1 Text Skew Angle Detection       

 An algorithm for text skew angle detection has been designed that utilizes 2D 

Haar Wavelet Transform (2DHWT) and is called Text Skew Angle Wavelets (TSAW). 

The algorithm takes an NL image and applies several iterations of the 2DHWT to 

downsample the image and to compute horizontal, vertical, and diagonal change 

matrices. The horizontal, vertical, and diagonal matrices are used to identify  a set  of  2D  

points  with  significant  intensity  changes.  These points form a singularity point set in 

the 2D plane. The convex hull  algorithm  [14]  is  applied  to  this  set  to  enclose  it  

with  a minimum  area  rectangle.  The  text’s  skew  is  the  enclosing rectangle’s rotation 

angle relative to the absolute north.  

1.3.2 Optical Character Recognition      

 If the skew angle is estimated correctly, that information can be used in two ways: 

1. The image can be rotated accordingly so that the standard optical character recognition 

(OCR) techniques can be used to extract nutrition information.             

2. An OCR engine can be designed that can read skewed text. Currently there are no such 
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OCR engines available.               

The working of such an engine requires the following steps:                                               

a. Angular Text Row Segmentation                            

b. Skeletonization                                                                                                 

c. Character Segmentation                                                                                                    . 

d. Zone Vector Matching 

Angular Text Row Segmentation(ATRS) involves the segmentation of the text rows of the 

NL that contain nutrition information about a particular nutrient. This is done to improve 

the performance of the OCR engine, so that it can process the NL text in a line by line 

basis. This might also speed up the process with the use of parallelization by delegating 

the OCR task to multiple engines running in parallel on different machines. 

Skeletonization  is defined as the process by  which characters are reduced to skeletons, a  

set of thin lines (one pixel thick), attached  to  one another in a few connection points that  

preserve the topological and geometric properties of its originating object. This is done in 

order to  standardize  the shapes and sizes of the fonts in the NL and thereby remove 

variability. The challenge is to preserve the original shape of the character. 

Character Segmentation is primarily done in order to extract the individual characters in 

a text row. This allows the OCR engine to match one character at a time with pre 

computed templates. The process involves the determination of the character boundaries 
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invariant of rotation and skew. Segmentation of individual letters is achieved through a 

formalism that is known as histogram analysis at an angle. 

Zone Vector Matching (ZVM) is a computer vision technique used for matching images  

with templates. The entire image is divided into several sections called zones and a 

specific statistic is computed for each. This statistic might be anything that uniquely 

identifies a zone, such as the number of pixels, the number of edges or some other 

feature. This generates a one dimensional vector. If we want to match two images, we can 

compute two zone vectors, one for each image and then match them by computing their 

cosine similarity index. In the OCR engine, the zone vector of a segmented character is 

matched against the zone vectors of a set of templates which need to be pre computed and 

normalized to the same resolution as the segmented character. 

1.4 Research Scope          

 The primary purpose of this research is to test the hypothesis that nutrition  

information  can  be  extracted  using vision based techniques, from  images of packaged 

food products, which were captured using a handheld smartphone camera in  a grocery  

store environment  with  varying  illumination  and with or without  any  proper  

alignment  of  the  camera  with  the  NL. This  arrangement might introduce significant 

skewness in the NL alignment which severely affects a standard OCR engine's capability 

of reading text from such an image. Before the research work presented in this 

dissertation no technique had been proposed that could scan skewed barcodes or read text 



         9 

 

from a skewed NL. This dissertation presents an algorithm that can scan a 1D barcode 

skewed in the yaw or pitch plane and rotated to any degree. It also presents a framework 

that can be used to detect the skew angle of an NL without any constraints on the rotation 

magnitude and subsequently extract nutrition information from it by using a novel OCR 

engine capable of reading skewed text.       

 The research was conducted in three phases.  The first was the development of an 

application to scan skewed barcodes using simple computer vision based techniques 

executing in real time on smartphones, and use it to retrieve NL data from a pre 

populated database of packaged food products indexed by barcodes. The second phase 

was the development of an algorithm for estimating the angle of skew in a text document 

image without putting any restrictions on the angle of skew. The third and final phase 

was to implement an OCR engine that can read the textual information from a skewed or 

aligned NL  image.         

 The major contribution of this work is the development of a system which can 

localize and detect the text from real world  NL images which may be rotated by any 

angle in the two dimensional plane. During the development of this system various other 

contributions were made, including a first of its kind skewed barcode scanner and an 

OCR engine capable of reading skewed text.      

 The rest of the dissertation is organized as follows. In chapter 2, we give some 

background information and discuss related work. In chapter 3, we present the Dominant 

Orientation of Gradients (DOG) algorithm for skewed barcode localization and scanning. 

In chapter 4, we present the Text Skew Angle detection algorithm. In chapter 5 we 



         10 

 

describe the skewed OCR engine and its comparison with a standard open source OCR 

engine. In chapter 6, we present our conclusions and outline several directions for our 

future work. 
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CHAPTER 2 

RELATED WORK 

2.1 Introduction 

 In this chapter we discuss the background and related work. We divide the chapter 

into two sections viz. related work on barcode detection and scanning and text skew 

angle detection and reading.  

2.2 Barcode Localization and Scanning      

 The  use  of  smartphones  to  detect  barcodes  has  been  the  focus  of  many  

research  and development efforts for a long time. Given the ubiquity and ever increasing 

computing power of  smartphones, they have emerged as a  preferred device for many 

researchers to implement and test  new  techniques  to  localize  and  scan  barcodes.  

Open  source  and  commercial  smartphone applications, such as RedLaser 

(redlaser.com) and ZXing (code.google.com/p/zxing), have been developed. However, 

these systems require the barcodes to be aligned with camera.   

 Tekin  and  Coughlan [15,16]  have  designed  a  vision - based  algorithm  to  

guide  visually impaired smartphone users to center target barcodes in the camera frame 

via audio instructions and cues. However, the smartphone  cameras must be aligned with 

barcode surfaces and the users must undergo  training  before  they  can  use  the  mobile  

application  in  which  the  algorithm  is implemented. Image  analysis  and  pattern  

recognition  methods are used by Wachenfeld et al. [17] to design a vision-based 

algorithm that detects barcodes on smart phones.  The  algorithm  overcomes  typical 
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distortions,  such  as  inhomogeneous  illumination,  reflections,  or  blurriness  due  to  

camera movement. However, a barcode is assumed to be present in the image. Nor does 

the algorithm appear to address the localization and scanning of barcodes misaligned with 

the surface in the pitch, roll, and yaw planes.     

 Adelmann et al. [18] have developed a randomized vision-based algorithm for 

scanning barcodes on mobile phones. The algorithm relies on the fact that, if multiple 

scanlines are drawn across the barcode in various arbitrary orientations, one of them 

might cover the whole length of the barcode and  result  in  successful  barcode  scans.  

This  recognition  scheme  does  not  appear to  handle distorted or misaligned images. 

 Lin  et  al.  [19]  developed  an  automatic  barcode  detection  and  recognition  

algorithm  for multiple  and  rotation  invariant  barcode  decoding.  However,  the  

system  requires  custom hardware. In particular, the  proposed system is implemented 

and optimized on a DM6437 DSP EVM board, a custom embedded system built 

specifically for barcode scanning.        

 Gallo and Manduchi [20] present an algorithm for 1D barcode reading in  blurred, 

noisy,  and  low resolution images. However, the algorithm detects barcodes only if they 

are slanted by less than 45 degrees in the yaw plane. The  researchers appear to make  no 

claims on the ability of their algorithm to handle barcodes misaligned in the pitch and roll 

planes.           

 Peng et al. [21] present a smartphone application that helps blind users locate 

EAN barcodes and expiration  dates  on  product  packages.  It  is  claimed  that,  once  

barcodes  are  localized,  existing barcode  decoding  techniques  and  OCR  algorithms  
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can  be  utilized  to  obtain  the  required information.  The  system  provides  voice  

feedback  to  guide  the  user  to  point  the  camera  to  the barcode of the product, and 

then guide the user the point the camera to the expiration date for OCR. The system 

requires user training and does not appear to handle misaligned barcodes. A common 

weakness of many barcode scanners, both open source  and  commercial is  the  camera  

alignment requirement:  the  smartphone  camera  must  be  aligned  with  a target  

barcode  to  obtain  at  least  one  complete  scanline  for successful barcode recognition. 

This requirement is acceptable for sighted users but presents a serious accessibility 

barrier to visually impaired  shoppers  or to shoppers who may  not have good dexterity. 

Skewed barcode scanning is also beneficial for sighted  smartphone  users,  because  it  

may  make  barcode scanning faster because the camera alignment requirement no longer 

needs to be satisfied. 

2.3 Text Skew Angle Detection       

 A  variety  of  algorithms  have  been  developed  to  determine  the  text  skew  

angle. They can  be classified according to the approaches that they take to solve the 

problem.           

 The first category of  algorithms typically use horizontal or vertical projection 

profiles. A horizontal projection profile is a 1-dimensional array whose size is equal to 

the number of rows in the image. Similarly, a vertical projection profile is a 1-

dimensional array whose size is equal to the number of columns in the image. Each 

location in a projection profile stores a count of the number of black pixels associated 
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with text in the corresponding row or column of the image. Projections can be thought of 

as1-dimensional histograms. A horizontal  projection histogram is computed by rotating 

the input image through a range of angles and calculating black pixels in the appropriate 

bins. All projection profiles for all rotation angles are compared with each other to 

determine which one maximizes a given criterion function.     

 The concept of projection profiles was pioneered [22] and subsequently patented 

by Postl [23]. Postl’s  algorithm uses  the  horizontal  projection  profile  for  text  skew  

angle detection. The algorithm calculates the horizontal projection profiles for angles 

between 0 and  180  degrees  in  small  increments,  e.g.,  5  degrees.  The  algorithm  

uses  the  sum  of squared differences between adjacent elements of the projection profile 

as the criterion function and chooses the profile that maximizes that value.  

 Hull [24] proposes a text skew angle detection algorithm similar to Postl’s. Hull’s 

algorithm is more efficient, because it rotates individual pixels instead of rotating entire 

images. Specifically, the coordinates of every black pixel are rotated to save temporary 

storage and thereby to reduce the computation that would be required for a brute force 

implementation.          

