3,152 research outputs found

    Digital Assistants for Self-Regulated Learning: Towards a State-Of-The-Art Overview

    Get PDF
    We observe a continuous shift from face-to-face to hybrid or online education. Today, learners are exposed to a high level of autonomy and, at the same time, have less contact with peers and teachers. In this environment, the ability to self-regulate one’s learning is becoming more relevant to achieve positive learning results and academic success. However, the application of self-regulated learning is not trivial. A potential solution for this challenge comes in the form of digital assistants like chatbots or pedagogical agents that provide structure for the learners. Existing research on digital assistants for self-regulated learning is scattered across several fields. In this research-in-progress paper, we present preliminary results of a systematic literature review (SLR) study providing an overview of the state-of- the-art of digital assistants supporting SRL. Our results show that future research in this domain should focus on affect, behavioral, and context regulation and more longitudinal studies are required

    Let's Set Up Some Subgoals: Understanding Human-Pedagogical Agent Collaborations and Their Implications for Learning and Prompt and Feedback Compliance

    Get PDF
    International audienceResearch on collaborative learning between humans and virtual pedagogical agents represents a necessary extension to recent research on the conceptual, theoretical, methodological, analytical, and educational issues behind co-and socially-shared regulated learning between humans. This study presents a novel coding framework that was developed and used to describe collaborations between learners and a pedagogical agent (PA) during a subgoal setting activity with MetaTutor, an intelligent tutoring system. Learner-PA interactions were examined across two scaffolding conditions: prompt and feedback (PF), and control. Learners' compliance to follow the PA's prompts and feedback in the PF condition were also examined. Results demonstrated that learners followed the PA's prompts and feedback to help them set more appropriate subgoals for their learning session the majority of the time. Descriptive statistics revealed that when subgoals were set collaboratively between learners and the PA, they generally lead to higher proportional learning gains when compared to less collaboratively set goals. Taken together, the results provide preliminary evidence that learners are both willing to engage in and benefit from collaborative interactions with PAs when immediate, directional feedback and the opportunity to try again are provided. Implications and future directions for extending co-and socially-shared regulated learning theories to include learner-PA interactions are proposed

    Adaptive User Interfaces for Intelligent E-Learning: Issues and Trends

    Get PDF
    Adaptive User Interfaces have a long history rooted in the emergence of such eminent technologies as Artificial Intelligence, Soft Computing, Graphical User Interface, JAVA, Internet, and Mobile Services. More specifically, the advent and advancement of the Web and Mobile Learning Services has brought forward adaptivity as an immensely important issue for both efficacy and acceptability of such services. The success of such a learning process depends on the intelligent context-oriented presentation of the domain knowledge and its adaptivity in terms of complexity and granularity consistent to the learner’s cognitive level/progress. Researchers have always deemed adaptive user interfaces as a promising solution in this regard. However, the richness in the human behavior, technological opportunities, and contextual nature of information offers daunting challenges. These require creativity, cross-domain synergy, cross-cultural and cross-demographic understanding, and an adequate representation of mission and conception of the task. This paper provides a review of state-of-the-art in adaptive user interface research in Intelligent Multimedia Educational Systems and related areas with an emphasis on core issues and future directions

    Game-Based Learning, Gamification in Education and Serious Games

    Get PDF
    The aim of this book is to present and discuss new advances in serious games to show how they could enhance the effectiveness and outreach of education, advertising, social awareness, health, policies, etc. We present their use in structured learning activities, not only with a focus on game-based learning, but also on the use of game elements and game design techniques to gamify the learning process. The published contributions really demonstrate the wide scope of application of game-based approaches in terms of purpose, target groups, technologies and domains and one aspect they have in common is that they provide evidence of how effective serious games, game-based learning and gamification can be

    Interventions to Regulate Confusion during Learning

    Get PDF
    Confusion provides opportunities to learn at deeper levels. However, learners must put forth the necessary effort to resolve their confusion to convert this opportunity into actual learning gains. Learning occurs when learners engage in cognitive activities beneficial to learning (e.g., reflection, deliberation, problem solving) during the process of confusion resolution. Unfortunately, learners are not always able to resolve their confusion on their own. The inability to resolve confusion can be due to a lack of knowledge, motivation, or skills. The present dissertation explored methods to aid confusion resolution and ultimately promote learning through a multi-pronged approach. First, a survey revealed that learners prefer more information and feedback when confused and that they preferred different interventions for confusion compared to boredom and frustration. Second, expert human tutors were found to most frequently handle learner confusion by providing direct instruction and responded differently to learner confusion compared to anxiety, frustration, and happiness. Finally, two experiments were conducted to test the effectiveness of pedagogical and motivational confusion regulation interventions. Both types of interventions were investigated within a learning environment that experimentally induced confusion via the presentation of contradictory information by two animated agents (tutor and peer student agents). Results showed across both studies that learner effort during the confusion regulation task impacted confusion resolution and that learning occurred when the intervention provided the opportunity for learners to stop, think, and deliberate about the concept being discussed. Implications for building more effective affect-sensitive learning environments are discussed

