205 research outputs found

    MM-Wave HetNet in 5G and beyond Cellular Networks Reinforcement Learning Method to improve QoS and Exploiting Path Loss Model

    Get PDF
    This paper presents High density heterogeneous networks (HetNet) which are the most promising technology for the fifth generation (5G) cellular network. Since 5G will be available for a long time, previous generation networking systems will need customization and updates. We examine the merits and drawbacks of legacy and Q-Learning (QL)-based adaptive resource allocation systems. Furthermore, various comparisons between methods and schemes are made for the purpose of evaluating the solutions for future generation. Microwave macro cells are used to enable extra high capacity such as Long-Term Evolution (LTE), eNodeB (eNB), and Multimedia Communications Wireless technology (MC), in which they are most likely to be deployed. This paper also presents four scenarios for 5G mm-Wave implementation, including proposed system architectures. The WL algorithm allocates optimal power to the small cell base station (SBS) to satisfy the minimum necessary capacity of macro cell user equipment (MUEs) and small cell user equipment (SCUEs) in order to provide quality of service (QoS) (SUEs). The challenges with dense HetNet and the massive backhaul traffic they generate are discussed in this study. Finally, a core HetNet design based on clusters is aimed at reducing backhaul traffic. According to our findings, MM-wave HetNet and MEC can be useful in a wide range of applications, including ultra-high data rate and low latency communications in 5G and beyond. We also used the channel model simulator to examine the directional power delay profile with received signal power, path loss, and path loss exponent (PLE) for both LOS and NLOS using uniform linear array (ULA) 2X2 and 64x16 antenna configurations at 38 GHz and 73 GHz mmWave bands for both LOS and NLOS (NYUSIM). The simulation results show the performance of several path loss models in the mmWave and sub-6 GHz bands. The path loss in the close-in (CI) model at mmWave bands is higher than that of open space and two ray path loss models because it considers all shadowing and reflection effects between transmitter and receiver. We also compared the suggested method to existing models like Amiri, Su, Alsobhi, Iqbal, and greedy (non adaptive), and found that it not only enhanced MUE and SUE minimum capacities and reduced BT complexity, but it also established a new minimum QoS threshold. We also talked about 6G researches in the future. When compared to utilizing the dual slope route loss model alone in a hybrid heterogeneous network, our simulation findings show that decoupling is more visible when employing the dual slope path loss model, which enhances system performance in terms of coverage and data rate

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Models and Protocols for Resource Optimization in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are built on a mix of fixed and mobile nodes interconnected via wireless links to form a multihop ad hoc network. An emerging application area for wireless mesh networks is their evolution into a converged infrastructure used to share and extend, to mobile users, the wireless Internet connectivity of sparsely deployed fixed lines with heterogeneous capacity, ranging from ISP-owned broadband links to subscriber owned low-speed connections. In this thesis we address different key research issues for this networking scenario. First, we propose an analytical predictive tool, developing a queuing network model capable of predicting the network capacity and we use it in a load aware routing protocol in order to provide, to the end users, a quality of service based on the throughput. We then extend the queuing network model and introduce a multi-class queuing network model to predict analytically the average end-to-end packet delay of the traffic flows among the mobile end users and the Internet. The analytical models are validated against simulation. Second, we propose an address auto-configuration solution to extend the coverage of a wireless mesh network by interconnecting it to a mobile ad hoc network in a transparent way for the infrastructure network (i.e., the legacy Internet interconnected to the wireless mesh network). Third, we implement two real testbed prototypes of the proposed solutions as a proof-of-concept, both for the load aware routing protocol and the auto-configuration protocol. Finally we discuss the issues related to the adoption of ad hoc networking technologies to address the fragility of our communication infrastructure and to build the next generation of dependable, secure and rapidly deployable communications infrastructures

    On three use cases of multi-connectivity paradigm in emerging wireless networks

    Get PDF
    As envisioned by global network operators, the increasing trend of data traffic demand is expected to continue with exponential growth in the coming years. To cope with this rapid increase, significant efforts from the research community, industry and even regulators have been focused towards improving two main aspects of the wireless spectrum: (i) spectrum capacity and (ii) spectral efficiency. Concerning the spectrum capacity enhancement, the multi-connectivity paradigm has been seen to be fundamentally important to solve the capacity problem in the next generation networks. Multi-connectivity is a feature that allows wireless devices to establish and maintain multiple simultaneous connections across homogeneous or heterogeneous technologies. In this thesis, we focus on identifying the core issues in applying the multi-connectivity paradigm for different use cases and propose novel solutions to address them. Specifically, this thesis studies three use cases of the multi-connectivity paradigm. First, we study the uplink/downlink decoupling problem in 4G networks. More specifically, we focus on the user association problem in the decoupling context, which is considered challenging due to the conflicting objectives of different entities (e.g., mobile users and base stations) in the system. We use a combination of matching theory and stochastic geometry to reconcile competing objectives between users in the uplink/downlink directions and also from the perspective of base stations. Second, we tackle the spectrum aggregation problem for wireless backhauling links in unlicensed opportunistic shared spectrum bands, specifically, TV White Space (TVWS) spectrum. In relation to this, we present a DIY mobile network deployment model to accelerate the roll-out of high-end mobile services in rural and developing regions. As part of this model, we highlight the importance of low-cost and high-capacity backhaul infrastructure for which TVWS spectrum can be exploited. Building on that, we conduct a thorough analytical study to identify the characteristics of TVWS in rural areas. Our study sheds light on the nature of TVWS spectrum fragmentation for the backhauling use case, which in turn poses requirements for the design of spectrum aggregation systems for TVWS backhaul. Motivated by these findings, we design and implement WhiteHaul, a flexible platform for spectrum aggregation in TVWS. Three challenges have been tackled in this work. First, TVWS spectrum is fragmented in that the spectrum is available in non-contiguous manner. To fully utilize the available spectrum, multiple radios should be enabled to work simultaneously. However, all the radios have to share only a single antenna. The key challenge is to design a system architecture that is capable of achieving different aggregation configurations while avoiding the interference. Second, the heterogeneous nature of the available spectrum (i.e., in terms of bandwidth and link characteristics) requires a design of efficient traffic distribution algorithm that takes into account these factors. Third, TVWS is unlicensed opportunistic shared spectrum. Thus, the coordination mechanism between the two nodes of backhauling link is essential to enable seamless channel switching. Third, we study the integration of multiple radio access technologies (RATs) in the context of 4G/5G networks. More specifically, we study the potential gain of enabling the Multi-RAT integration at the Packet Data Convergence Protocol (PDCP) layer compared with doing it at the transport layer. In this work, we consider ultra-reliable low-latency communication (URLLC) as one of the motivating services. This work tackles the different challenges that arise from enabling the Multi-RAT integration at the PDCP layer, including, packet reordering and traffic scheduling
    corecore