39 research outputs found

    Quantifying the security risk of discovering and exploiting software vulnerabilities

    Get PDF
    2016 Summer.Includes bibliographical references.Most of the attacks on computer systems and networks are enabled by vulnerabilities in a software. Assessing the security risk associated with those vulnerabilities is important. Risk mod- els such as the Common Vulnerability Scoring System (CVSS), Open Web Application Security Project (OWASP) and Common Weakness Scoring System (CWSS) have been used to qualitatively assess the security risk presented by a vulnerability. CVSS metrics are the de facto standard and its metrics need to be independently evaluated. In this dissertation, we propose using a quantitative approach that uses an actual data, mathematical and statistical modeling, data analysis, and measurement. We have introduced a novel vulnerability discovery model, Folded model, that estimates the risk of vulnerability discovery based on the number of residual vulnerabilities in a given software. In addition to estimating the risk of vulnerabilities discovery of a whole system, this dissertation has furthermore introduced a novel metrics termed time to vulnerability discovery to assess the risk of an individual vulnerability discovery. We also have proposed a novel vulnerability exploitability risk measure termed Structural Severity. It is based on software properties, namely attack entry points, vulnerability location, the presence of the dangerous system calls, and reachability analysis. In addition to measurement, this dissertation has also proposed predicting vulnerability exploitability risk using internal software metrics. We have also proposed two approaches for evaluating CVSS Base metrics. Using the availability of exploits, we first have evaluated the performance of the CVSS Exploitability factor and have compared its performance to Microsoft (MS) rating system. The results showed that exploitability metrics of CVSS and MS have a high false positive rate. This finding has motivated us to conduct further investigation. To that end, we have introduced vulnerability reward programs (VRPs) as a novel ground truth to evaluate the CVSS Base scores. The results show that the notable lack of exploits for high severity vulnerabilities may be the result of prioritized fixing of vulnerabilities

    Feature Set Selection for Improved Classification of Static Analysis Alerts

    Get PDF
    With the extreme growth in third party cloud applications, increased exposure of applications to the internet, and the impact of successful breaches, improving the security of software being produced is imperative. Static analysis tools can alert to quality and security vulnerabilities of an application; however, they present developers and analysts with a high rate of false positives and unactionable alerts. This problem may lead to the loss of confidence in the scanning tools, possibly resulting in the tools not being used. The discontinued use of these tools may increase the likelihood of insecure software being released into production. Insecure software can be successfully attacked resulting in the compromise of one or several information security principles such as confidentiality, availability, and integrity. Feature selection methods have the potential to improve the classification of static analysis alerts and thereby reduce the false positive rates. Thus, the goal of this research effort was to improve the classification of static analysis alerts by proposing and testing a novel method leveraging feature selection. The proposed model was developed and subsequently tested on three open source PHP applications spanning several years. The results were compared to a classification model utilizing all features to gauge the classification improvement of the feature selection model. The model presented did result in the improved classification accuracy and reduction of the false positive rate on a reduced feature set. This work contributes a real-world static analysis dataset based upon three open source PHP applications. It also enhanced an existing data set generation framework to include additional predictive software features. However, the main contribution is a feature selection methodology that may be used to discover optimal feature sets that increase the classification accuracy of static analysis alerts

    Fundamental Approaches to Software Engineering

    Get PDF
    computer software maintenance; computer software selection and evaluation; formal logic; formal methods; formal specification; programming languages; semantics; software engineering; specifications; verificatio
    corecore