24,394 research outputs found

    On content-based recommendation and user privacy in social-tagging systems

    Get PDF
    Recommendation systems and content filtering approaches based on annotations and ratings, essentially rely on users expressing their preferences and interests through their actions, in order to provide personalised content. This activity, in which users engage collectively has been named social tagging, and it is one of the most popular in which users engage online, and although it has opened new possibilities for application interoperability on the semantic web, it is also posing new privacy threats. It, in fact, consists of describing online or offline resources by using free-text labels (i.e. tags), therefore exposing the user profile and activity to privacy attacks. Users, as a result, may wish to adopt a privacy-enhancing strategy in order not to reveal their interests completely. Tag forgery is a privacy enhancing technology consisting of generating tags for categories or resources that do not reflect the user's actual preferences. By modifying their profile, tag forgery may have a negative impact on the quality of the recommendation system, thus protecting user privacy to a certain extent but at the expenses of utility loss. The impact of tag forgery on content-based recommendation is, therefore, investigated in a real-world application scenario where different forgery strategies are evaluated, and the consequent loss in utility is measured and compared.Peer ReviewedPostprint (author’s final draft

    Engineering evaluations and studies. Volume 2: Exhibit B, part 1

    Get PDF
    Ku-band communication system analysis, S-band system investigations, payload communication investigations, shuttle/TDRSS and GSTDN compatibility analysis are discussed

    Uncertainty Propagation and Feature Selection for Loss Estimation in Performance-based Earthquake Engineering

    Get PDF
    This report presents a new methodology, called moment matching, of propagating the uncertainties in estimating repair costs of a building due to future earthquake excitation, which is required, for example, when assessing a design in performance-based earthquake engineering. Besides excitation uncertainties, other uncertain model variables are considered, including uncertainties in the structural model parameters and in the capacity and repair costs of structural and non-structural components. Using the first few moments of these uncertain variables, moment matching requires only a few well-chosen point estimates to propagate the uncertainties to estimate the first few moments of the repair costs with high accuracy. Furthermore, the use of moment matching to estimate the exceedance probability of the repair costs is also addressed. These examples illustrate that the moment-matching approach is quite general; for example, it can be applied to any decision variable in performance-based earthquake engineering. Two buildings are chosen as illustrative examples to demonstrate the use of moment matching, a hypothetical three-story shear building and a real seven-story hotel building. For these two examples, the assembly-based vulnerability approach is employed when calculating repair costs. It is shown that the moment-matching technique is much more accurate than the well-known First-Order-Second-Moment approach when propagating the first two moments, while the resulting computational cost is of the same order. The repair-cost moments and exceedance probability estimated by the moment-matching technique are also compared with those by Monte Carlo simulation. It is concluded that as long as the order of the moment matching is sufficient, the comparison is satisfactory. Furthermore, the amount of computation for moment matching scales only linearly with the number of uncertain input variables. Last but not least, a procedure for feature selection is presented and illustrated for the second example. The conclusion is that the most important uncertain input variables among the many influencing the uncertainty in future repair costs are, in order of importance, ground-motion spectral acceleration, component capacity, ground-motion details and unit repair costs

    Exergetic, exergoeconomic and exergoenvironmental analysis of intercooled gas turbine engine

    Get PDF
    Exergetic and exergoeconomic and exergoenvironmental analyses have been performed for an advanced aero-derivative intercooled gas turbine engine. The proposed system was modelled using the IPSEpro software package and validated using manufacturer’s published data. The exergoeconomic model evaluates the cost-effectiveness of the gas turbine engine based on the Specific Exergy Costing [SPECO] method. The CO2 emissions per KWh were estimated using a generic combustor model, HEPHAESTUS, developed at Cranfield University. It is well known that the exergetic analysis can determine the magnitudes, locations and types of losses within an energy system. The effect of load and ambient temperature variations on gas turbine performance were investigated for two different configurations. The first system, Case-I, was a simple gas turbine (SCGT) engine, and the second, Case-II, an intercooling gas turbine (ICGT) system. The latter enhances gas turbine efficiency but, at the same time, has an adverse effect on the combustion chamber due to reduced compressed air temperature. It was confirmed that full load and low ambient temperature are preferable due to the low waste exergy. The unit exergy cost rate for both SCGT and ICGT have been calculated as 8.59 and 8.32 US$/GJ respectively. The exergoenvironmental results show the ICGT achieved lower emission levels and is more environmentally friendly than the SCGT
    corecore