531 research outputs found

    Design of evacuation plans for densely urbanised city centres

    Get PDF
    The high population density and tightly packed nature of some city centres make emergency planning for these urban spaces especially important, given the potential for human loss in case of disaster. Historic and recent events have made emergency service planners particularly conscious of the need for preparing evacuation plans in advance. This paper discusses a methodological approach for assisting decision-makers in designing urban evacuation plans. The approach aims at quickly and safely moving the population away from the danger zone into shelters. The plans include determining the number and location of rescue facilities, as well as the paths that people should take from their building to their assigned shelter in case of an occurrence requiring evacuation. The approach is thus of the location–allocation–routing type, through the existing streets network, and takes into account the trade-offs among different aspects of evacuation actions that inevitably come up during the planning stage. All the steps of the procedure are discussed and systematised, along with computational and practical implementation issues, in the context of a case study – the design of evacuation plans for the historical centre of an old European city

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future

    A heuristic approach to flood evacuation planning

    Get PDF
    Flood evacuation planning models are an important tool used in preparation for flooding events. Authorities use the plans generated by flood evacuation models to evacuate the population as quickly as possible. Contemporary models consider the whole solution space and use a stochastic search to explore and produce solutions. The one issue with stochastic approaches is that they cannot guarantee the optimality of the solution and it is important that the plans be of a high quality. We present a heuristically driven flood evacuation planning model; the proposed heuristic is deterministic, which allows the model to avoid this problem. The determinism of the model means that the optimality of solutions found can be readily verified

    Groupwise evacuation with genetic algorithms

    Get PDF
    In a crisis situation on board a ship, it can be of the utmost importance to have the passengers safely evacuate to the lifeboats in an efficient manner. Existing methods such as marked escape routes, maps and so on are not optimal as pre-planned escape routes may become heavily congested by passengers. The closest lifeboat is not always feasible as lifeboat capacity can be exceeded. Considering that some evacuees are strongly affiliated and would like to evacuate together as a group, it all becomes a very difficult problem to solve. Sub-problems have been modelled, but no existing model combines all of these aspects into account. We proceed by modelling the area to be evacuated as a time-expanded graph, assuming that future development in hazard severity is known in the form of a survivability percentage for each node. Then we apply a multi-objective genetic algorithm with five different fitness functions that use heuristics to maximize overall survivability and reduce the total egress time if possible. A method has been developed to pick the best evacuation plan out of the pool of potential solutions returned by the genetic algorithm. The solution is compared with Dijkstra’s algorithm and randomly generated paths. Experiments are conducted using these algorithms for both predefined and randomly generated graphs using different parameters. In the tested random graph, the genetic algorithm gives on average 24% better survivability and 3 times better grouping Random algorithms. A fixed network with a known solution was solved 100%. This genetic algorithm can be used to generate better routing plans that utilizes multiple evacuation routes and lifeboats while taking into account groups, resulting in smoother evacuations which can save more lives

    Applying multiobjective evolutionary algorithms in industrial projects

    Get PDF
    During the recent years, multiobjective evolutionary algorithms have matured as a flexible optimization tool which can be used in various areas of reallife applications. Practical experiences showed that typically the algorithms need an essential adaptation to the specific problem for a successful application. Considering these requirements, we discuss various issues of the design and application of multiobjective evolutionary algorithms to real-life optimization problems. In particular, questions on problem-specific data structures and evolutionary operators and the determination of method parameters are treated. As a major issue, the handling of infeasible intermediate solutions is pointed out. Three application examples in the areas of constrained global optimization (electronic circuit design), semi-infinite programming (design centering problems), and discrete optimization (project scheduling) are discussed

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    A Gradient Multiobjective Particle Swarm Optimization

    Get PDF
    An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (MOG) method, is developed to improve the computation performance. In this AGMOPSO algorithm, the MOG method is devised to update the archive to improve the convergence speed and the local exploitation in the evolutionary process. Attributed to the MOG method, this AGMOPSO algorithm not only has faster convergence speed and higher accuracy but also its solutions have better diversity. Additionally, the convergence is discussed to confirm the prerequisite of any successful application of AGMOPSO. Finally, with regard to the computation performance, the proposed AGMOPSO algorithm is compared with some other multiobjective particle swarm optimization (MOPSO) algorithms and two state-of-the-art multiobjective algorithms. The results demonstrate that the proposed AGMOPSO algorithm can find better spread of solutions and have faster convergence to the true Pareto-optimal front

    Evacuation planning with flood inundation as inputs

    Get PDF
    Recent flooding events happening in our city demonstrate frequency and severity of floods in the UK, highlighting the need to plan and prepare, and efficiently defend. Different from the numerous evacuation model and optimization algorithms, this paper aims to address flood evacuation planning with flood inundation as inputs. A dynamic flooding model and prediction to estimate the development of both surface water and flooding from rivers and watercourses has been fed into evacuation planning at various levels. A three-step approach is proposed. The first step is to identify assembly point designation. The second step is to find the candidate shortest path from each assembly point to all safe areas for all evacuees with consideration of possible inundation. The last step is to determine the optimal safe area for evacuees in the inundation area. The work presented in this paper has emphasized timing issue in evacuation planning. A case study is given to illustrate the use of the approach
    • …
    corecore