 Bloomberg et al. [25] also use projection profiles to determine the text skew 

angle. Their  algorithm  differs  from  Postl’s  and  Hull’s  algorithms  in  that  the  

images  are down sampled  before  the  projection  profiles  are  calculated  in  order  to  

reduce computational  costs.  The  criterion  function  used  to  estimate  the  text  skew  

angle  is  the variance of the number of black pixels in a scan line.   
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 Kanai  and Bagdanov  [26]  present  another  text  skew  angle  estimation  

algorithm  based  on projection  profiles.  The  algorithm  extracts  fiducial  points  and  

uses  them  as  points  of reference in the image by decoding the lowest resolution layer 

of the JBIG compressed image. The JBIG standard consists of two techniques, a 

progressive encoding method and a lossless compression method for  the lowest 

resolution layer. These points are projected along parallel lines into  an accumulator 

array. The text skew angle is  computed as the angle  of  projection  within  a  search  

interval  that  maximizes  alignment  of  the  fiducial points. This algorithm detects a 

skew angle in the limited range from ±5 degrees to ±45 degrees.   

 Papandreou and Gatos [27] use vertical projections for text skew detection with 

the criterion function being the sum of squares of the projection elements.  This method is 

claimed to be resistant to noise and image warping and to work best for the languages 

where most characters include at least one vertical line, which is true for Latin-based 

languages. In a more recent publication [28], Papandreou et al. report using minimum 

bounding box areas of combined horizontal and vertical projection profiles to determine 

document text skews. They claim that this approach is more resistant to noise and image 

warp, has no range restrictions on text skews, and is well suited for printed documents.

 Li, Shen, and Sun [29] combine projection profiles with wavelet decomposition. 

Document images are divided into sub-images with the discrete wavelet transform 

(DWT). The matrix with the absolute values of the horizontal sub-band coefficients is 

rotated through a range of angles. A step size of 2 degrees is used to compute an initial 

estimate of the skew angle α. A finer search is then executed from     to     with a 
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step of 0.5 degrees. The algorithm is evaluated on a data set with skews from 0 to ±15 

degrees.         

 Shivakumara  et.  al.  [30]  propose  a  document  skew  angle  estimation  

approach based on linear regression. They use linear regression formula in order to 

estimate a skew angle for each text line segment of a text document. The part of the text 

line is extracted using static and dynamic thresholds from the projection profiles. This 

method is based on the assumption  that there is space between text lines. The method 

loses accuracy for the documents  having  skew  angle  greater  than  30  degrees  and  

appears  to  work  best  for printed documents with well separated lines.   

 Second category of algorithms use texture based approaches to estimate document 

skew  angles.  Algorithms  in  this  category  compute  discriminative  features  on  

blocks  of text using image filters to determine patterns that are unique to the language or 

the script.          

 Chaudhury  et.  al  [31]  proposed  using  a  frequency  domain  representation  of  

projection profiles  of  horizontal  text  lines.  Busch  et.  al  [32]  present  an  extensive  

evaluation  of  a broad  number  of  texture  features,  including  projection  profiles,  

Gabor  and  wavelet features  and gray-level co-occurrence matrices for detecting the  

script. This category of approaches  has  the  drawbacks  of  requiring  large  and  aligned  

homogeneous  regions  of text in  one script, and of the features in question often being 

neither  very discriminative nor reliable to compute in the presence of noisy or skewed 

text.            

 The  third  category  comprises  of  algorithms  which  implement  connected 



         17 

 

component  based  methods.  These  utilize  shape  and  stroke  characteristics  of  

individual connected components.         

 Hochberg et. al [33] proposed using script-specific  templates by clustering 

frequently occurring character or  word shapes. Spitz et. al [34] construct shape codes  

that  capture  the  concavities  of  characters,  and  use  them  to  first  classify  them  as 

Latin-based  or  Han-based,  and  then  within  those  categories  using  other  shape-

features.            

 Ma et al [35]  use Gabor-filters with a nearest-neighbor classifier to determine 

script and font-type at the word-level. Several hybrid  variants of local and global 

approaches have also been suggested [36]. 
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CHAPTER 3 

VISION BASED LOCALIZATION OF SKEWED BARCODES 

3.1 Introduction 

 One  way  to  improve  the  comprehension  and  retention  of  nutritional 

information by consumers is to use computer vision to  scan  barcodes  in  order  to  

retrieve  NLs from  databases. A common weakness of many 1D barcode scanners, both 

free and commercial, is the camera alignment  requirement:  the  smartphone  camera  

must  be  horizontally  or  vertically  aligned  with barcodes to obtain at least one 

complete scanline for successful barcode recognition. Another  weakness of the current 

mobile smartphone scanners is  lack of coupling  of  barcode scanning  to comprehensive 

NL databases from which nutritional information can be retrieved on demand. In this 

chapter,  we will describe an algorithm for in-place  vision-based skewed barcode 

scanning that no longer requires the smartphone camera alignment.  The algorithm  is  in-

place  in  that  it  performs  no  rotation  of  input images to align localized barcodes for 

scanning. The algorithm is cloud-based, because image processing is done in the cloud. 

The  algorithm  is  implemented  in  a  distributed,  cloud-based system.  The  system’s  

front  end  is  a smartphone  application that  runs on  Android 4.3 or higher. The 

system’s back end is currently  deployed  on  a  four  node  Linux  cluster  used  for 

image recognition and nutritional data storage. 

3.2 Barcode Localization Algorithm - Dominant Orientation of Gradients 

 The algorithm is based on  the  observation  that  barcodes  characteristically  
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exhibit  closely spaced aligned edges with the same angle, which sets them   apart from 

text and graphics. Let  I be an RGB image and let  f  be a linear relative luminance 

function computed from a pixel’s RGB components: 

  .0722.07152.02126.0,, BGRBGRf   (3.1) 

The gradient of f and the gradient’s orientation   can then be computed as follows: 

.tan;, 1
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Let M be an n x n mask, n > 0, convolved with I. Let the dominant orientation of 

gradients of M, DOG(M), be the most frequent discrete gradient orientation of all pixels 

covered by M. Let (c, r) be the column and row coordinates of the top left pixel of M. The 

regional gradient orientation table of M, RGOT(c, r), is a map of discrete gradient 

orientations to their frequencies in the region of I covered by M.  The global gradient 

orientation table (GGOT) of I is a map of the top left coordinates of image regions 

covered by M to their RGOTs. In our implementation, both GGOTs and RGOTs are 

implemented as hash tables. Figure 3.1 shows the logical organization of an image’s 

GGOT. Each GGOT maps (c, r) 2-tuples to RGOT tables that, in turn, map discrete 

gradient orientations (i.e., GO1, GO2, …, GOk in Figure 3.1) to their frequencies (i.e., 

FREQ1, FREQ2, …, FREQk in Figure 3.1) in the corresponding image regions. 
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Figure 3.1. Logical structure of global gradient orientation table. 

 Each RGOT represents the region whose top left coordinates are specified by the 

corresponding (c, r) 2-tuple and whose size is the size of M. Each RGOT is subsequently 

converted into a single real number called the most frequent gradient orientation. This 

number, denoted by DOG(M), is the region’s dominant orientation of gradients, also 

known as its DOG. Consider an example of a barcode skewed in the yaw plane in Figure 

3.2. Figure 3.3 gives the DOGs for a 20 x 20 mask convolved with the image in Figure 3. 

Each green square is a 20 x 20 image region. The top number in each square is the 

region’s DOG, in degrees, whereas the bottom number is the frequency of that particular 

DOG in the region, i.e., how many pixels in that region has this gradient value. If no 

gradient orientation clears a given frequency count threshold, both numbers are set to 0. 

Figure 3.4 displays the DOGs for the 50 x 50 mask convolved with the image in Figure 

3.2.  It should be noted that Figures 3.3 and 3.4 show a typical tendency that, as 
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Figure 3.2. UPC-A barcode skewed in the yaw plane. 

 

Figure 3.3 GGOT for a 20 x 20 mask. 
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Figure 3.4 GGOT for a 50 x 50 mask. 

 

Figure 3.5 D-neighborhood found in GGOT in Figure 3.3 

the size of the mask increases, fewer image regions are expected to clear the DOG 

threshold if the latter is set as a ratio of pixels with specific gradient values over the total 

number of the region’s pixels in the image. 
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3.3 D-Neighborhoods         

 Let an RGOT 3-tuple  kkk DOGrc ,,  consist of the coordinates of the top left corner, 

 kk rc , , of the sub image covered by an n x n mask M whose dominant gradient 

orientation is DOGk. We define DOG-neighborhood (D-neighborhood) is a non-empty set 

of RGOT 3-tuples  kkk DOGrc ,,  such that for any such 3-tuple  kkk DOGrc ,,  there exists at 

least one other 3-tuple  jjj DOGrc ,,  such that    kkkjjj DOGrcDOGrc ,,,,   and 

     ,,,,,, TrueDOGrcDOGrcsim kkkjjj  where sim is a Boolean similarity metric. Such 

similarity metrics define various morphological criteria for D-neighborhoods. In our 

implementation, the similarity metric returns true when the square regions specified by 

the top left coordinates (i.e.,  kk rc ,  and  
jj rc , ) and the mask size n are horizontal, 

vertical, or diagonal neighbors and the absolute difference of their DOGs does not exceed 

a small threshold. An image may have several D-neighborhoods. The D-neighborhoods 

are computed simultaneously with the computation of the image’s GGOT. As each 

RGOT 3-tuple becomes available during the computation of RGOTs, it is placed into 

another hash table for D-neighborhoods. The computed D-neighborhoods are filtered by 

the ratio of the total area of their component RGOTs to the image area. For example, 

Figure 3.5 shows RGOTs marked as blue rectangles that are grouped into a D-

neighborhood by the similarity metric defined above, because they are horizontal, 

vertical, and diagonal neighbors and the absolute difference of their DOGs does not 

exceed a small threshold. This resultant D-neighborhood is shown in Figure 3.6. This 

neighborhood is computed in parallel with the computation of the GGOT in Figure 3.3. 
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Figure 3.6. D-Neighborhood detected in Figure 3.5 

 

Figure 3.7. Multiple D-Neighborhoods 

 Detected D-neighborhoods are enclosed by minimal rectangles that contain all of 

their RGOT 3-tuples, as shown in Figure 3.6, where the number in the center of the white 

rectangle denotes the neighborhood’s DOG. A minimal rectangle is the smallest rectangle 
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that encloses all RGOTs of the same connected component. All detected D-

neighborhoods are barcode region candidates. There can be multiple D-neighborhoods 

detected in an image.  For example, Figure 3.7 shows all detected D-neighborhoods when 

the threshold is set to 0.01, which is too low. Figure 3.6 exemplifies an interesting and 

recurring fact that multiple D-neighborhoods tend to intersect over a barcode.  

