15,400 research outputs found

    Evaluating the implicit feedback models for adaptive video retrieval

    Get PDF
    Interactive video retrieval systems are becoming popular. On the one hand, these systems try to reduce the effect of the semantic gap, an issue currently being addressed by the multimedia retrieval community. On the other hand, such systems enhance the quality of information seeking for the user by supporting query formulation and reformulation. Interactive systems are very popular in the textual retrieval domain. However, they are relatively unexplored in the case of multimedia retrieval. The main problem in the development of interactive retrieval systems is the evaluation cost.The traditional evaluation methodology, as used in the information retrieval domain, is not applicable. An alternative is to use a user-centred evaluation methodology. However, such schemes are expensive in terms of effort, cost and are not scalable. This problem gets exacerbated by the use of implicit indicators, which are useful and increasingly used in predicting user intentions. In this paper, we explore the effectiveness of a number of interfaces and feedback mechanisms and compare their relative performance using a simulated evaluation methodology. The results show the relatively better performance of a search interface with the combination of explicit and implicit features

    Studying Interaction Methodologies in Video Retrieval

    Get PDF
    So far, several approaches have been studied to bridge the problem of the Semantic Gap, the bottleneck in image and video retrieval. However, no approach is successful enough to increase retrieval performances significantly. One reason is the lack of understanding the user's interest, a major condition towards adapting results to a user. This is partly due to the lack of appropriate interfaces and the missing knowledge of how to interpret user's actions with these interfaces. In this paper, we propose to study the importance of various implicit indicators of relevance. Furthermore, we propose to investigate how this implicit feedback can be combined with static user profiles towards an adaptive video retrieval model

    Use of implicit graph for recommending relevant videos: a simulated evaluation

    Get PDF
    In this paper, we propose a model for exploiting community based usage information for video retrieval. Implicit usage information from a pool of past users could be a valuable source to address the difficulties caused due to the semantic gap problem. We propose a graph-based implicit feedback model in which all the usage information can be represented. A number of recommendation algorithms were suggested and experimented. A simulated user evaluation is conducted on the TREC VID collection and the results are presented. Analyzing the results we found some common characteristics on the best performing algorithms, which could indicate the best way of exploiting this type of usage information

    A news video retrieval framework for the study of implicit relevance feedback.

    Get PDF
    In this paper, we propose a framework for recording, analysing, indexing and retrieving news videos such as the BBC one o'clock news. We believe that such a framework will be useful to identify implicit indicators of relevance, a nearly untouched area in adaptive multimedia retrieval. Due to its advantages as a Web application and its up-to-date content, it can be a promising approach to motivate a broad quantity of users to interact with the system

    Semantic user profiling techniques for personalised multimedia recommendation

    Get PDF
    Due to the explosion of news materials available through broadcast and other channels, there is an increasing need for personalised news video retrieval. In this work, we introduce a semantic-based user modelling technique to capture users’ evolving information needs. Our approach exploits implicit user interaction to capture long-term user interests in a profile. The organised interests are used to retrieve and recommend news stories to the users. In this paper, we exploit the Linked Open Data Cloud to identify similar news stories that match the users’ interest. We evaluate various recommendation parameters by introducing a simulation-based evaluation scheme

    Simulated testing of an adaptive multimedia information retrieval system

    Get PDF
    The Semantic Gap is considered to be a bottleneck in image and video retrieval. One way to increase the communication between user and system is to take advantage of the user's action with a system, e.g. to infer the relevance or otherwise of a video shot viewed by the user. In this paper we introduce a novel video retrieval system and propose a model of implicit information for interpreting the user's actions with the interface. The assumptions on which this model was created are then analysed in an experiment using simulated users based on relevance judgements to compare results of explicit and implicit retrieval cycles. Our model seems to enhance retrieval results. Results are presented and discussed in the final section

    Exploiting log files in video retrieval

    Get PDF
    While research into user-centered text retrieval is based on mature evaluation methodologies, user evaluation in multimedia retrieval is still in its infancy. User evaluations can be expensive and are also often non-repeatable. An alternative way of evaluating such systems is the use of simulations. In this poster, we present an evaluation methodology which is based on exploiting log files recorded from a user-study we conducted

    NAIS: Neural Attentive Item Similarity Model for Recommendation

    Full text link
    Item-to-item collaborative filtering (aka. item-based CF) has been long used for building recommender systems in industrial settings, owing to its interpretability and efficiency in real-time personalization. It builds a user's profile as her historically interacted items, recommending new items that are similar to the user's profile. As such, the key to an item-based CF method is in the estimation of item similarities. Early approaches use statistical measures such as cosine similarity and Pearson coefficient to estimate item similarities, which are less accurate since they lack tailored optimization for the recommendation task. In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. While extensive efforts have been made to use shallow linear models for learning item similarities, there has been relatively less work exploring nonlinear neural network models for item-based CF. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. The key to our design of NAIS is an attention network, which is capable of distinguishing which historical items in a user profile are more important for a prediction. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network. Extensive experiments on two public benchmarks demonstrate the effectiveness of NAIS. This work is the first attempt that designs neural network models for item-based CF, opening up new research possibilities for future developments of neural recommender systems
    corecore