    Using Student Mood And Task Performance To Train Classifier Algorithms To Select Effective Coaching Strategies Within Intelligent Tutoring Systems (its)

    Get PDF
    The ultimate goal of this research was to improve student performance by adjusting an Intelligent Tutoring System\u27s (ITS) coaching strategy based on the student\u27s mood. As a step toward this goal, this study evaluated the relationships between each student\u27s mood variables (pleasure, arousal, dominance and mood intensity), the coaching strategy selected by the ITS and the student\u27s performance. Outcomes included methods to increase the perception of the intelligent tutor to allow it to adapt coaching strategies (methods of instruction) to the student\u27s affective needs to mitigate barriers to performance (e.g. negative affect) during the one-to-one tutoring process. The study evaluated whether the affective state (specifically mood) of the student moderated the student\u27s interaction with the tutor and influenced performance. This research examined the relationships, interactions and influences of student mood in the selection of ITS coaching strategies to determine which strategies were more effective in terms of student performance given the student\u27s mood, state (recent sleep time, previous knowledge and training, and interest level) and actions (e.g. mouse movement rate). Two coaching strategies were used in this study: Student-Requested Feedback (SRF) and Tutor-Initiated Feedback (TIF). The SRF coaching strategy provided feedback in the form of hints, questions, direction and support only when the student requested help. The TIF coaching strategy provided feedback (hints, questions, direction or support) at key junctures in the learning process when the student either made progress or failed to make progress in a timely fashion. The relationships between the coaching strategies, mood, performance and other variables of interest were considered in light of five hypotheses. At alpha = .05 and beta at least as great as .80, significant effects were limited in predicting performance. Highlighted findings include no significant differences in the mean performance due to coaching strategies, and only small effect sizes in predicting performance making the regression models developed not of practical significance. However, several variables including performance, energy level and mouse movement rates were significant, unobtrusive predictors of mood. Regression algorithms were developed using Arbuckle\u27s (2008) Analysis of MOment Structures (AMOS) tool to compare the predicted performance for each strategy and then to choose the optimal strategy. A set of production rules were also developed to train a machine learning classifier using Witten & Frank\u27s (2005) Waikato Environment for Knowledge Analysis (WEKA) toolset. The classifier was tested to determine its ability to recognize critical relationships and adjust coaching strategies to improve performance. This study found that the ability of the intelligent tutor to recognize key affective relationships contributes to improved performance. Study assumptions include a normal distribution of student mood variables, student state variables and student action variables and the equal mean performance of the two coaching strategy groups (student-requested feedback and tutor-initiated feedback ). These assumptions were substantiated in the study. Potential applications of this research are broad since its approach is application independent and could be used within ill-defined or very complex domains where judgment might be influenced by affect (e.g. study of the law, decisions involving risk of injury or death, negotiations or investment decisions). Recommendations for future research include evaluation of the temporal, as well as numerical, relationships of student mood, performance, actions and state variables

    Self- and Socially-Regulated Learning in Middle School Science Classrooms: A Multiple Case Study

    Get PDF
    Students must employ self-regulated learning (SRL) and socially-regulated learning (soRL) in the science classroom, which includes a wide array of independent and collaborative learning activities. However, little is known about how student SRL and soRL co-occur in students’ learning and how the classroom teacher influences that regulation in situ (Cabrera et al., in preparation; Panadero et al., 2015). This explanatory, sequential case study analyzes classroom video data from six middle school science classrooms. The study uses an integrated coding scheme that captures SRL and soRL behaviors, soRL modes, and targets of regulation (Greene & Azevedo, 2009; Hadwin et al., 2018; Heirwig et al., 2019; and Zimmerman, 2002). Results show that student SRL and soRL behaviors are influenced by the activity structure and physical layout of the classroom, regulatory behaviors mostly manifest as behavioral and cognitive regulation in the performance phase, and teachers impact student regulation by prompting behavioral monitoring and comprehension monitoring. Theoretical and practical implications are discussed in addition to future directions for SRL and soRL research

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings
    • 

    corecore