 The DOG algorithm is given in Appendix A. Its asymptotic complexity is O(k
2
), 

where k is the number of masks that can be placed on the image. This is because, in the 

worst case, each RGOT constitutes its own D-neighborhood, which makes each 

subsequent call to the function FindNeighbourhoodForRGOT(), which finds the home D-

neighborhood for each newly computed RGOT, to unsuccessfully inspect all the D-

neighborhoods computed so far.  A similar worst-case scenario happens when there is 

one D-neighborhood that absorbs all computed RGOT, which takes place when the 

similarity metric is too permissive.  Both of these scenarios, while theoretically possible, 

rarely occur in practice. 

3.4 Linux Cluster                    

 We built a Linux cluster out of five nodes for cloud-based computer vision and 

data storage. Each node is a PC with an Intel Core i5-650 3.2 GHz dual-core processor 

that supports 64-bit computing. The processors have 3MB of cache memory. The nodes 

are equipped with 6GB DDR3 SDRAM and have Intel integrated GMA 4500 Dynamic 

Video Memory Technology 5.0. All nodes have 320 GB of hard disk space. Ubuntu 

12.04 LTS was installed on each node. We installed JDK 7 in each node. We used JBoss 
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(http://www.jboss.org) to build and configure the cluster and the Apache mod_cluster 

module (http://www.jboss.org/mod_cluster) to configure the cluster for load balancing. 

The cluster has one master node and four slaves. The master node is the domain 

controller that runs mod_cluster and httpd. All nodes are part of a local area network and 

have hi-speed Internet connectivity.   The JBoss Application Server (JBoss AS) is a free 

open-source Java EE-based application server. In addition to providing a full 

implementation of a Java application server, it also implements the Java EE part of Java. 

The JBoss AS is maintained by jboss.org, a community that provides free support for the 

server.  JBoss is licensed under the GNU Lesser General Public License (LGPL). The 

Apache mod_cluster module is an httpd-based load balancer.  The module is 

implemented with httpd as a set of modules for httpd with mod_proxy enabled. This 

module uses a communication channel to send requests from httpd to a set of designated 

application server nodes. An additional communication channel is established between 

the server nodes and httpd. The nodes use the additional channel to transmit server-side 

load balance factors and lifecycle events back to httpd via a custom set of HTTP methods 

collectively referred to as the Mod-Cluster Management Protocol (MCMP). The 

mod_cluster module provides dynamic configuration of httpd workers. The proxy's 

configuration is on the application servers.  The application server sends lifecycle events 

to the proxies, which enables the proxies to auto-configure themselves.  The mod_cluster 

module provides accurate load metrics, because the load balance factors are calculated by 

the application servers, not the proxies.  All nodes in our cluster run JBoss AS 7. Jboss 

AS 7.1.1 is the version of the application server installed on the cluster. Apache httpd 
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runs on the master node with the mod_cluster-1.2.0 module enabled. The Jboss AS 7.1.1 

on the master and the slaves are discovered by httpd. A Java servlet for image recognition 

is deployed on the master node as a web archive file. The servlet’s URL is hardcoded in 

every front end smartphone. The servlet receives images uploaded with HTTP POST 

requests, recognizes barcodes, and sends an HTML response back to front end 

smartphones. No data caching is done on the servlet or the front end smartphones. 

3.5 Skewed Barcode Localization Experiments 

3.5.1 Experimental Setup 

 The DOG algorithm was tested on images extracted from 506 video recordings 

of common grocery products. Each video recorded one specific product from various 

sides. The videos had a 1280 x 720 resolution and were recorded on an Android 4.2.2 

Galaxy Nexus smartphone in a supermarket in Logan, Utah. All videos were recorded by 

a user who held a grocery product in one hand and a smartphone in the other. The videos 

covered four different categories of products: bags, bottles, boxes, and cans. The average 

video duration is fifteen seconds. There were 130 box videos, 127 bag videos, 125 box 

videos, and 124 can videos. Images were extracted from each video at the rate of 1 frame 

per second, which resulted in a total of 7,545 images, of which 1950 images were boxes, 

1905 images were bags, 1875 images were bottles, and 1860  images were cans. These 

images were used in the experiments and the output of the algorithm, i.e., enclosed 

barcode regions (see Figures 3.6 and 3.7), were manually evaluated by two human 
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evaluators independently.         

 A frame was classified as a complete true positive if there was a D-neighborhood 

with at least one straight line across all bars of a localized barcode. A frame was 

classified as a partial true positive if there was a D-neighborhood where a straight line 

could be drawn across some, but not all, bars of a barcode. An image was classified as a 

false positive if there was a D-neighborhood that covered an image area with no barcode 

and no D-neighborhood detected in the same image covered a barcode either partially or 

completely. For example, in Figure 3.7, the D-neighborhood, with a DOG of 100, in the 

upper left corner of the image, covers an area with no barcode. However, the entire frame 

in Figure 3.7 is classified as a complete true positive, because there is another D-

neighborhood, with a DOG of 47, in the center of the frame that covers a barcode 

completely. A frame was classified as a false negative when it contained a barcode but no 

D-neighborhoods covered that barcode either completely or partially and no D-

neighborhood covered an area with no barcode, because in the latter case, the frame was 

classified as a false positive. A frame was classified as a true negative when the frame 

contained no barcode and could not be classified as a false positive.                             

3.5.2 DOG Localization Experiments      

 The DOG algorithm was implemented in Java with OpenCV2.4 bindings for 

Android 4.2 and ran on Galaxy Nexus and Samsung Galaxy S2. In our previous research 

[10], the best threshold values for each mask size were determined. These values are 

given in Table 3.1. We used these values to run the experiments for each category of 
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products.  The performance analysis for the DOG algorithm is presented in the pie charts 

in Figures 3.8-3.11 for each category of products. 

Table 3.1: Optimal mask sizes and threshold. 

Product Type Mask Size Threshold 

Bag 20 x 20 0.02 

Bottle 40 x 40  0.02 

Box 20 x 20 0.02 

Can 20 x 20 0.01 

 

            As can be seen in Figures 3.8-3.11, the DOG algorithm produces very few false 

positives or false negatives and performs well even on unfocussed and blurry images. The 

large percentages of true negatives show that the algorithm is conservative. This is done 

by design, because it is more important, to avoid false positives. Moreover, at a rate of 

two frames per second, eventually there will be a frame where a barcode is successfully 

and quickly localized. The algorithm produces very few false negatives, which indicates,  
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Figure 3.8 DOG performance on bags 

 

Figure 3.9 DOG performance on bottles 
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Figure 3.10 DOG performance on boxes 

 

Figure 3.11 DOG performance on cans 

that, if a frame contains a barcode, it will likely be localized. Figure 3.12 gives the DOG 

precision, recall, accuracy, and specificity values for different categories of products. The 

graph shows that the algorithm produced the best results for boxes, which can be 
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attributed to the clear edges and smooth surfaces of boxes that result in images without 

major distortions. The largest percentages of false positives were on bags (8 percent) and 

bottles (7 percent). Many surfaces of these two product categories had shiny materials 

that produced multiple glares and reflections. 

3.6 Skewed Barcode Scanning Algorithm      

 Our one dimensional (1D) algorithm for UPC and EAN barcode scanning works 

on frames with localized barcodes. In Figure 3.13, the output of the DOG localization 

algorithm is shown with a blue rectangle around the localized barcode. As was discussed 

above, the barcodes are localized in captured frames by computing dominant orientations 

of gradients (DOGs) of image segments and collected into larger connected components 

on the basis of their DOG similarity and geometrical proximity. 

 

Figure 3.12 DOG precision, recall, specificity, and accuracy 
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Figure 3.13 Barcode localization with DOG 

 Figure 3.14 shows the control flow of the 1D barcode scanning algorithm. The 

algorithm takes as input an image captured from the smartphone camera’s video stream. 

This image is processed by the DOG algorithm. If the barcode is not localized, another 

frame is grabbed from the video stream. If the DOG algorithm localizes a barcode, as 

shown in Figure 3.13, the coordinates of the detected region is passed to the line grower 

component. The line grower component selects the center of the localized region, which 

is always a rectangle, and starts growing scanlines. For an example of how the line 

growing component works, consider Figure 3.15. The horizontal and vertical white lines 

intersect in the center of the localized region. The skew angle of the localized barcode, 

computed by the DOG algorithm, is 120 degrees.  The line that passes the localized 

region’s center at the skew angle detected by the DOG algorithm is referred to as the 

skew line. In Figure 3.15, the skew line is shown as a solid black line running from north-
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west to south-east. After the center of the region and the skew angle are determined, the 

line growing module begins to grow scanlines orthogonal to the skew line. A scanline is 

 

Figure 3.14 Flowchart for barcode localization 

grown on both sides of the skew line. In Figure 3.15, the upper half of the scanline is 

shown as a red arrow and the lower half of the scanline is shown as a blue arrow. Each 

half-line is extended until it reaches the portion of the image where the barcode lines are 

no longer detectable. A five pixel buffer region is added after the scanline’s end to 

improve subsequent scanning. The number of scanlines grown on both sides of the skew 

line is controlled through an input parameter. In the current implementation of the 

algorithm, the value of this parameter is set to 10. The scanlines are arrays of luminosity 

values for each pixel in their growth path. It should be noted that the scanlines are grown 

and scanned in place without any image or line rotation. For each grown scanline, the 
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Line Widths (LW) for the barcode are then computed by finding two points that are on 

the intensity curve but lie on the opposite sides of the mean intensity. By modeling the  

 

Figure 3.15 Growing a scanline orthogonal to skew angle 

curve between these points as a straight line the intersection points are obtained between 

the intensity curve and the mean intensity.                                               

  Figure 3.16 shows a sequence of images that gives a visual demonstration of how 

the algorithm works on a captured frame. The top image in Figure 3.16 is a frame 

captured from the smartphone camera’s video stream. The second image from the top in 

Figure 3.16 shows the result of the clustering stage of the DOG algorithm that clusters 

small subimages with similar dominant gradient orientations and close geometric 

proximity. The third image shows a localized barcode enclosed in a white rectangle. The 
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bottom image in Figure 3.16 shows ten scanlines, one of which results in a successful 

barcode scan. 

