30 research outputs found

    Feng-Rao decoding of primary codes

    Get PDF
    We show that the Feng-Rao bound for dual codes and a similar bound by Andersen and Geil [H.E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), pp. 92-123] for primary codes are consequences of each other. This implies that the Feng-Rao decoding algorithm can be applied to decode primary codes up to half their designed minimum distance. The technique applies to any linear code for which information on well-behaving pairs is available. Consequently we are able to decode efficiently a large class of codes for which no non-trivial decoding algorithm was previously known. Among those are important families of multivariate polynomial codes. Matsumoto and Miura in [R. Matsumoto and S. Miura, On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE Trans. Fundamentals, E83-A (2000), pp. 926-930] (See also [P. Beelen and T. H{\o}holdt, The decoding of algebraic geometry codes, in Advances in algebraic geometry codes, pp. 49-98]) derived from the Feng-Rao bound a bound for primary one-point algebraic geometric codes and showed how to decode up to what is guaranteed by their bound. The exposition by Matsumoto and Miura requires the use of differentials which was not needed in [Andersen and Geil 2008]. Nevertheless we demonstrate a very strong connection between Matsumoto and Miura's bound and Andersen and Geil's bound when applied to primary one-point algebraic geometric codes.Comment: elsarticle.cls, 23 pages, no figure. Version 3 added citations to the works by I.M. Duursma and R. Pellikaa

    Fast Erasure-and-Error Decoding and Systematic Encoding of a Class of Affine Variety Codes

    Full text link
    In this paper, a lemma in algebraic coding theory is established, which is frequently appeared in the encoding and decoding for algebraic codes such as Reed-Solomon codes and algebraic geometry codes. This lemma states that two vector spaces, one corresponds to information symbols and the other is indexed by the support of Grobner basis, are canonically isomorphic, and moreover, the isomorphism is given by the extension through linear feedback shift registers from Grobner basis and discrete Fourier transforms. Next, the lemma is applied to fast unified system of encoding and decoding erasures and errors in a certain class of affine variety codes.Comment: 6 pages, 2 columns, presented at The 34th Symposium on Information Theory and Its Applications (SITA2011

    Steane-Enlargement of Quantum Codes from the Hermitian Curve

    Get PDF
    In this paper, we study the construction of quantum codes by applying Steane-enlargement to codes from the Hermitian curve. We cover Steane-enlargement of both usual one-point Hermitian codes and of order bound improved Hermitian codes. In particular, the paper contains two constructions of quantum codes whose parameters are described by explicit formulae, and we show that these codes compare favourably to existing, comparable constructions in the literature.Comment: 11 page

    Decoding of Projective Reed-Muller Codes by Dividing a Projective Space into Affine Spaces

    Full text link
    A projective Reed-Muller (PRM) code, obtained by modifying a (classical) Reed-Muller code with respect to a projective space, is a doubly extended Reed-Solomon code when the dimension of the related projective space is equal to 1. The minimum distance and dual code of a PRM code are known, and some decoding examples have been represented for low-dimensional projective space. In this study, we construct a decoding algorithm for all PRM codes by dividing a projective space into a union of affine spaces. In addition, we determine the computational complexity and the number of errors correctable of our algorithm. Finally, we compare the codeword error rate of our algorithm with that of minimum distance decoding.Comment: 17 pages, 4 figure
    corecore