9,366 research outputs found

    A platform for discovering and sharing confidential ballistic crime data.

    Get PDF
    Criminal investigations generate large volumes of complex data that detectives have to analyse and understand. This data tends to be "siloed" within individual jurisdictions and re-using it in other investigations can be difficult. Investigations into trans-national crimes are hampered by the problem of discovering relevant data held by agencies in other countries and of sharing those data. Gun-crimes are one major type of incident that showcases this: guns are easily moved across borders and used in multiple crimes but finding that a weapon was used elsewhere in Europe is difficult. In this paper we report on the Odyssey Project, an EU-funded initiative to mine, manipulate and share data about weapons and crimes. The project demonstrates the automatic combining of data from disparate repositories for cross-correlation and automated analysis. The data arrive from different cultural/domains with multiple reference models using real-time data feeds and historical databases

    Cross-lingual Linking on the Multilingual Web of Data (position statement)

    Full text link
    Recently, the Semantic Web has experienced signi�cant advancements in standards and techniques, as well as in the amount of semantic information available online. Even so, mechanisms are still needed to automatically reconcile semantic information when it is expressed in di�erent natural languages, so that access to Web information across language barriers can be improved. That requires developing techniques for discovering and representing cross-lingual links on the Web of Data. In this paper we explore the different dimensions of such a problem and reflect on possible avenues of research on that topic

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    Natural Language Interfaces to Data

    Full text link
    Recent advances in NLU and NLP have resulted in renewed interest in natural language interfaces to data, which provide an easy mechanism for non-technical users to access and query the data. While early systems evolved from keyword search and focused on simple factual queries, the complexity of both the input sentences as well as the generated SQL queries has evolved over time. More recently, there has also been a lot of focus on using conversational interfaces for data analytics, empowering a line of non-technical users with quick insights into the data. There are three main challenges in natural language querying (NLQ): (1) identifying the entities involved in the user utterance, (2) connecting the different entities in a meaningful way over the underlying data source to interpret user intents, and (3) generating a structured query in the form of SQL or SPARQL. There are two main approaches for interpreting a user's NLQ. Rule-based systems make use of semantic indices, ontologies, and KGs to identify the entities in the query, understand the intended relationships between those entities, and utilize grammars to generate the target queries. With the advances in deep learning (DL)-based language models, there have been many text-to-SQL approaches that try to interpret the query holistically using DL models. Hybrid approaches that utilize both rule-based techniques as well as DL models are also emerging by combining the strengths of both approaches. Conversational interfaces are the next natural step to one-shot NLQ by exploiting query context between multiple turns of conversation for disambiguation. In this article, we review the background technologies that are used in natural language interfaces, and survey the different approaches to NLQ. We also describe conversational interfaces for data analytics and discuss several benchmarks used for NLQ research and evaluation.Comment: The full version of this manuscript, as published by Foundations and Trends in Databases, is available at http://dx.doi.org/10.1561/190000007
    corecore