10 research outputs found

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    Summary Management in P2P Systems

    Get PDF
    International audienceSharing huge, massively distributed databases in P2P systems is inherently difficult. As the amount of stored data increases, data localization techniques become no longer suf- ficient. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this paper, we consider summaries that are synthetic, multidimensional views with two main virtues. First, they can be directly queried and used to approximately answer a query without exploring the original data. Second, as semantic indexes, they support locating relevant nodes based on data content. Our main contribution is to define a summary model for P2P systems, and the appropriate algorithms for summary management. Our performance evaluation shows that the cost of query routing is minimized, while incurring a low cost of summary maintenance

    Data Sharing in P2P Systems

    Get PDF
    To appear in Springer's "Handbook of P2P Networking"In this chapter, we survey P2P data sharing systems. All along, we focus on the evolution from simple file-sharing systems, with limited functionalities, to Peer Data Management Systems (PDMS) that support advanced applications with more sophisticated data management techniques. Advanced P2P applications are dealing with semantically rich data (e.g. XML documents, relational tables), using a high-level SQL-like query language. We start our survey with an overview over the existing P2P network architectures, and the associated routing protocols. Then, we discuss data indexing techniques based on their distribution degree and the semantics they can capture from the underlying data. We also discuss schema management techniques which allow integrating heterogeneous data. We conclude by discussing the techniques proposed for processing complex queries (e.g. range and join queries). Complex query facilities are necessary for advanced applications which require a high level of search expressiveness. This last part shows the lack of querying techniques that allow for an approximate query answering

    Evaluating GUESS and Non-Forwarding Peer-to-Peer Search

    No full text
    Current search techniques over unstructured peer-topeer networks rely on intelligent forwarding-based techniques to propagate queries to other peers in the network. Forwarding techniques are attractive because they typically require little state and offer robustness to peer failures; however they have inherent performance drawbacks due to the overhead of forwarding and lack of central control. In this paper, we study GUESS, a non-forwarding search mechanism, as a viable alternative to currently popular forwarding-based mechanisms. We show how nonforwarding mechanisms can be over an order of magnitude more efficient than forwarding mechanisms; however, they must be deployed with care, as a naive implementation can result in highly suboptimal performance, and make them susceptible to hotspots and misbehaving peers. 1

    Improving the Multi-Channel Hybrid Data Dissemination System

    Get PDF
    A major problem with the Internet and web-based applications is the scalable delivery of data. Lack of scalability can hinder performance and decrease the ability of a system to perform as originally designed. One of the most promising solutions to this scalability problem is to use a multiple channel hybrid data dissemination server to deliver requested information to users. This solution provides the high scalability found in multicast, with the low latency found in unicast. A multiple channel hybrid server works by using a push-based multicast channel to deliver the most popular data to users, and reserves the pull-based unicast channel for user requests and delivery of less popular data.The adoption of a multiple channel hybrid data dissemination server, however, introduces a variety of data management problems. In this dissertation, we propose an improved multiple channel hybrid data dissemination model, and propose solutions to three fundamental data management problems that arise in any multiple channel hybrid scheme. In particular, we address the push popularity problem, the document classification problem, and the bandwidth division problem. We also propose a multicast pull channel to the common two-channel hybrid scheme. Our hypothesis that this new channel both improves scalability, and decreases variances in response times, is confirmed by our extensive experimental results. We develop a fully functioning architecture for our three-channel hybrid scheme. In a real world environment, our middleware is shown to provide high scalability for overloaded web servers, while keeping the response times experienced by clients at a minimum. Further, we demonstrate that the practical impact of this work extends to other broadcast-based environments, such as a wireless network

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets
    corecore