94,528 research outputs found

    Modelling source- and target-language syntactic Information as conditional context in interactive neural machine translation

    Get PDF
    In interactive machine translation (MT), human translators correct errors in auto- matic translations in collaboration with the MT systems, which is seen as an effective way to improve the productivity gain in translation. In this study, we model source- language syntactic constituency parse and target-language syntactic descriptions in the form of supertags as conditional con- text for interactive prediction in neural MT (NMT). We found that the supertags significantly improve productivity gain in translation in interactive-predictive NMT (INMT), while syntactic parsing somewhat found to be effective in reducing human efforts in translation. Furthermore, when we model this source- and target-language syntactic information together as the con- ditional context, both types complement each other and our fully syntax-informed INMT model shows statistically significant reduction in human efforts for a French– to–English translation task in a reference- simulated setting, achieving 4.30 points absolute (corresponding to 9.18% relative) improvement in terms of word prediction accuracy (WPA) and 4.84 points absolute (corresponding to 9.01% relative) reduc- tion in terms of word stroke ratio (WSR) over the baseline

    Analysis of Vocal Disorders in a Feature Space

    Full text link
    This paper provides a way to classify vocal disorders for clinical applications. This goal is achieved by means of geometric signal separation in a feature space. Typical quantities from chaos theory (like entropy, correlation dimension and first lyapunov exponent) and some conventional ones (like autocorrelation and spectral factor) are analysed and evaluated, in order to provide entries for the feature vectors. A way of quantifying the amount of disorder is proposed by means of an healthy index that measures the distance of a voice sample from the centre of mass of both healthy and sick clusters in the feature space. A successful application of the geometrical signal separation is reported, concerning distinction between normal and disordered phonation.Comment: 12 pages, 3 figures, accepted for publication in Medical Engineering & Physic

    Software project economics: A roadmap

    Get PDF
    The objective of this paper is to consider research progress in the field of software project economics with a view to identifying important challenges and promising research directions. I argue that this is an important sub-discipline since this will underpin any cost-benefit analysis used to justify the resourcing, or otherwise, of a software project. To accomplish this I conducted a bibliometric analysis of peer reviewed research articles to identify major areas of activity. My results indicate that the primary goal of more accurate cost prediction systems remains largely unachieved. However, there are a number of new and promising avenues of research including: how we can combine results from primary studies, integration of multiple predictions and applying greater emphasis upon the human aspects of prediction tasks. I conclude that the field is likely to remain very challenging due to the people-centric nature of software engineering, since it is in essence a design task. Nevertheless the need for good economic models will grow rather than diminish as software becomes increasingly ubiquitous

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht
    • …
    corecore