246 research outputs found

    Modularity Theory and Internet Regulation

    Get PDF
    Modularity is often cited as one of the foundations for the Internet’s success. Unfortunately, academic discussions about modularity appearing in the literature on Internet policy are undertheorized. The persistence of nonmodular architectures for some technologies underscores the need for some theoretical basis for determining when modularity is the preferred approach. Even when modularity is desirable, theory must provide some basis for making key design decisions, such as the number of modules, the location of the interfaces between the modules, and the information included in those interfaces. The literature on innovation indicates that modules should be determined by the nature of task interdependencies and the variety inherent in the external environment. Moreover, modularity designs interfaces to ensure that modules operate independently, with all information about processes that adjacent modules should not take into account being hidden within the module. These insights in turn offer a number of important implications. They mark a return to a more technological vision of vertical integration that deviates from the transaction-cost oriented vision that now dominates the literature. They also reveal how modularity necessarily limits the functionality of any particular architecture. In addition, although the independence fostered by modularity remains one of its primary virtues, it can also create coordination problems in which actors operating within each module optimize based on local conditions in ways that can lead to suboptimal outcomes for the system as a whole. Lastly, like any design hierarchy, modular systems can resist technological change. These insights shed new light on unbundling of telecommunications networks, network neutrality, calls for open APIs, and clean-slate redesign proposals

    Modularity Theory and Internet Regulation

    Get PDF
    Modularity is often cited as one of the foundations for the Internet’s success. Unfortunately, academic discussions about modularity appearing in the literature on Internet policy are undertheorized. The persistence of nonmodular architectures for some technologies underscores the need for some theoretical basis for determining when modularity is the preferred approach. Even when modularity is desirable, theory must provide some basis for making key design decisions, such as the number of modules, the location of the interfaces between the modules, and the information included in those interfaces. The literature on innovation indicates that modules should be determined by the nature of task interdependencies and the variety inherent in the external environment. Moreover, modularity designs interfaces to ensure that modules operate independently, with all information about processes that adjacent modules should not take into account being hidden within the module. These insights in turn offer a number of important implications. They mark a return to a more technological vision of vertical integration that deviates from the transaction-cost oriented vision that now dominates the literature. They also reveal how modularity necessarily limits the functionality of any particular architecture. In addition, although the independence fostered by modularity remains one of its primary virtues, it can also create coordination problems in which actors operating within each module optimize based on local conditions in ways that can lead to suboptimal outcomes for the system as a whole. Lastly, like any design hierarchy, modular systems can resist technological change. These insights shed new light on unbundling of telecommunications networks, network neutrality, calls for open APIs, and clean-slate redesign proposals

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    An Economic Analysis of Domain Name Policy

    Get PDF
    One of the most important features of the architecture of the Internet is the Domain Name System (DNS), which is administered by the Internet Corporation for Assigned Names and Numbers (ICANN). Logically, the DNS is organized into Top Level Domains (such as .com), Second Level Domains (such as amazon.com), and third, fourth, and higher level domains (such as www.amazon.com). The physically infrastructure of the DNS consists of name servers, including the Root Server System which provides the information that directs name queries for each Top Level Domain to the appropriate server. ICANN is responsible for the allocation of the root and the creation or reallocation of Top Level Domains. The Root Server System and associated name space are scarce resources in the economic sense. The root servers have a finite capacity and expansion of the system is costly. The name space is scarce, because each string (or set of characters) can only be allocated to one Registry (or operator of a Top Level Domain). In addition, name service is not a public good in the economic sense, because it is possible to exclude strings from the DNS and because the allocation of a string to one firm results in the inability of other firms to use that name string. From the economic perspective, therefore, the question arises: what is the most efficient method for allocating the root resource? There are only five basic options available for allocation of the root. (1) a static root, equivalent to a decision to waste the currently unallocated capacity; (2) public interest hearings (or beauty contests); (3) lotteries; (4) a queuing mechanism; or (5) an auction. The fundamental economic question about the Domain Name System is which of these provides the most efficient mechanism for allocating the root resource? This resource allocation problem is analogous to problems raised in the telecommunications sector, where the Federal Communications Commission has a long history of attempting to allocate broadcast spectrum and the telephone number space. This experience reveals that a case-by-case allocation on the basis of ad hoc judgments about the public interest is doomed to failure, and that auctions (as opposed to lotteries or queues) provide the best mechanism for insuring that such public-trust resources find their highest and best use. Based on the telecommunications experience, the best method for ICANN to allocate new Top Level Domains would be to conduct an auction. Many auction designs are possible. One proposal is to auction a fixed number of new Top Level Domain slots each year. This proposal would both expand the root resource at a reasonable pace and insure that the slots went to their highest and best use. Public interest Top Level Domains could be allocated by another mechanism such as a lottery and their costs to ICANN could be subsidized by the proceeds of the auction

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    An examination of the Asus WL-HDD 2.5 as a nepenthes malware collector

    No full text
    The Linksys WRT54g has been used as a host for network forensics tools for instance Snort for a long period of time. Whilst large corporations are already utilising network forensic tools, this paper demonstrates that it is quite feasible for a non-security specialist to track and capture malicious network traffic. This paper introduces the Asus Wireless Hard disk as a replacement for the popular Linksys WRT54g. Firstly, the Linksys router will be introduced detailing some of the research that was undertaken on the device over the years amongst the security community. It then briefly discusses malicious software and the impact this may have for a home user. The paper then outlines the trivial steps in setting up Nepenthes 0.1.7 (a malware collector) for the Asus WL-HDD 2.5 according to the Nepenthes and tests the feasibility of running the malware collector on the selected device. The paper then concludes on discussing the limitations of the device when attempting to execute Nepenthes

    Salford postgraduate annual research conference (SPARC) 2012 proceedings

    Get PDF
    These proceedings bring together a selection of papers from the 2012 Salford Postgraduate Annual Research Conference (SPARC). They reflect the breadth and diversity of research interests showcased at the conference, at which over 130 researchers from Salford, the North West and other UK universities presented their work. 21 papers are collated here from the humanities, arts, social sciences, health, engineering, environment and life sciences, built environment and business

    Telecommunication Economics

    Get PDF
    This book constitutes a collaborative and selected documentation of the scientific outcome of the European COST Action IS0605 Econ@Tel "A Telecommunications Economics COST Network" which run from October 2007 to October 2011. Involving experts from around 20 European countries, the goal of Econ@Tel was to develop a strategic research and training network among key people and organizations in order to enhance Europe's competence in the field of telecommunications economics. Reflecting the organization of the COST Action IS0605 Econ@Tel in working groups the following four major research areas are addressed: - evolution and regulation of communication ecosystems; - social and policy implications of communication technologies; - economics and governance of future networks; - future networks management architectures and mechanisms
    • …
    corecore