774 research outputs found

    Transport of video over partial order connections

    Get PDF
    A Partial Order and partial reliable Connection (POC) is an end-to-end transport connection authorized to deliver objects in an order that can differ from the transmitted one. Such a connection is also authorized to lose some objects. The POC concept is motivated by the fact that heterogeneous best-effort networks such as Internet are plagued by unordered delivery of packets and losses, which tax the performances of current applications and protocols. It has been shown, in several research works, that out of order delivery is able to alleviate (with respect to CO service) the use of end systems’ communication resources. In this paper, the efficiency of out-of-sequence delivery on MPEG video streams processing is studied. Firstly, the transport constraints (in terms of order and reliability) that can be relaxed by MPEG video decoders, for improving video transport, are detailed. Then, we analyze the performance gain induced by this approach in terms of blocking times and recovered errors. We demonstrate that POC connections fill not only the conceptual gap between TCP and UDP but also provide real performance improvements for the transport of multimedia streams such MPEG video

    Ariane 5-ALF: an HW/SW Architecture driven Data Handling System evolution

    Get PDF
    International audienceIn the coming years, the Ariane 5 On-Board-Computer (OBC) will handle missions and performances enhancements together with the need for significantly reducing costs and the replacement of obsolescent components. The OBC evolution is naturally driven by these factors, but also needs to consider the SW system compliance. Indeed, it would be a major concern that the necessary change of the underlying HW should imply new development of the flight software, mission database and ground control system. The Ariane 5 SW uses ADA language, which enables verifiable definition of the interfaces and provides a standardized level of the real-time behavior. To enforce portability, it has a layered architecture that clearly separates application SW and data from the lower level software. In addition, the on-board mission data is managed thanks to the extraction of an image of the systems database located in a structured memory area (the exchange memory). Used for all interchanges between the system application software and the launcher's subsystems and peripherals, the exchange memory is the virtual view of the Ariane 5 system from the flight SW standpoint. Thanks to these early architectural and structural choices, portability on future hardware is theorycally guaranteed, whenever the exchange memory data structures and the service layer interfaces remains stable. The ALF working group has defined and manufactured a mock-up that fulfils these architectural constraints with a completely new on-board computer featuring improvements such as the microprocessor replacement as well as an advanced integrated I/O controller for access to the system data bus. Lower level SW has been prototyped on this new hardware in order to fulfill the same level of services as the current one while completely hiding the underlying HW/SW implementation to the rest of the system. Functional and performance evaluation of this platform consolidated at system level will show the potential benefits and the limits of such approach. Ariane 5 Data Handling Subsystem The Ariane 5 Data Handling is part of the launcher's electrical system, which is required to remain operational in case of failure of any of its equipment. Additionally, the allowed autonomous reconfiguration time is limited, especially during the most critical mission phases. The Data Handling Subsystem has been therefore organised as dual redundant chain of sensors and actuators (Fig.1). The communication system (SdC for Système de Communication) is implemented with Mil-std-1553B standard components and is the only data link between the computer pool and the equipments. This computer system operates in a hot active/standby configuration: in nominal situation, the Master computer (OBC1) controls the communications on both buses and executes the flight software. The Backup computer (OBC2) monitors the bus traffic in parallel an

    Impact of Out-of-Sequence Processing on the Performance of Data Transmission

    Get PDF
    Application Level Framing (ALF) was proposed by Clark and Tennenhouse as an important concept for developing high performance applications. ALF relies in part on the ability of applications and protocols to process packets independently one from the other. Thus, performance gains one might expect from the use of ALF are clearly related to performance gains one might expect from applications that can handle and process packets received out-of-sequence, as compared to applicatiojn that require in-order delivery (FTP, TELNET, etc.). In this paper, we examine how the ability to process out-of-sequence packets impacts the efficiency of data transmission. We consider both the impact of application parameters such as the time to process a packet by the application, as well as transmission parameters such as transmission delay, loss rate and flow and congestion control characteristics. The performance measure of interest are total latency, buffer requirements, and jitter. We show, using experimental and simulation results, that out-of-sequence processing is beneficial only for very limited ranges of transmission delays and application processing time. We discuss the impact of this on the architecture of communication systems dedicated to distributed multimedia applications

    Apollo guidance, navigation, and control: Candidate configuration trade study, Stellar-Inertial Measurement System (SIMS) for an Earth Observation Satellite (EOS)

    Get PDF
    The ten candidate SIMS configurations were reduced to three in preparation for the final trade comparison. The report emphasizes subsystem design trades, star availability studies, data processing (smoothing) methods, and the analytical and simulation studies at subsystem and system levels from which candidate accuracy estimates will be presented

    The development of a fire safety management system model

    Get PDF
    Abstract unavailable please refer to PDF

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Formulation of consumables management models. Volume 2: Mission planning processor user guide

    Get PDF
    A user guide for the MPP (Mission Planning Processor) is presented. The MPP is used in the evaluation of particular missions, with appropriate display and storage of related consumables data. Design goals are accomplished by the use of an on-line/demand mode computer terminal Cathode Ray Tube Display. The process is such that the user merely adds specific mission/flight functions to a skeleton flight and/or alters the skeleton. The skeleton flight includes operational aspects from prelaunch through ground support equipment connect after rollout as required to place the STS (Space Transportation System) in a parking orbit, maintain the spacecraft and crew for the stated on-orbit period and return

    Simulation verification techniques study: Simulation performance validation techniques document

    Get PDF
    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described

    The total assessment profile, volume 1

    Get PDF
    A methodology is described for the evaluation of societal impacts associated with the implementation of a new technology. Theoretical foundations for the methodology, called the total assessment profile, are established from both the economic and social science perspectives. The procedure provides for accountability of nonquantifiable factors and measures through the use of a comparative value matrix by assessing the impacts of the technology on the value system of the society
    corecore