10 research outputs found

    Learning object for the hearing-impaired: Design and development of Koswer Pendidikan Islam Tunakerna (KOSPIT)

    Get PDF
    This paper describes about an initiative in determining requirements for learning objects for the hearing-impaired students.Interviews with the hearing-impaired students were carried out in gathering the requirements. Then, a prototype of a learning object was developed, which is called Koswer Pendidikan Islam Tunakerna (KOSPIT), in which the contents were referred to the syllabus.An initial user testing has been carried out involving the real users, which reveals that the KOSPIT, that incorporates special features for the hearing-impaired helps them in their learning activities

    Expanding the bounds of seated virtual workspaces

    Get PDF
    Mixed Reality (MR), Augmented Reality (AR) and Virtual Reality (VR) headsets can improve upon existing physical multi-display environments by rendering large, ergonomic virtual display spaces whenever and wherever they are needed. However, given the physical and ergonomic limitations of neck movement, users may need assistance to view these display spaces comfortably. Through two studies, we developed new ways of minimising the physical effort and discomfort of viewing such display spaces. We first explored how the mapping between gaze angle and display position could be manipulated, helping users view wider display spaces than currently possible within an acceptable and comfortable range of neck movement. We then compared our implicit control of display position based on head orientation against explicit user control, finding significant benefits in terms of user preference, workload and comfort for implicit control. Our novel techniques create new opportunities for productive work by leveraging MR headsets to create interactive wide virtual workspaces with improved comfort and usability. These workspaces are flexible and can be used on-the-go, e.g., to improve remote working or make better use of commuter journeys

    Evaluating Visual Cues for Window Switching on Large Screens

    No full text
    An increasing number of users are adopting large, multimonitor displays. The resulting setups cover such a broad viewing angle that users can no longer simultaneously perceive all parts of the screen. Changes outside the user’s visual field often go unnoticed. As a result, users sometimes have trouble locating the active window, for example after switching focus. This paper surveys graphical cues designed to direct visual attention and adapts them to window switching. Visual cues include five types of frames and mask around the target window and four trails leading to the window. We report the results of two user studies. The first evaluates each cue in isolation. The second evaluates hybrid techniques created by combining the most successful candidates from the first study. The best cues were visually sparse – combinations of curved frames which use color to pop-out and tapered trails with predictable origin. Author Keywords Large displays, attention, window switching, user study

    Multimonitoring und Taskmanagement

    Get PDF
    Window Manager begleiten den Computeralltag seit ungefähr 30 Jahren. Sie vereinfachen durch Visualisierung, Interaktionstechniken und Organisationsmöglichkeiten die Handhabung der verschiedensten täglichen Arbeitsprozesse von Benutzern unterschiedlichster Berufsgruppen. Das Konzept, auf dem sie basieren, ist noch älter. Trotzdem gibt es vergleichsweise wenig Literatur über die Benutzerzufriedenheit und eventuell auftretende Probleme. Gerade bei einer Software wie einem Window Manager sind diese Daten umso wichtiger, da sie applikationsübergreifend direkt auf den Benutzeralltag Einfluss nehmen. Der Fokus dieser Arbeit liegt daher auf dem Umgang der Benutzer mit den technischen Herausforderungen im alltäglichen Umgang mit Window Managern. In diesem Rahmen werden die Bereiche Multimonitoring und Taskmanagement gesondert betrachtet, da sich in diesen Bereichen die auffälligsten Veränderungen abzeichnen. Eine Gegenüberstellung bisher erstellter Studien mit Prototypen und neu entwickelten Techniken soll Klarheit bringen, inwiefern die Weiterentwicklung letztendlich dem Anwenderwunsch und folglich auch seinem Nutzen entspricht. Die Analyse der Erkenntnisse der bestehenden Studien führte zur Aufstellung von sechzehn Hypothesen zur tatsächlichen Verwendung von Window Managern, Taskmanagement und Multimonitoring, die im Rahmen einer Online Studie verifiziert werden sollten. Die Studie wurde als Online Fragebogens konzipiert und unter Beteiligung von 73 Teilnehmern durchgeführt. Die Ergebnisse der Online Studie werden gemeinsam mit den Ergebnissen der vorangegangenen Literaturstudie betrachtet und den Prototypen gegenübergestellt.Window manager have been an integral part of our daily interactions with computers for the last three decades. The underlying concept, the desktop metaphor, dates back even further. Employing visualization, interaction, and management techniques window managers simplify the handling of the everyday user processes across professions. However little is still known regarding user satisfaction with and potential problems of window managers. Developing evidence-based insight into this realm is essential for improving the usability of window-based computer interfaces as they directly affect the daily life of the end user. The thesis focuses on the technical challenges for users in the everyday work environments when interacting with window managers and their applications. More specifically this research investigates aspects of multi-monitoring and task management as they offer promising opportunities for improving the way users currently interact with window managers. The thesis presents an analysis of related work that proposes new prototypes and techniques to determine whether the presented enhancements are addressing the end user's needs and benefits. This analysis led to the development of sixteen hypotheses regarding the way users interact with window managers, and their practices regarding task management and multi-monitoring. To verify the hypotheses an online survey was designed and implemented yielding responses from 73 participants. The results of the survey were compared with the results of previous studies and technical prototypes. The most significant findings were identified in the areas of navigation, window organization and sequence, interaction between windows, task management, multitasking and multi-monitorin

