31,116 research outputs found

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    A multi-class approach for ranking graph nodes: models and experiments with incomplete data

    Get PDF
    After the phenomenal success of the PageRank algorithm, many researchers have extended the PageRank approach to ranking graphs with richer structures beside the simple linkage structure. In some scenarios we have to deal with multi-parameters data where each node has additional features and there are relationships between such features. This paper stems from the need of a systematic approach when dealing with multi-parameter data. We propose models and ranking algorithms which can be used with little adjustments for a large variety of networks (bibliographic data, patent data, twitter and social data, healthcare data). In this paper we focus on several aspects which have not been addressed in the literature: (1) we propose different models for ranking multi-parameters data and a class of numerical algorithms for efficiently computing the ranking score of such models, (2) by analyzing the stability and convergence properties of the numerical schemes we tune a fast and stable technique for the ranking problem, (3) we consider the issue of the robustness of our models when data are incomplete. The comparison of the rank on the incomplete data with the rank on the full structure shows that our models compute consistent rankings whose correlation is up to 60% when just 10% of the links of the attributes are maintained suggesting the suitability of our model also when the data are incomplete

    Visual analysis of sensor logs in smart spaces: Activities vs. situations

    Get PDF
    Models of human habits in smart spaces can be expressed by using a multitude of representations whose readability influences the possibility of being validated by human experts. Our research is focused on developing a visual analysis pipeline (service) that allows, starting from the sensor log of a smart space, to graphically visualize human habits. The basic assumption is to apply techniques borrowed from the area of business process automation and mining on a version of the sensor log preprocessed in order to translate raw sensor measurements into human actions. The proposed pipeline is employed to automatically extract models to be reused for ambient intelligence. In this paper, we present an user evaluation aimed at demonstrating the effectiveness of the approach, by comparing it wrt. a relevant state-of-the-art visual tool, namely SITUVIS

    User's Privacy in Recommendation Systems Applying Online Social Network Data, A Survey and Taxonomy

    Full text link
    Recommender systems have become an integral part of many social networks and extract knowledge from a user's personal and sensitive data both explicitly, with the user's knowledge, and implicitly. This trend has created major privacy concerns as users are mostly unaware of what data and how much data is being used and how securely it is used. In this context, several works have been done to address privacy concerns for usage in online social network data and by recommender systems. This paper surveys the main privacy concerns, measurements and privacy-preserving techniques used in large-scale online social networks and recommender systems. It is based on historical works on security, privacy-preserving, statistical modeling, and datasets to provide an overview of the technical difficulties and problems associated with privacy preserving in online social networks.Comment: 26 pages, IET book chapter on big data recommender system

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed
    corecore