 

Figure 3.16 1D Barcode scanning steps 
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3.7 Skewed Barcode Scanning Experiments     

 Our 1D algorithm for UPC and EAN barcode scanning works on frames with 

localized barcodes. In Figure 3.13, the output of the DOG localization algorithm is shown 

with a blue rectangle around the localized barcode. As was discussed above, the barcodes 

are localized in captured frames by computing dominant orientations of gradients 

(DOGs) of image segments and collected into larger connected components on the basis 

of their DOG similarity and geometrical proximity. 

3.7.1 Experiments in the supermarket      

 We conducted our first set of barcode scanning experiments in a local 

supermarket to assess the feasibility of our system. A user, who was not part of this 

research project, was given a Galaxy Nexus 4 smartphone with an AT&T 4G connection. 

Our front end application was installed on the smartphone. The user was asked to scan 

ten products of his choice in each of the four categories: box, can, bottle, and bag. The 

user was told that he can choose any products to scan so long as each product was in one 

of the above four categories. A research assistant accompanied the user and recorded the 

scan times for each product. Each scan time started from the moment the user began 

scanning and ended when the response was received from the server.  Figure 3.17 denotes 

the average scan times in seconds for each category. The cans showed the longest 

scanning average due to glares and reflections.     

 Bags showed the second longest scanning average due to some crumpled 

barcodes. As we discovered during these experiments, another cause for the slower scan 
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times on individual products in each product category is the availability of Internet 

connectivity at various locations in the supermarket. During the experiments in the 

supermarket, we noticed that at some areas of the supermarket the Internet connection did 

not exist, which caused delays in barcode scanning. For several products, a 10 or 15-step 

change in location within a supermarket resulted in a successful barcode scan. 

3.7.2 Impact of blurred images       

 The second set of barcode scanning experiments was conducted to estimate the 

impact of blurriness on skewed barcode localization and scanning. These experiments 

were conducted on the same set of 506 videos of boxes, bags, bottles, and cans that we 

used for our barcode localization experiments. The average video duration is fifteen 

seconds. There are 130 box videos, 127 bag videos, 125 box videos, and 124 can videos. 

Images were extracted from the videos at the rate of 1 frame per second, which resulted 

in a total of 7,545 images, of which 1950 images were boxes, 1905 images were bags, 

1875 images were bottles, and 1860  images were cans.     

 Each frame was automatically classified as blurred or sharp by our blur detection 

algorithm using Haar wavelet transforms [37, 38]. Each frame was also manually 

classified as having a barcode or not and labeled with the type of grocery product: bag, 

bottle, box, can. There were a total of sixteen categories. Figure 3.18 shows the results of 

the experiments. Images that contained barcodes for all four product categories had no 

false positives. In each product category, the sharp images had a significantly better true 

positive percentage than the blurred images. A comparison of the bar charts in Figure 
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3.18 reveals that the true positive percentage of the sharp images is more than double that 

of the blurry ones. 

 

Figure 3.17 Average barcode scan times 

           Images without any barcode for all categories produced 100% accurate results 

with all true negatives, irrespective of the blurriness. In other words, the algorithm is 

highly specific in that it does not detect barcodes in images that do not contain them. 

Another observation on Figure 3.18 is that the algorithm showed its best performance on 

boxes. The algorithm’s performance on bags, bottles, and cans was worse because of 

some crumpled, curved, or shiny surfaces. These surfaces caused many light reflections, 

which hindered performance of both barcode localization and barcode scanning. The 

percentages of the skewed barcode localization and scanning were better on boxes due to 

smoother surfaces. Quite expectedly, the sharpness of images made a positive difference 
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in that the scanning algorithm performed much better on sharp images in each product 

category. Specifically, on sharp images, the algorithm performed best on boxes with a 

detection rate of 54.41%, followed by bags at 44%, cans at 42.55%, and bottles at 

32.22%. 

 

Figure 3.18 Barcode detection rates on blurred and non-blurred images 

3.8 Robustness and Speed of Linux Cluster      

 The third set of experiments was conducted to assess the robustness and speed of 

our Linux cluster for image processing. After all classifications were completed (blurred 

vs. sharp; barcode vs. no barcode; type of grocery product), the classified frames were 

stored in the smartphone's memory card. An Android service was implemented and 

installed on a Galaxy Nexus 4 smartphone. The service took one frame at a time and sent 

it to the node cluster via an http POST request over a local Wi-Fi network with a 
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download speed of 72.31 Mbps and an upload speed of 29.64 Mbps.  

 The service recorded the start time before uploading each image and the finish 

time once a response was received from the cluster. The difference between the finish 

and start times was logged as a total request-response time. The service was run with one 

image from each of the sixteen categories described in Section 3.5.2 for 3000 times, and 

the average request-response time for each session was calculated.   

 Each image sent by the service was processed on the cluster as follows. The DOG 

localization algorithm was executed and, if a barcode was successfully localized, the 

barcode was scanned in place within the localized region with ten scanlines. The 

detection result was sent back to the smartphone and recorded on the smartphone’s 

memory card. Figure 3.19 gives the graph of the node cluster’s request-response times.  

 

Figure 3.19 Average request - response times 
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The lowest average request-response time was 712 milliseconds; the highest average was 

1813 milliseconds. 

3.9 Discussion          

 An algorithm was presented for vision-based localization of 1D UPC and EAN 

barcodes with relaxed roll, pitch, and yaw camera alignment constraints. The algorithm 

(DOG) localizes barcodes in images by computing dominant orientations of gradients of 

image segments and grouping smaller segments with similar dominant gradient 

orientations into larger connected components. Connected components that pass specific 

morphological criteria are marked as potential barcodes and enclosed with minimal 

rectangular areas. The algorithm was implemented in a distributed, cloud-based system. 

The system’s front end is a smartphone application that runs on Android smartphones 

with Android 4.2 or higher. The system’s back end was deployed on a five node Linux 

cluster where images are processed. The algorithm was evaluated on a sample of 506 

videos of bags, boxes, bottles, and cans in a supermarket. All videos were recorded with 

an Android 4.2 Google Galaxy Nexus smartphone. The videos have been made public for 

all interested research communities to replicate our findings or to use them in their own 

research [39]. The front end Android application is available for free download at Google 

Play under the title of NutriGlass [40].      

 The DOG algorithm is designed to be conservative in that it rejects the frames on 

the slightest chance that it does not contain any barcode. While this increases false 

negatives, it keeps both true negatives and false positives close to zero. The DOG 
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algorithm was subsequently coupled to our 1D UPC and EAN barcode scanner. The 

scanner receives a localized barcode region from the DOG algorithm along with the 

region’s skew angles and uses a maximum of ten scanlines drawn at the skew angle to 

scan the barcode in place without any rotation of the scanlines or the localized barcode 

region.           

 After the DOG algorithm was coupled to our 1D barcode scanner, three sets of 

barcode scanning experiments were conducted with the system. The first set of barcode 

scanning experiments was conducted in a local supermarket to assess the feasibility of 

our system by a user with a Galaxy Nexus 4 smartphone with an AT&T 4G connection. 

The user was asked to scan ten products of his choice in each of the four categories: box, 

can, bottle, and bag. The cans showed the longest scanning average due to glares and 

reflections. Bags showed the second longest scanning average due to some crumpled 

barcodes. Another cause for the slower scan times on individual products was the 

availability of Internet connectivity at various locations in the supermarket. At some 

areas of the supermarket the Internet connection did not exist, which caused delays in 

barcode scanning.         

 The second set of barcode scanning experiments was conducted to estimate the 

impact of blurriness on skewed barcode localization and scanning. These experiments 

were conducted on the same set of 506 videos of boxes, bags, bottles, and cans. Images 

were extracted from the videos at the rate of 1 frame per second, which resulted in 1950 

box images, 1905 bag images, 1875 bottle images, and 1860 can images. Images for all 

four product categories had no false positives. In each product category, the sharp images 
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had a significantly better true positive percentage than the blurred images. The true 

positive percentage of the sharp images was more than double that of the blurry ones. 

Images without any barcode for all categories produced 100% accurate results with all 

true negatives, irrespective of the blurriness. The sharpness of images made a positive 

difference in that the scanning algorithm performed much better on sharp images in each 

product category.          

 The third set of experiments was conducted to assess the robustness and speed of 

our five Linux cluster for image processing. An Android service was implemented and 

installed on a Galaxy Nexus 4 smartphone. The service took one frame at a time and sent 

it to the node cluster via an http POST request over a local Wi-Fi network with a 

download speed of 72.31 Mbps and an upload speed of 29.64 Mbps. Sixteen sessions 

were conducted during each of which 3,000 images were sent to the cluster. The cluster 

did not experience any failures. The lowest average request-response time was 712 

milliseconds; the highest average was 1813 milliseconds.     

 One limitation of the current front end implementation is that it does not compute 

the blurriness of the captured frame before sending it to the back end node cluster where 

barcode localization and scanning are performed. As the experiments described in 

Section 3.5.2 indicate, the scanning results are substantially higher on sharp images than 

on blurred images. This limitation points to a potential improvement that we plan to 

implement in the future. When a frame is captured, its blurriness coefficient can be 

computed on the smartphone and, if it is high, the frame should not even be sent to the 

cluster. This improvement will reduce the load on the cluster and increase its 
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responsiveness.          