    The Use of Multiple Slate Devices to Support Active Reading Activities

    Get PDF
    Reading activities in the classroom and workplace occur predominantly on paper. Since existing electronic devices do not support these reading activities as well as paper, users have difficulty taking full advantage of the affordances of electronic documents. This dissertation makes three main contributions toward supporting active reading electronically. The first contribution is a comprehensive set of active reading requirements, drawn from three decades of research into reading processes. These requirements explain why existing devices are inadequate for supporting active reading activities. The second contribution is a multi-slate reading system that more completely supports the active reading requirements above. Researchers believe the suitability of paper for active reading is largely due to the fact it distributes content across different sheets of paper, which are capable of displaying information as well as capturing input. The multi-slate approach draws inspiration from the independent reading and writing surfaces that paper provides, to blend the beneficial features of e-book readers, tablets, PCs, and tabletop computers. The development of the multi-slate system began with the Dual-Display E-book, which used two screens to provide richer navigation capabilities than a single-screen device. Following the success of the Dual-Display E-book, the United Slates, a general-purpose reading system consisting of an extensible number of slates, was created. The United Slates consisted of custom slate hardware, specialized interactions that enabled the slates to be used cooperatively, and a cloud-based infrastructure that robustly integrated the slates with users' existing computing devices and workflow. The third contribution is a series of evaluations that characterized reading with multiple slates. A laboratory study with 12 participants compared the relative merits of paper and electronic reading surfaces. One month long in-situ deployments of the United Slates with graduate students in the humanities found the multi-slate configuration to be highly effective for reading. The United Slates system delivered desirable paper-like qualities that included enhanced reading engagement, ease of navigation, and peace-of-mind while also providing superior electronic functionality. The positive feedback suggests that the multi-slate configuration is a desirable method for supporting active reading activities

