19,364 research outputs found

    Evaluating document clustering for interactive information retrieval

    Get PDF

    A probabilistic approach for cluster based polyrepresentative information retrieval

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial ful lment of the requirements for the degree of Doctor of PhilosophyDocument clustering in information retrieval (IR) is considered an alternative to rank-based retrieval approaches, because of its potential to support user interactions beyond just typing in queries. Similarly, the Principle of Polyrepresentation (multi-evidence: combining multiple cognitively and/or functionally diff erent information need or information object representations for improving an IR system's performance) is an established approach in cognitive IR with plausible applicability in the domain of information seeking and retrieval. The combination of these two approaches can assimilate their respective individual strengths in order to further improve the performance of IR systems. The main goal of this study is to combine cognitive and cluster-based IR approaches for improving the eff ectiveness of (interactive) information retrieval systems. In order to achieve this goal, polyrepresentative information retrieval strategies for cluster browsing and retrieval have been designed, focusing on the evaluation aspect of such strategies. This thesis addresses the challenge of designing and evaluating an Optimum Clustering Framework (OCF) based model, implementing probabilistic document clustering for interactive IR. Thus, polyrepresentative cluster browsing strategies have been devised. With these strategies a simulated user based method has been adopted for evaluating the polyrepresentative cluster browsing and searching strategies. The proposed approaches are evaluated for information need based polyrepresentative clustering as well as document based polyrepresentation and the combination thereof. For document-based polyrepresentation, the notion of citation context is exploited, which has special applications in scientometrics and bibliometrics for science literature modelling. The information need polyrepresentation, on the other hand, utilizes the various aspects of user information need, which is crucial for enhancing the retrieval performance. Besides describing a probabilistic framework for polyrepresentative document clustering, one of the main fi ndings of this work is that the proposed combination of the Principle of Polyrepresentation with document clustering has the potential of enhancing the user interactions with an IR system, provided that the various representations of information need and information objects are utilized. The thesis also explores interactive IR approaches in the context of polyrepresentative interactive information retrieval when it is combined with document clustering methods. Experiments suggest there is a potential in the proposed cluster-based polyrepresentation approach, since statistically signifi cant improvements were found when comparing the approach to a BM25-based baseline in an ideal scenario. Further marginal improvements were observed when cluster-based re-ranking and cluster-ranking based comparisons were made. The performance of the approach depends on the underlying information object and information need representations used, which confi rms fi ndings of previous studies where the Principle of Polyrepresentation was applied in diff erent ways

    Creating a test collection to evaluate diversity in image retrieval

    Get PDF
    This paper describes the adaptation of an existing test collection for image retrieval to enable diversity in the results set to be measured. Previous research has shown that a more diverse set of results often satisfies the needs of more users better than standard document rankings. To enable diversity to be quantified, it is necessary to classify images relevant to a given theme to one or more sub-topics or clusters. We describe the challenges in building (as far as we are aware) the first test collection for evaluating diversity in image retrieval. This includes selecting appropriate topics, creating sub-topics, and quantifying the overall effectiveness of a retrieval system. A total of 39 topics were augmented for cluster-based relevance and we also provide an initial analysis of assessor agreement for grouping relevant images into sub-topics or clusters

    Synchronous collaborative information retrieval: techniques and evaluation

    Get PDF
    Synchronous Collaborative Information Retrieval refers to systems that support multiple users searching together at the same time in order to satisfy a shared information need. To date most SCIR systems have focussed on providing various awareness tools in order to enable collaborating users to coordinate the search task. However, requiring users to both search and coordinate the group activity may prove too demanding. On the other hand without effective coordination policies the group search may not be effective. In this paper we propose and evaluate novel system-mediated techniques for coordinating a group search. These techniques allow for an effective division of labour across the group whereby each group member can explore a subset of the search space.We also propose and evaluate techniques to support automated sharing of knowledge across searchers in SCIR, through novel collaborative and complementary relevance feedback techniques. In order to evaluate these techniques, we propose a framework for SCIR evaluation based on simulations. To populate these simulations we extract data from TREC interactive search logs. This work represent the first simulations of SCIR to date and the first such use of this TREC data

    Visualising the structure of document search results: A comparison of graph theoretic approaches

    Get PDF
    This is the post-print of the article - Copyright @ 2010 Sage PublicationsPrevious work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal-K criterion

    Semantic user profiling techniques for personalised multimedia recommendation

    Get PDF
    Due to the explosion of news materials available through broadcast and other channels, there is an increasing need for personalised news video retrieval. In this work, we introduce a semantic-based user modelling technique to capture users’ evolving information needs. Our approach exploits implicit user interaction to capture long-term user interests in a profile. The organised interests are used to retrieve and recommend news stories to the users. In this paper, we exploit the Linked Open Data Cloud to identify similar news stories that match the users’ interest. We evaluate various recommendation parameters by introducing a simulation-based evaluation scheme

    From Keyword Search to Exploration: How Result Visualization Aids Discovery on the Web

    No full text
    A key to the Web's success is the power of search. The elegant way in which search results are returned is usually remarkably effective. However, for exploratory search in which users need to learn, discover, and understand novel or complex topics, there is substantial room for improvement. Human computer interaction researchers and web browser designers have developed novel strategies to improve Web search by enabling users to conveniently visualize, manipulate, and organize their Web search results. This monograph offers fresh ways to think about search-related cognitive processes and describes innovative design approaches to browsers and related tools. For instance, while key word search presents users with results for specific information (e.g., what is the capitol of Peru), other methods may let users see and explore the contexts of their requests for information (related or previous work, conflicting information), or the properties that associate groups of information assets (group legal decisions by lead attorney). We also consider the both traditional and novel ways in which these strategies have been evaluated. From our review of cognitive processes, browser design, and evaluations, we reflect on the future opportunities and new paradigms for exploring and interacting with Web search results

    On User Modelling for Personalised News Video Recommendation

    Get PDF
    In this paper, we introduce a novel approach for modelling user interests. Our approach captures users evolving information needs, identifies aspects of their need and recommends relevant news items to the users. We introduce our approach within the context of personalised news video retrieval. A news video data set is used for experimentation. We employ a simulated user evaluation
    corecore