 Another approach to handling blurred inputs is to improve camera focus and 

stability, both of which are outside the scope of our research agenda, because it is, 

technically speaking, a hardware problem. It is likely to work better in later models of 

smartphones. The current implementation on the Android 4.2 platform attempts to force 

the camera focus at the image center through the existing API. Over time, as device 

cameras improve and more devices run newer versions of Android, this limitation will 

likely have a smaller impact on the system’s performance. 
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CHAPTER 4 

TEXT SKEW ANGLE DETECTION 

4.1 Introduction 

 Vision-based extraction of nutritional information from nutrition labels (NLs) 

available on most food product packages is critical to proactive nutrition management, 

because it improves the user’s ability to engage in continuous nutritional data collection 

and analysis. Computer vision can play a key role in the food selection process by 

providing consumers with real time text analysis of NLs, which will likely engage 

consumers in proactive nutrition management [9]. We have previously developed a 

vision-based localization algorithm for horizontally or vertically aligned NLs on 

smartphones [9]. The algorithm was subsequently modified to process not only aligned 

NLs but also slightly skewed ones. A limitation of the algorithm was its inability to 

handle arbitrary text skews [13]. In this chapter, we address this limitation by proposing 

an algorithm for text skew detection without any constraints on the magnitude of the 

skew. The proposed algorithm works not only on NLs but also on single- and multi-

column printed text images. The algorithm is called TSAW (Text Skew Angle Wavelets) 

and is implemented in Java. To ensure the reproducibility and veracity of the results 

reported in this article, we have made our source code publicly available [42]. TSAW 

takes printed text images and downsamples them with several iterations of the 2D Haar 

Wavelet Transform (2D HWT). The HL, LH, and HH matrices are used to identify 2D 

points with significant intensity changes. These points form a singularity point set in the 

2D plane. The convex hull algorithm [14] is applied to this set to enclose it with a 
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minimum area rectangle. The text’s skew is the enclosing rectangle’s rotation angle 

relative to the absolute north.      

4.2 Haar Wavelet Transform       

 In TSAW, images are down-sampled with several iterations of 2D Haar Wavelet 

Transform (HWT) to obtain the HL, LH, and HH matrices. The HWT is a discrete 

wavelet transform (DWT) applicable to       signals. The recurrences for forward 1D 

HWT implemented in TSAW are given in (4.1) and are formally developed in [43].  

 

 

 

The s and d values are the values of the low and high pass filters, respectively, 

recursively computed from the previous scale. Unlike more sophisticated DWTs, e.g., 

Daubechies D4 [44, 45], HWT does not have the boundary problem when the 

computation of the low and high pass filter values at the current scale requires samples 

and wavelets outside of the boundaries of         signals.      

 In TSAW, the generalization of 1D HWT to 2D is based on the tensor products of 
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basic wavelets in the first dimension with basic wavelets in the second dimension, as 

given in (4.2). The formal treatment of this generalization is developed in [43].  

          

 
 
 

 
 
           

             

  

          

 
 
 
 

 
 
          

 

 
 

     
 

 
     

               

  

(4.2) 

 

 

 

 

 Given two functions,    and   , of one argument, their tensor product is     

                    . The 2D wavelets for 2D HWT are tensor products of           

and           defined in (4.3), where superscripts h, v, and d denote the horizontal, 

    
                              

    
                                

    
                                

    
                                

(4.3) 
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vertical, and diagonal wavelets, respectively.  In 2D       signals, e.g., images, the 

horizontal wavelets reflect horizontal (left to right) changes, the vertical wavelets reflect 

vertical (top to bottom) changes, and the diagonal changes reflect the changes between 

the two main diagonals. 

 
               
                

   
        
          

  (4.4) 

  

 In practice, 2D HWT is computed by applying 1D HWT to each row and then to 

each column. As an example, suppose there is a       pixel image, defined in (4.4), 

where      denotes a pixel in row r and column c. Applying 1D HWT to each row results 

in the       matrix in (4.5). 1D HWT is then applied to each column of the matrix in 

(4.5), which results in the matrix in (4.6) whose coefficients encode the data in the 

original matrix in (4.4) in terms of the four tensor wavelets     
        ,      

          , 

    
          , and     

           in (4.7). This decomposition operation can be represented 

in terms of matrices in (4.8). 
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(4.8) 

 

 The value 8 in the upper-left corner of the matrix in (4.6) is the average value of 

the original matrix in (4.4): (11+9+7+5)/4= 8. The value 1 in the upper right-hand corner 

of (4.6) is the horizontal change in the data in (4.4) from the left average, (11+7)/2=9, to 

the right average, (9+5)/2=7, which is equal to       
                 The value 2 in 

the bottom-left corner in (4.6) is the vertical change in the original data in (4.4) from the 

upper average, (11+9)/2=10, to the lower average, (7+5)/2=6, which is equal to   
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              2= 4. The value 0 in the bottom-right corner of (4.6) is the change in 

the original data in (4.4) from the average along the first diagonal (from the top left 

corner to the bottom right corner), (11+5)/2=8, to the average along the second diagonal 

(from the top right corner to the bottom left corner), (9+7)/2=8, which is equal to 

      
          .  

4.3 Text Skew Detection        

 TSAW was originally designed to work on NL images taken with a smartphone 

camera. TSAW receives as input images with NL texts, as shown in Figure 4.1 (left). In 

the current publicly available implementation [42], the default input image size is 

         . 2D HWT is applied to the input image for two iterations to compute the 

horizontal, vertical, and diagonal changes and store them in the three matrices: HC 

(horizontal change), VC (vertical change), and DC (diagonal change), as shown in Figure  

 

Figure 4.1 Horizontal, vertical, and diagonal changes 
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4.1 (right). Since 2D HWT is applied twice, the three change matrices are        . 

Thus, the original image is downsampled from             to          . The 

number of iterations is one of the input parameters in the algorithm and can be easily 

adjusted if necessary.  

 

Figure 4.2 Binarization of HC, VC, and DC matrices 

         

                                      

                                         

  (4.9) 

 

Each change matrix is binarized to set each pixel to       or       , as 

shown in Figure 4.2. The binarized matrices are combined into a           matrix 

       defined in (4.9), where         and     is a threshold. The parameters  , 

 , and   control the relative contributions of the horizontal, vertical, and diagonal 

changes, respectively. A sample        matrix is shown in Figure 4.3 (right) with 
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        The pixels of        whose value is 255 indicate 2D points with significant 

intensity changes. The DC wavelets were observed to detect the presence of text better 

than the HC or VC wavelets. This may be due to the fact that printed text has more 

diagonal edges than horizontal or vertical ones as compared to other objects in the image 

such as lines or graphics. Consequently, in the current implementation of TSAW the 

following parameter values are used: α=β=0.2 and γ=0.6.  The convex hull algorithm 

[14] is used to find a minimum area rectangle bounding the singularity point set defined 

by       , as shown in Figure 4.4 (right). The text skew is computed as the rotation angle 

of this rectangle relative to the true north of 90 degrees.  

 

 

 

Figure 4.3 Combining wavelet matrices into result matrix 
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Figure 4.4 Using the minimum area rectangle for text skew angle computation 

 Appendix B gives the TSAW pseudocode. The algorithm takes as input a 2D 

image Img of size    , where           If the size of the image is not equal to an 

integral power of 2, as required by 2D HWT, the image is padded with 0’s. The third 

argument, NITER, specifies the number of iterations for 2D HWT. On line 2, 2D HWT is 

applied to Img for NITER iterations, which in the current implementation is equal to 2. 

The procedure 2DHWT returns an array of four n x n matrices AVRG, HC, VC, and DC. 

The first matrix contains the averages while HC, VC, and DC record horizontal, vertical 

and diagonal wavelet coefficients.       

 On line 4, the matrices HC, VC, and DC are binarized in place. Lines 5-14 give 

the pseudocode for the Binarize procedure. Figure 4.2 shows an example of how this 

procedure works. On line 5, the procedure FindSkew is called. The pseudocode for this 

procedure is shown in lines 15-26. FindSkew takes three     matrices HC, VC, and 

DC and the       parameter used in computing       .    

 On line 16, the matrix        is initialized. On lines 17-24, the        values are 

computed from the        ,        , and         values, as defined in (4.9). On line 

26, the algorithm first calls the procedure FindMinAreaRectangle that uses the convex 
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hull algorithm to find a minimal area rectangle around the points with significant 

intensity changes, i.e.,        = 255. and then calls the procedure FindRotationAngle 

that returns the value of the text skew as the rotation angle of this rectangle relative to the 

truth north of 90 degrees. 

4.4 Text Skew Angle Detection Experiments     

 The performance of TSAW was compared with the algorithms by Postl [22] 

(Algo1), by Hull [24] (Algo2), by Li, Shen, and Sun [29] (Algo3), and by Papandreou 

and Gatos [27] (Algo4).  Since we were unable to obtain the source code of these 

algorithms in a performance sensitive imperative programming language (C/C++ or 

Java), we implemented them in Java with JDK 1.7, the same JDK version we used to 

implement TSAW. Our implementations of these algorithms are publicly available [46].  

 The first experiment was designed to evaluate text skew detection in the context 

of vision-based nutrition information extraction where the ultimate objective is to extract 

NL information in real time from NL images taken with smartphones. Toward that end, 

1001 NL frames of common grocery products were extracted, at a rate of 1 frame per 

second, from 1280 x 720 HD videos of common grocery packages with an average 

duration of 15 seconds. The videos were recorded on an Android 4.3 Galaxy Nexus 

smartphone in two supermarkets in Logan, UT. The videos include four different 

categories of products: bags, boxes, bottles, and cans. Our image blur detection algorithm 

[37,38] was used to remove all blurred images from the frames extracted from the videos. 

Thus, 1001 NL images of common grocery products are the images classified as sharp by 
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our blur detection algorithm. This data set is henceforth referred to as DS1.  

 The text skew ground truth was obtained from two human volunteers who used an 

open source protractor [47] to estimate the text skew manually for each image in DS1. To 

facilitate the replication of our results, we have made DS1 and the ground truth estimates 

publicly available [48]. All five algorithms were executed on DS1. The computed text 

skews were recorded for each image.  The text skews were compared with the ground 

truth via box plots.         