    Curved Displays, Empirical Horopters, and Ergonomic Design Guidelines

    Get PDF
    Department of Human Factors EngineeringVisual display products should be comprehensively evaluated from the perspectives of productivity, safety, and well-being. Curved display products are known to provide advantages. Although previous studies found that curved displays increase visual task performance, reduce visual fatigue, and improve the watching experience, these studies did not comprehensively examine the effects of display curvature. Moreover, they used low-fidelity curved screens that may not effectively reflect actual curved displays. The purpose of this thesis was to develop ergonomic design guidelines for determining appropriate display curvatures, considering the productivity, safety, and well-being of visual display terminal (VDT) users. Two studies on monitors and one study on TVs were conducted for this goal. In Study 1, the effects of the display curvature, display zone, and task duration on visual task performance and visual fatigue during a visual search task on a 50-inch multi-monitor were investigated. In Study 2, the effects of the display curvature and task duration on visual task performance, visual fatigue, and user satisfaction during a proofreading task on a 27-inch monitor were investigated, and the associations between ergonomic evaluation elements were then examined. Prediction models of visual fatigue and user satisfaction were subsequently developed. In Study 3, the effects of the display curvature, viewing distance, and lateral viewing position on presence, visual comfort, and user satisfaction during a TV watching task on a 55-inch TV were examined, and the importance of six viewing experience elements affecting user satisfaction was revealed. Finally, ergonomic design guidelines for curved displays were suggested. Based on the results of studies 1 and 2, an appropriate rest-break time was ecommended, taking into account visual task performance and visual fatigue. Study 1 examined the effects of the display curvature (400 R, 600 R, 1200 R, and flat), display zone (five zones), and task duration (15 and 30 min) on legibility and visual fatigue. A total of 27 participants completed two sets of 15-minute visual search tasks with each curvature setting. The 600 R and 1200 R settings yielded better results compared to the flat setup regarding legibility and perceived visual fatigue. Relative to the corresponding center zone, the outermost zones of the 1200 R and flat settings showed a decrease of 8%???37% in legibility, whereas those of the flat environment showed an increase of 26%???45% in perceived visual fatigue. Across curvatures, legibility decreased by 2%???8%, whereas perceived visual fatigue increased by 22% during the second task set. The two task sets showed an increase of 102% in the eye complaint score and a decrease of 0.3 Hz in the critical fusion frequency, both of which indicated a rise in visual fatigue. To sum up, a curvature of around 600 R, central display zones, and frequent breaks were recommended to improve legibility and reduce visual fatigue. Study 2 examined the effects of the display curvature and task duration on proofreading performance, visual discomfort, visual fatigue, mental workload, and user satisfaction. Fifty individuals completed four 15-min proofreading tasks at a particular curvature setting. Five display curvatures (600 R, 1140 R, 2000 R, 4000 R and flat) and five task durations (0, 15, 30, 45, and 60 min) were incorporated. The mean proofreading speed at its highest when the display curvature radius was equal to the viewing distance (600 R). Across curvatures, speedaccuracy tradeoffs occurred with proofreading, as indicated by an increase of 15.5% in its mean speed and a decrease of 22.3% in its mean accuracy over one hour. Meanwhile, the mean perceived visual discomfort, subjective visual fatigue, and mental workload increased, by 54%, 74%, and 24% respectively, during the first 15-min of proofreading. A decrease of 0.4 Hz in the mean critical fusion frequency during the first 15 min and a reduction in the mean blink frequency also indicated increases in visual fatigue and mental workload. The mean user satisfaction decreased by 11% until 45 min. A segmented regression model, in which perceived visual discomfort was used as a predictor, attributed 51% of the variability to visual fatigue. To sum up, a curvature of 600 R was recommended for speedy proofreading. Moreover, the breakpoint was observed be flexible, depending on VDT task types. These findings can contribute to determining ergonomic display curvatures and scheduling interim breaks for speedy but less visually fatiguing proofreading. Study 3 examined the effects of the display curvature, viewing distance, and lateral viewing position on the TV watching experience. The watching experience was assessed regarding the spatial presence, engagement, ecological validity, negative effects, visual comfort, image quality, and display satisfaction. Four display curvatures (2.3 m, 4 m, 6 m, and flat), two viewing distances (2.3 m and 4 m), and five lateral viewing positions (0 cm, 35 cm, 70 cm, 105 cm, and 140 cm) were evaluated. Seven pairs of individuals per curvature watched ten 5 min videos together, each time at a different viewing distance and lateral viewing position. Spatial presence and engagement increased when the display curvature approached the given viewing distance. Regardless of display curvature and viewing distance and TV watching experience factors, except negative effects, were degraded at more lateral viewing positions. Engagement could effectively explain the display satisfaction. These findings can contribute to enhancing TV watching experiences by recommending specific levels of display curvatures, viewing distances, and lateral viewing positions, as well as providing information on the relative importance of each watching experience element. This work suggested ergonomic design guidelines for curved displays. In Study 1, a curvature of approximately 600 R, central display zone, and frequent breaks were proposed to improve legibility and reduce visual fatigue during visual search tasks at the viewing distance of 500 mm. In Study 2, a curvature radius of 600 R and a minimum 15-minute break interval were proposed for a speedy proofreading task, at the viewing distance of 600 mm. In Study 3, a display radius of curvature similar to the viewing distance was recommended to improve the viewing experience. These results support that a curved display is ergonomically more beneficial when the display curvature approaches the empirical horopter. A relatively short 15-minute rest-time interval was suggested, considering the decrease of task accuracy and the increase of visual fatigue in studies 1 and 2. Two regression models were selected in Study 2 regarding predictive accuracy. They accounted for 70.4% of subjective visual fatigue variability and 60.2% of user satisfaction variability. Although this work was performed using relatively higher-fidelity mock-ups than previous studies, it is necessary to verify the findings with actual curved display products in the future. Furthermore, various tasks (e.g., word processing, graphics design, and gaming) and personal characteristics (e.g., presbyopia, gender, visual acuity, and product experience) should be considered to generalize the results of this thesis. These results can contribute to determining the ergonomic display curvature in consideration of productivity, safety, and well-being, and prioritizing elements of the visual fatigue and user satisfaction resulting from VDT work.ope
    corecore