108 research outputs found

    Evaluating evolutionary algorithms and differential evolution for the online optimization of fermentation processes

    Get PDF
    Although important contributions have been made in recent years within the field of bioprocess model development and validation, in many cases the utility of even relatively good models for process optimization with current state-of-the-art algorithms (mostly offline approaches) is quite low. The main cause for this is that open-loop fermentations do not compensate for the differences observed between model predictions and real variables, whose consequences can lead to quite undesirable consequences. In this work, the performance of two different algorithms belonging to the main groups of Evolutionary Algorithms (EA) and Differential Evolution (DE) is compared in the task of online optimisation of fed-batch fermentation processes. The proposed approach enables to obtain results close to the ones predicted initially by the mathematical models of the process, deals well with the noise in state variables and exhibits properties of graceful degradation. When comparing the optimization algorithms, the DE seems the best alternative, but its superiority seems to decrease when noisier settings are considered.Fundo Europeu de Desenvolvimento Regional (FEDER)Fundação para a Ciência e a Tecnologia (FCT

    Evaluating evolutionary algorithms on spot welding sequence optimization with respect to geometrical variation

    Get PDF
    Spot welding is the prevalent joining process in the automotive industry. The spot welding sequence has a notable effect on the geometrical variation of the final assembly. Finding the optimal weld sequence for geometrical quality is a fast growing and NP-complete problem. Using exhaustive search for this purpose can be a time-consuming task. In this paper, genetic, particle swarm and ant colony optimization algorithms are applied to three industrial reference cases. The performance of these algorithms for finding the optimal sequence with respect to geometrical variation is compared considering the number of function evaluations

    COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting

    Get PDF
    We introduce COCO, an open source platform for Comparing Continuous Optimizers in a black-box setting. COCO aims at automatizing the tedious and repetitive task of benchmarking numerical optimization algorithms to the greatest possible extent. The platform and the underlying methodology allow to benchmark in the same framework deterministic and stochastic solvers for both single and multiobjective optimization. We present the rationales behind the (decade-long) development of the platform as a general proposition for guidelines towards better benchmarking. We detail underlying fundamental concepts of COCO such as the definition of a problem as a function instance, the underlying idea of instances, the use of target values, and runtime defined by the number of function calls as the central performance measure. Finally, we give a quick overview of the basic code structure and the currently available test suites.Comment: Optimization Methods and Software, Taylor & Francis, In press, pp.1-3

    An Investigation Into the use of Swarm Intelligence for an Evolutionary Algorithm Optimisation; The Optimisation Performance of Differential Evolution Algorithm Coupled with Stochastic Diffusion Search

    Get PDF
    The integration of Swarm Intelligence (SI) algorithms and Evolutionary algorithms (EAs) might be one of the future approaches in the Evolutionary Computation (EC). This work narrates the early research on using Stochastic Diffusion Search (SDS) -- a swarm intelligence algorithm -- to empower the Differential Evolution (DE) -- an evolutionary algorithm -- over a set of optimisation problems. The results reported herein suggest that the powerful resource allocation mechanism deployed in SDS has the potential to improve the optimisation capability of the classical evolutionary algorithm used in this experiment. Different performance measures and statistical analyses were utilised to monitor the behaviour of the final coupled algorithm

    An Investigation into the Merger of Stochastic Diffusion Search and Particle Swarm Optimisation

    Get PDF
    This study reports early research aimed at applying the powerful resource allocation mechanism deployed in Stochastic Diffusion Search (SDS) to the Particle Swarm Optimiser (PSO) metaheuristic, effectively merging the two swarm intelligence algorithms. The results reported herein suggest that the hybrid algorithm, exploiting information sharing between particles, has the potential to improve the optimisation capability of conventional PSOs

    A reliable hybrid solver for nonconvex optimization

    Get PDF
    International audienceNonconvex and highly multimodal optimization problems represent a challenge both for stochastic and deterministic global optimization methods. The former (metaheuristics) usually achieve satisfactory solutions but cannot guarantee global optimality, while the latter (generally based on a spatial branch and bound scheme [1], an exhaustive and non-uniform partitioning method) may struggle to converge toward a global minimum within reasonable time. The partitioning process is exponential in the number of variables, which prevents the resolution of large instances. The performances of the solvers even dramatically deteriorate when using reliable techniques, namely techniques that cope with rounding errors.In this paper, we present a fully reliable hybrid algorithm named Charibde (Cooperative Hybrid Algorithm using Reliable Interval-Based methods and Dierential Evolution) [2] that reconciles stochastic and deterministic techniques. An Evolutionary Algorithm (EA) cooperates with intervalbased techniques to accelerate convergence toward the global minimum and prove the optimality of the solution with user-defined precision. Charibde may be used to solve continuous, nonconvex, constrained or bound-constrained problems involving factorable functions

    Cooperation of Nature and Physiologically Inspired Mechanism in Visualisation

    Get PDF
    A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in blood vessels, where the concept of high and low blood pressure is utilised. The performance of the nature-inspired algorithms and the biologically inspired mechanisms in the hybrid algorithm is reflected through a cooperative attempt to make a drawing on the canvas. The scientific value of the marriage between the two swarm intelligence algorithms is currently being investigated thoroughly on many benchmarks and the results reported suggest a promising prospect (al-Rifaie, Bishop & Blackwell, 2011). We also discuss whether or not the ‘art works’ generated by nature and biologically inspired algorithms can possibly be considered as ‘computationally creative’

    The Emergence of Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System

    Full text link
    Natural evolution has produced a tremendous diversity of functional organisms. Many believe an essential component of this process was the evolution of evolvability, whereby evolution speeds up its ability to innovate by generating a more adaptive pool of offspring. One hypothesized mechanism for evolvability is developmental canalization, wherein certain dimensions of variation become more likely to be traversed and others are prevented from being explored (e.g. offspring tend to have similarly sized legs, and mutations affect the length of both legs, not each leg individually). While ubiquitous in nature, canalization almost never evolves in computational simulations of evolution. Not only does that deprive us of in silico models in which to study the evolution of evolvability, but it also raises the question of which conditions give rise to this form of evolvability. Answering this question would shed light on why such evolvability emerged naturally and could accelerate engineering efforts to harness evolution to solve important engineering challenges. In this paper we reveal a unique system in which canalization did emerge in computational evolution. We document that genomes entrench certain dimensions of variation that were frequently explored during their evolutionary history. The genetic representation of these organisms also evolved to be highly modular and hierarchical, and we show that these organizational properties correlate with increased fitness. Interestingly, the type of computational evolutionary experiment that produced this evolvability was very different from traditional digital evolution in that there was no objective, suggesting that open-ended, divergent evolutionary processes may be necessary for the evolution of evolvability.Comment: SI can be found at: http://www.evolvingai.org/files/SI_0.zi
    corecore