 In the second experiment, all the algorithms were applied to a public data set 

(henceforth referred to as DS2) of 2200 scanned document images [49]. DS2 includes 

figures, tables, diagrams, block diagrams, architectural plans, electrical circuits in 

multiple languages from newspapers, journals, books, dictionaries, etc. The images are 

rotated from -5 to +5 degrees with a step of 1. The text skews were logged for each 

algorithm and image. The text skews were compared with the ground truth via box plots. 

In box plots, better methods have narrower boxes centered at 0. Wider boxes indicate 

greater variability between the estimated and actual values. Median lines far away from 0 

suggest method biases.        

 The performance of TSAW was also compared with a more recent algorithm by 

Papandreou et al. [28]. The researchers evaluated their algorithm on DS2 by computing 

the average error deviation (AED) and the percentage of correct estimations (CEs) given 

in (4.10) and (4.11), where N is the number of images in the dataset and E(j) is the error 

in skew angle estimation for the j-th image. The AED of 0 and percentage CE of 100 are 

ideal. The AED and CE values were computed for all algorithms on DS1 and DS2.   
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AED = 
      
   

 
 

(4.10) 

 

 

 

 

Figure 4.5 Box plots on DS1 

4.5 Results          

 In Figure 4.5, the box plots are given for each algorithm on DS1.The vertical axis 

denotes the difference between the text skews computed by each algorithm and product 

type. The box plots indicate that TSAW has the narrowest boxes and median errors close 

to 0 in all image categories, which suggests that this algorithm is less error prone and 

more consistent than the other four algorithms on DS1. Algo3 is a close second with the 

median errors close to 0, however the boxes are wider than TSAW’s. Algo1 has a 

negative bias for cans, boxes and bottles. Algo2 also has a negative bias for boxes and 

wider spreads than TSAW in all image categories. While Algo4 has median errors at 0 in 

all four image categories, it has wider spreads than either Algo3 or TSAW. 

CE=
      
   

 
*100 , where K(j) =  

           
           

  
 

(4.11) 
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Figure 4.6 Text Skew Angle detection error for TSAW 

   The main causes of failure for DS1 were light reflections and irregular product 

shapes. For example, Figure 4.6 shows an image of a can on which all algorithms had 

deviations. The ground truth text skew on the image in Figure 4.6 is 66.29 degrees. The 

skew angles estimated by Algo1, Algo2, Algo3, Algo4 and TSAW on the image in 

Figure 4.6 were 60, 0, 90, 120, 77.52, respectively.  For TSAW, the light reflections both 

above and inside the NL caused the point outliers and the subsequent error in the 

minimum area rectangle identification.        

 All the algorithms performed well on DS2. Boxplots for DS2 are not included 

because most of the errors are close to 0 and outliers dominate the plots for all the 

methods. Tables 4.1 and 4.2 show the AED and CE statistics computed for DS1 and DS2. 

 In Table 4.2, Algo5 refers to a more recent version of the text skew algorithm by 

Papandreou et al. [28]. Recall that the ideal values are 0 and 100, respectively.  
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Table 4.1. AED and CE statistics on DS1 

Algorithm AED CE 

Algo1 67.85 3.50 

Algo2 52.96 4.80 

Algo3 21.44 9.59 

Algo4 45.69 5.89 

TSAW 8.60 24.98 

  

Table 4.2. AED and CE statistics on DS2 

Algorithm AED CE 

 

Algo1 4.20 55.36 

Algo2 6.76 46.09 

Algo3 6.33 51.59 

Algo4 8.28 43.18 

Algo5 0.06 74.50 

TSAW 6.11 51.18 

   

   TSAW has the lowest AED and highest CE on DS1. On DS2 Algo5 has the 

lowest AED and highest CE values. AED and CE values on DS2 for TSAW are 
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comparable to the other algorithms. The results of the experiments on DS2 show that 

although TSAW was originally designed to work in real time on NL images it performs 

on par with the algorithms designed to detect text skew in standard text documents.  

4.6 Discussion          

 A text skew detection algorithm, called TSAW, is presented that does not place 

any restrictions on text skew magnitudes. Although TSAW is originally designed to work 

with nutrition label images captured with handheld mobile phone cameras, it can also 

detect text skews in printed document images which have significantly better lighting and 

exposure than NL images. TSAW down-samples text images through several iterations of 

2D HWT. The HL, LH, and HH matrices are used to identify 2D points with significant 

intensity changes. The convex hull algorithm [14] encloses these points it with a 

minimum area rectangle. The text’s skew is the enclosing rectangle’s rotation angle 

relative to the true north.         

 The performance of TSAW was evaluated on two data sets and compared with the 

performance of the algorithms by Postl [22, 23] (Algo1), by Hull [24] (Algo2), by Li et 

al. [29] (Algo3) and by Papandreou et al. [27] (Algo4) and its more recent version [28] 

(Algo5). The first data set (DS1) consisted of 1001 images of NL extracted from videos 

captured in grocery stores with a smartphone camera. The second data set (DS2) 

consisted of 2200 scanned document images of single- and multi-column documents.

 On DS1, TSAW was found to be the most accurate with a median error of 4.62 as 

compared to 68.85, 20.92, 9.71, and 17.5 for Algo1, Algo2, Algo3, and Algo4, 
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respectively. All the algorithms performed well on images from DS2, which indicates 

that even though TSAW is originally designed for NL images it performs on par with the 

algorithms specifically designed to detect text skews in document images.  
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CHAPTER 5 

OPTICAL CHARACTER RECOGNITION 

5.1 Introduction 

 Optical  Character Recognition (OCR) can be defined  as the process of 

converting images of printed or handwritten text into machine encoded text. This process 

allows books and documents to be read digitally and finds many applications in the fields 

of information retrieval, text mining, etc. The history of OCR can be traced as far back as 

the Nipkow disk [50], which was invented by P. Nipkow of Poland in the early part of the 

twentieth century. This machine used a system of holes drilled on a rotating disk to scan 

images, which could then be transmitted across distances. The first OCR systems were 

developed by Emmanuel Goldberg and Edmund Fournier D'Albe between the years of 

1912 and 1914. Goldberg developed and patented a machine in 1912 that was able to read 

characters and convert them into standard telegraphic code. This machine laid the 

foundations of OCR by proving that printed characters could be converted to an encoded 

format. Fournier D'Albe is credited for developing a device known as the Optophone. 

This hand-held device produced a series of audible tones when moved across a printed 

page. The Optophone matched each character with a specific tone. This system was not 

practical since it required a lot of concentration and skill but it laid the basis for a 

working OCR system. OCR technology is now very mature and many reliable systems 

have been developed for desktop machines. However, its implementation on cell phones 

is relatively new. Modern cell phones possess all the technologies required for creating a 

hand-held OCR system but lack in processing power and the quality of the scanned 
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image. The built-in camera is great for capturing images on the go but the quality of the 

image is not comparable with the quality of dedicated scanning equipment. Varying  

degrees  of  skew  may  be  introduced  into  the images while capturing especially using 

handheld cameras or smartphones. Skew angle is the angle that the text lines in the digital 

image makes with the horizontal direction.   Text in such cases is rotated or distorted and 

degrades the performance of further processing and  may  seriously  affect  the  

performance  of  subsequent  stages  of  segmentation  and recognition, since the 

contemporary OCR systems cannot handle rotated text and perform well  only  in  

recognizing  texts  that  are  linearly  aligned. While  the  horizontally  aligned text is 

easily detected and  recognized, skewed text poses a challenge to recognition. In most  

existing  OCR  systems,  a  skew  correction  process  is  often  performed  prior  to 

recognition, should a need arise.  Most skew estimation techniques deal with small skew 

angles less than 5 degrees but perform poorly  for images, which contain text lines that 

are oriented in arbitrary directions.       

 In this chapter we present an OCR engine that can read skewed text. As far as we 

are concerned currently there are no such OCR engines available. 

5.2 Preprocessing        

 "Garbage In, Garbage Out" is a very popular phrase in computing. If the input to a 

computer system is absolute "garbage", one cannot expect anything more than garbage in 

return. However, in the field of OCR, it is quite possible that data which can be easily 

read by humans appears as garbage to the computer. This is due to the fact that almost all 
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input images are degraded by noise, shadows, highlights or skew errors. Humans are very 

adept at detecting such noise and removing it from consideration but unfortunately, the 

same cannot be said for OCR systems. Thus, the first step in the OCR process is to pre-

process the image and clean it. The preprocessing step is responsible for binarizing the 

image and removing noise from it. This stage is also responsible for ensuring that the 

characters in the image are vertically aligned and are minimally distorted. Let us now 

examine some of the common pre-processing steps.  

5.2.1 Binarization         

 The image from the camera is a colored or grayscale image Y , where each pixel 

in the image has a value from 0 to 255. This image has to be converted to a two-level 

binary image B where each pixel has a value of either 0 or 255. Binarization is defined as 

the process that converts a grayscale image to a two-level binary image. Binarization is 

performed using a very simple concept known as thresholding, where every pixel p from 

the input image Y is compared against a threshold τ and the corresponding output pixel is 

set to 0 if p < τ  or 255 otherwise. Binarization techniques can be broadly classified as 

global threshold methods and local threshold methods depending on how we obtain the 

value of τ. Global thresholding methods assume a single threshold for the entire image 

whereas local thresholding methods compute thresholds for each pixel in the image or a 

block of pixels in the image.             

5.2.1.1 Thresholding          

 Using a global threshold is the easiest way to binarize an image. In this method, 
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we use a global threshold τ and for every pixel Yp in the input image Y , we obtain the 

corresponding pixel Bp in the two-level binary image B as follows: 

   

 
 
 

 
 

          

             

                               (5.1) 

The threshold   can be fixed for all images (e.g.   = 127) or it may be computed for each 

individual image (e.g.   = mean(Y )). Otsu's binarization method [51] is a global 

thresholding method that is very popular for binarizing images with well-defined 

foreground and background regions. This method searches for a threshold that maximizes 

inter-class variance and minimizes intra-class variance between the two classes 

(foreground and background).        

 The advantage of the global thresholding methods is that they are very simple and 

inexpensive. However, for images where the difference in foreground and background 

intensities is less or where foreground and background intensities overlap each other, 

these methods do not achieve good results. 

5.2.2 Noise Filtering         

 The authors in [3] define noise as undesired random degradations in images, 

which may occur during capture, transmission, and processing. These degradations 

manifest themselves as either additive noise or subtractive noise. Figure 5.1and 5.2 show 
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an example of an image (top) and its noisy counterpart (bottom). It can be observed that 

additive noise takes the form of foreground pixels and subtractive noise takes the form of 

background pixels. Noise is undesirable because it can cause segmentation as well as 

classification errors. Additive noise can join adjoining characters together whereas 

subtractive noise can cause a single character to appear as two (or more) distinct 

characters.  

 

Figure 5.1 Additive noise 
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Figure 5.2 Subtractive noise 

 Jain [53] classifies image noise as Gaussian noise, Rayleigh noise, Gamma noise, 

Exponential noise, Salt and Pepper noise, Uniform noise, and Sinusoidal noise. Gaussian 

noise and Salt and Pepper noise are the two most commonly encountered forms of noise 

encountered in images. In the case of Gaussian noise, the noisy pixel has a grayscale 

value that is a function of the Gaussian distribution whereas in the case of Salt and 

Pepper noise, the noisy pixel takes on one of two values (`salt', which is lighter or 

`pepper', which is darker). Median filters [54,55,56] and kFill algorithms [57,58] are two 

very common techniques used to remove salt and pepper noise from images. A study [59] 

comparing different types of filtering algorithms for removing Gaussian noise in images 

found that the Wiener filter [60] performed the best. We did not find the need to use noise 

filtering algorithms as they would increase computational load. Also our use of a 

template matching for the classification process eliminates the need for noise filtering in 

both the segmentation and classification stages. 
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5.3 Normalization         

 An image can suffer from four basic forms of distortion: translation, rotation, 

scaling and skew [88]. The image normalization process is responsible for transforming 

an image to its normal form that is invariant to these distortions. The need for 

normalization is most evident for systems that use template matching for the 

classification stage. Normalization techniques are able to transform the input image so 

that both the input image and the template can be compared in a meaningful way. 

Techniques such as moment invariants [39] can easily rectify translation, rotation and 

scaling distortions. The text skew angle detection step ensures that the input image will 

not suffer from rotation and skew distortions. The input image can still suffer from 

translation and scaling distortions and so we normalize the segmented character/word 

image to remove these distortions. This is a two step process. First, we remove 

whitespace from around the character/word image to ensure that the character/word fully 

occupies the image. This process removes all translation distortions from the image. We 

then scale the image to match the size of the template and this process gets rid of the 

scaling distortion. 

5.4 Skew OCR Engine        

 The rotation of an entire NL image is an expensive task in terms of computation. 

It might also introduce noise in an image or remove the extremities of the image 

altogether. In order to overcome these problems we present an OCR engine that can read 

skewed text. As far as we are concerned currently there are no such OCR engines 
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available. The development of an OCR engine capable of reading skewed text requires 

the following steps: 

5.4.1 Angular text row segmentation      

 Text segmentation [41] is an inherent part of an OCR system irrespective of the 

domain of application. Contemporary  OCR systems contain a segmentation module 

where the text lines, words and ultimately the characters must be segmented properly for 

its successful recognition. Text segmentation, in general, incorporates line segmentation, 

word segmentation and character segmentation from a document image. It is the process 

through which the text component within an image is isolated from the background. 

Nutrition labels have multiple rows containing information about each nutritional 

category. Each of these rows must be segmented from the nutrition label before the 

characters in them can be recognized. We can observe in Figure 5.3 that each of these 

lines are separated by black colored lines.       

 The first step in the line segmentation process is to detect the black colored lines 

within the table and segment the individual rows in the NL by detecting these separator 

lines in the NL. This can be done by designing a line filter which can scan the localized 

NL from top-left  to bottom-right at an angle determined by the text skew angle  detection 

algorithm. Let N denote the localized nutrition table image, rotated at angle θ and let Ni 

denote the ith row within this image. Let lj denote the length of the jth black colored line 

segment within Ni that has a length greater than some threshold  'λ'. The ith row Ni is 

assumed to be a black colored line if (lj >= λ). Since each line is enclosed by a black 
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colored line above and below it, the starting coordinate s is defined as the coordinate 'i' 

that is just below a black colored line and the ending coordinate e is defined as the 

coordinate j that is just above a black colored line. Once these coordinates are identified, 

the row can be segmented from an NL image as shown in Figure 5.4.  

 

Figure 5.3 Identification of black separator lines in the NL to identify text rows 
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Figure 5.4 Angular text row segmentation  

5.4.2 Creating skeletons of characters from the detected text row 

 Skeletonization is defined as the process by which characters are reduced to 

skeletons, a set of thin lines (one pixel thick), attached to one another in a few connection 

points that preserve the topological and geometric properties of its originating object 

[61]. This is done in order to standardize the shapes and sizes of the fonts in the NL and 

thereby remove variability. The challenge in this process is to retain the original shape of 

the character. Apart from OCR, skeleton algorithms are employed in various other 

applications from medicine [62] to fingerprint analysis [63]. In case of OCR, skeleton 
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algorithms enable us to analyze characters from a topographical perspective where each 

character can be represented in terms of features like end points, junction points and 

connections among components. A skeleton must preserve the structure of the shape but 

all redundant pixels should be removed. Figure 5.5. shows a skeleton of the letter "B": 

 

Figure 5.5 Skeleton of letter 'B'.  

 Skeletonization  is the process by which characters are reduced to a set of one 

pixel thick lines, attached to one another in a few connection points that preserve the 

topological and geometric properties of its originating object.    

 Skeletonization algorithms work by examining foreground pixels in the image and 

then deleting them until only a skeleton remains. This is done by eroding and dilating the 

image. This process is done in multiple passes and each pass peels away a boundary layer 

of the image. We can classify skeletonizing algorithms as either sequential or parallel 

depending on the way pixels are deleted. In sequential algorithms [64], a boundary pixel 

is marked for deletion depending on the result of the preceding pixel whereas in parallel 

algorithms [65], each pixel is examined independently of other pixels. 
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5.4.3 Character Segmentation      

 Character segmentation has long been a critical area of the OCR process. It is 

used to isolate individual characters in a word to process them separately. The purpose of 

our character segmentation technique is, to identify the characters present in the text rows 

produced after line or row segmentation step as shown in Figure 5.6, by determining their 

boundaries invariant of rotation and skew. Segmentation of individual letters is achieved 

through a formalism that we can refer to as histogram analysis at an angle. We scan the 

text at an angle identified by the skew detection algorithm and generate histograms which 

are angular projections of the characters as shown in Figure 5.7. Then we try to identify  

 

Figure 5.6 A cropped word from a text row produced after line segmentation step 

the gaps between the characters as they have a zero angular projection. Figure 5.8 shows 

the process of identification of these gap regions as the boundary of the character. We can 
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use a small threshold to segment parts of the image that exhibit values of angular 

projection greater than this threshold to isolate the characters from words for subsequent 

matching and identification. 

 

Figure 5.7 Angular projections of characters  
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Figure 5.8 Gap identification from angular projections  

5.4.4 Zone Vector Matching        

 Zone matching is a technique used in computer vision for image matching. An 

image is divided into several sub-images, called zones. In each zone, a specific statistic is  

 

Figure 5.9 Zone vector calculation of a skewed character 
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computed. For example, that statistic can be the number of horizontal lines or the number 

of pixels of a specific color. Consider the image below. The image is divided into 4 

zones. Suppose that statistic that we are interested in is the count of black pixels in each 

zone.  Moving clockwise from the top left zone (zone 1), there are 8 black pixels in zone 

1, 35 black pixels in zone 2, 2 black pixels in zone 3, and 14 black pixels in zone 4. The 

zone vector for the letter in Figure 5.9 is [8,35,2,14]. If we want to match two images, 

img1 and img2, we can compute two zone vectors, zv1 and zv2, and then match them by 

computing their similarity index. One similarity index is cosine similarity that can be 

computed by the following formula, where A and B are two vectors (sequences of 

numbers): 

 

 

(5.2) 

 

 To do zone matching, we compute two zone vectors and then apply a similarity 

metric, e.g. cosine similarity, that returns a number indicating how similar the two 

bitmaps are. If we have two character bitmaps and we want to compute how similar they 

are we would use a similar technique. In OCR, such bitmaps can be obtained through 

character segmentation when a text image is segmented into individual characters. In 

order to match the identified characters with a template using zone vector matching , first 

we would need to scale the size of the characters  to those of the templates , create 

http://en.wikipedia.org/wiki/Cosine_similarity
http://4.bp.blogspot.com/-xDcp7lrqKmA/T0fmJIbYMMI/AAAAAAAAAFA/Ow5k279pmGI/s1600/cosine_similarity.png
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skeletons of the characters and then calculate  the zone vector in order to take care of 

different shapes and sizes of the font. The Skeleton of the template is then matched with 

the skeleton of the scaled character. 

 

Figure 5.10 The zone vector of the skeleton of a character  

 As we are dealing with possibly rotated characters we need to create a dictionary 

of templates at compile time for all letters in the English alphabet (a-z, A-Z) and digits 

(0-9) rotated at various angles starting at 0 degree to 180 degree with a step of 1 degree. 

After the skew angle is estimated and the characters are segmented we can try to match 

the characters with their respective templates rotated at the particular angle using zone 

vector matching. 

5.4.5 Word Matching using Levenshtein Edit Distance     

 We use zone vector template matching to classify the words in the image. We 

match the individual letters in the word with the templates and once a word boundary is 
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reached we use Levenshtein Edit Distance formula to match a a given set of words found 

in a typical Nutrition label. This technique works for our OCR engine due to the fact that 

we are dealing with a small vocabulary of words instead of the entire English language 

dictionary.  Table 5.1 shows the set of words we have identified for our application. 

Table 5.1 Nutrition Label words 

Name 

Amount 

Calcium 

Calories 

Carbohydrate 

Cholesterol 

Daily 

Dietary 

Fat 

Fiber 

From 

Insoluble 

Monounsaturated 

Per 

Polyunsaturated 

Potassium 

Protein 

Saturated 

Serving 

Sodium 

Soluble 

Sugars 

Total 

Trans 

Vitamin 
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5.5 OCR Experiments        

 The skew OCR engine was tested on a set of 291 images of textchunks of 

nutrition data obtained after localizing an NL and running the text segmentation 

algorithm. Each line contained some nutrition related data with both a nutrient text and 

numbers denoting the amount of the nutrient. The text chunks were rotated by the skew 

angle of the NL in order to compare the performance of our OCR engine with an open 

source OCR engine called Tesseract [https://github.com/tesseract-ocr/]. The ground truth 

values for the text was obtained from six human evaluators who were asked to look at the 

text segment and note down the readable text in it.      

 There were three possibilities in the text classification.      

 

Figure 5.11 Single line of text 

  

Figure 5.12 Multi line text 
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Figure 5.13 Illegible text due to incorrect segmentation 

 The human evaluators were asked to note down the text from the segments with 

only a single line of legible text. All the images were then run through the Skew OCR 

engine and Tesseract. The output from both the  OCR engines was evaluated in terms of 

number of correct identifications with respect to the ground truth obtained from the 

human evaluators. Out of the 291 images Tesseract was able to read 186 NL segments 

correctly, whereas the Skew OCR engine was able to read 236 text segments correctly. 

The skew OCR engine was also tested on 307 skewed text chunks without any rotations 

as shown in Figure 5.13. The ground truth values were obtained from human evaluators. 

Out of the 307 skewed text chunks the skew OCR engine was able to read the text of 178 

images correctly. 

 

Figure 5.14 Skewed text chunk 
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 CHAPTER 6  

CONCLUSION 

 A proper understanding of nutrition labels (NLs) is essential to ensure eating a 

healthy, balanced diet.  These labels provide information on the amounts of 13 core  

nutrients and calories in an amount of food, along with a % Daily Value indicator to  help 

people make informed decisions over food choices. This data is presented in the form of a 

standardized table.  Familiarity with the terms of the NLs allows a consumer to make a 

better decision while  shopping  for  packaged  food  products  and  comparing  one  

product  with  another. However, many consumers find it difficult to interpret the 

nutritional information on products and feel less motivated to keep track of their nutrient 

consumption. One way to improve the comprehension and retention of nutritional 

information by consumers  is to use computer vision algorithms that can run on a 

smartphone. This may include the scanning of barcodes on packed food products to 

determine the product type and obtain nutritional information about the product if it is 

available online or scanning the Nutrition Label itself and extracting the nutritional data 

from it.  

 The primary challenge in scanning barcodes with a smartphone is the alignment 

of the camera with the product. We have developed an algorithm called DOG to solve 

this problem.  The first component of this dissertation is the skewed barcode recognition 

algorithm. The algorithm is developed for in-place  vision-based skewed barcode 

scanning that does not require the smartphone camera alignment.  The algorithm  is  in-

place  in  that  it  performs  no  rotation  of  input images to align localized barcodes for 
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scanning. The  algorithm  is  implemented  in  a  distributed,  cloud-based system.  The  

system’s  front  end  is  a  smartphone  application that  runs on  Android 4.3 or higher. 

The system’s back end is currently  deployed  on  a  four  node  Linux  cluster  used  for 

image recognition and nutritional data storage. 

 The second component of this dissertation is a text skew angle detection 

algorithm called TSAW that is used to estimate the skew angle of the NL in an image. 

The  algorithm  takes  a  nutrition  label  image  and applies several iterations of the 2D 

Haar Wavelet Transform (2D HWT) to  downsample the image and to  compute the 

horizontal, vertical,  and  diagonal  change  matrices.  The  values  of  these matrices  are  

binarized  and  combined  into  a  result  set  of  2D change points. The convex hull 

algorithm is  applied to this  set  to find a minimum area rectangle containing all text 

pixels. The text skew  angle  is  computed  as  the  rotation  angle  of  the  minimum area  

rectangle  found  by  the  convex  hull  algorithm. 

 The third and the final component of this dissertation is the skew OCR engine 

which is a proof of concept prototype that allows  users to read the contents of a skewed 

nutrition label. As far as we are concerned, currently there are no such OCR engines 

available. We have compared the performance of this OCR engine with one of the most 

popular open source OCR engines available and found our engine to perform better. 

 Our future work will focus on the overall advancement of PNUTS. The biggest 

area of improvement is to integrate all the different components in a single executable 

project and make an Android user interface for easy testing. This includes the 

upgradation of the current skew OCR engine and increasing its text recognition rates.  
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 The skew OCR engine is presented as a proof-of-concept prototype and thus has a 

significant room for improvement. The current system also assumes that the nutrition 

table contains black colored characters on a light colored background but this may not be 

true for all products. The system should be modified so that it can correctly read light 

colored characters on a dark background or shiny surfaces.  

 Another possibility would be the replacement of the zone vector matching 

algorithm with other types of template matching algorithms such as Hausdorff distance or 

connected component analysis which might be better suited for varying font shapes and 

sizes and give better results in terms of absolute character matches. 

 The system currently uses Levenshtein Edit distance as the spell correction 

module. We would like to evaluate to performance other spell checking algorithms. This 

might involve the integration of a context based spell checking into the skew OCR engine 

so that the relative position of the words in the NL can be utilized to guess the words 

correctly and thereby improve the recognition rates. We would also like to run more 

thorough experiments with larger data sets to test the performance of the skew OCR 

engine. 
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APPENDIX A 

DOMINANT ORIENTATION OF GRADIENTS PSEUDOCODE 

1. FUNCTION ComputeDOGs(Image, MaskSize) 

2.    ThetaThresh = 360; MagnThresh = 20.0; 

3.    FreqThresh = 0.02; ListOfNeighborhoods = []; 

4.    GGOT = new HashTable(); 

5.    Foreach mask of MaskSize in Image Do 

6.       SubImage = subimage currently covered by mask; 

7.       RGOT = ComputeRGOT(SubImage, ThetaThresh, MagnThresh); 

8.       GGOT[coordinates of masks’ top left corner] = RGOT; 

9.       If RGOT ≠ NULL Then 

10. RGOT.row = mask.row; 

11. RGOT.column = mask.column; 

12. If (RGOT(freq)*1.0/(SubImage.cols * subImage.rows)>=FreqThresh) 

13.      Neighbourhood=FindNeighbourhoodForRGOT(RGOT, 

ListOfNeighborhoods); 

14.      If ( Neighbourhood ≠ NULL ) Then Neighbourhood.add(RGOT); 

15.      Else 

16.         NewNeighbourhood=Neighbourhood(RGOT.dtheta, 

ListOfNeighborhoods.size+1); 

17.         NewNeighbourhood.add(RGOT) 

18.                ListOfNeighborhoods.add(newNeighborhood); 

19.      EndIf 

20.       EndIf 

21.     EndIf 

22. EndForeach 
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1.  FUNCTION ComputeRGOT(Image, THETA_THRESH, MAGN_THRESH) 

2.   Height = Image.height; Width = Image.width; 

3.   RGOT = new HashTable(); 

4.   For row = 1 to Height Do 

5.     For column = 1 to Width Do 

6.       DX = Image(row, column+1)[0]-Image(row, column-1)[0]; 

7.       DY = Imaget(row -1, column)[0]- Image(row +1, column)[0]; 

8.       GradientMagn = sqrt(DX^2+DY^2); 

9.       GradTheta = arctan(DY/DY)*180/PI; 

10.     If (|GradTheta|≤THETA_THRESH) AND (|GradMagn|≥MAGN_THRESH)) Then 

11.          If (RGOT contains GradTheta) Then 

12.                 RGOT[GradTheta] += 1; 

13.          Else  

14.          RGOT[GradTheta] = 1; 

15.          EndIf 

16,     EndIf 

17.   EndFor 

18. EndFor 

19. Return RGOT; 

 

1. FUNCTION FindNeighbourhoodForRGOT(RGOT, ListOfNeighborhoods) 

2.    ThetaThresh = 5.0; 

3.    Foreach neighborhood in LisOfNeighborhoods Do 

4.        If (|neighborhood.dtheta - RGOT.theta| < ThetaThresh) Then 

5.   If (HasNeighborMmask(neighborhood, RGOT)) Then 

6.        Return neighborhood; 

7.   EndIf 

8.       EndIf 

9. EndForeach 
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1. FUNCTION HasNeighborMask(neighborhood, RGOT) 

2,   Foreach RGOTMember in Neighborhood.members Do 

3.       If (  RGOT.row = RGOTMember.row  ) Then 

4.          If ( | RGOT.column – RGOTMember.column | = maskSize  ) Then 

5.   Return True; 

6.          EndIf 

7.       EndIf 

8.       If ( RGOT.column = RGOTMember.column ) Then 

9.          If ( | RGOT.row – RGOTMember.row | = maskSize  ) Then 

10.   Return True; 

11.          EndIf 

12.       EndIf 

13.       If ( |RGOT.column – RGOTMember.column| =  maskSize  ) Then 

14.          If ( |RGOT.row – RGOTMember.row| = maskSize  ) Then 

15.  Return True; 

16.          EndIf 

17.      EndIf 

18. EndForeach 
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APPENDIX B 

TEXT SKEW ANGLE WAVELETS (TSAW) PSEUDOCODE 

1. FUNCTION DetectTextSkewAngle(Img, N, NITER) 

2.   [AVRG, HC, VC, DC] = 2DHWT(Img, NITER); 

3.                  

4.   Binarize(HC,  ); Binarize(VC,  ); Binarize(DC,  ); 

5.   FindSkewAngle(HC,VC,DC,  ); 

5.  FUNCTION Binarize(Matrix, n, θ=5, v1=255, v2=0) 

    6.    For     to    

    7.       For     to    

    8.          If             > θ Then 

    9.                            = v1; 

   10.         Else 

   11.                            = v2; 

   12.         End If 

   13.      End For 

   14.   End For   

 

  15. FUNCTION FindSkew(  ,   ,   ,  ,      , θ) 

  16.   Initialize a new            matrix with 0’s; 

  17.   For     to    Do  

  18.       For      to    Do  

  19.    If                                Then 

  20.                        

  21.          Else 

  22.                               

  23.    End If 

  24.       End For 

  25.   End For 

  26.   return FindRotationAngle(FindMinAreaRectangle(S)); 
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