574 research outputs found

    Impact of Flow Based Market Coupling on the European Electricity Markets

    Get PDF
    Flow Based Market Coupling is the target model for determining exchange capacities in the internal European Electricity Market. It has been in operation in Central Western Europe since 2015 and is scheduled to be extended to the wider Core region in the near future. Exchange capacities have a significant impact on market prices, exchanges and the energy mix, thus also determining the CO2 footprint of electricity generation in the system. Stakeholders therefore need to develop an understanding for the impact of Flow Based Market Coupling and the parameter choice, like the minimum exchange capacities introduced in 2020, on the market outcome. This article presents a framework to model Flow Based Market Coupling and analyse the impact of different levels of regulatory induced minimum trading capacities as well as the effect of the extension towards the Core region. Electricity prices, exchange positions and the number and nature of binding constraints in the market results under different market coupling scenarios are investigated. The results show that increased level of minimum trading capacities in CWE market coupling decrease the German net export position by up to 7 TW h or 23%, while French exports increase by up to 10 TW h or 9%. The different transfer capacity in the scenarios induce a price difference of up to 13%. Increased exchange capacities allow for more base load generation with the corresponding effects for the CO2 emissions of the system. The nature of coupling constraints is highly dynamic and dependent on the system state, which makes the suitability of static NTC values in energy system scenarios questionable

    Market-based transmission congestion management using extended optimal power flow techniques

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 5/9/2001This thesis describes research into the problem of transmission congestion management. The causes, remedies, pricing methods, and other issues of transmission congestion are briefly reviewed. This research is to develop market-based approaches to cope with transmission congestion in real-time, short-run and long-run efficiently, economically and fairly. Extended OPF techniques have been playing key roles in many aspects of electricity markets. The Primal-Dual Interior Point Linear Programming and Quadratic Programming are applied to solve various optimization problems of congestion management proposed in the thesis. A coordinated real-time optimal dispatch method for unbundled electricity markets is proposed for system balancing and congestion management. With this method, almost all the possible resources in different electricity markets, including operating reserves and bilateral transactions, can be used to eliminate the real-time congestion according to their bids into the balancing market. Spot pricing theory is applied to real-time congestion pricing. Under the same framework, a Lagrangian Relaxation based region decomposition OPF algorithm is presented to deal with the problems of real-time active power congestion management across multiple regions. The inter/intra-regional congestion can be relieved without exchanging any information between regional ISOs but the Lagrangian Multipliers. In day-ahead spot market, a new optimal dispatch method is proposed for congestion and price risk management, particularly for bilateral transaction curtailment. Individual revenue adequacy constraints, which include payments from financial instruments, are involved in the original dispatch problem. An iterative procedure is applied to solve this special optimization problem with both primal and dual variables involved in its constraints. An optimal Financial Transmission Rights (FTR) auction model is presented as an approach to the long-term congestion management. Two types of series F ACTS devices are incorporated into this auction problem using the Power Injection Model to maximize the auction revenue. Some new treatment has been done on TCSC's operating limits to keep the auction problem linear

    Advanced Studies on Locational Marginal Pricing

    Get PDF
    The effectiveness and economic aspect of Locational Marginal Price (LMP) formulation to deal with the power trading in both Day-Ahead (DA) and Real-Time (RT) operation are the focus of not only the system operator but also numerous market participants. In addition, with the ever increasing penetration of renewable energy being integrated into the grid, uncertainty plays a larger role in the process of market operation. The study is carried out in four parts. In the first part, the mathematical programming models, which produce the generation dispatch solution for the Ex Post LMP, are reviewed. The existing approach fails to meet the premise that Ex Post LMP should be equal to Ex Ante LMP when all the generation and load combinations in RT operation remain the same as in DA market. Thus, a similar yet effective approach which is based on a scaling factor applied to the Ex Ante dispatch model is proposed. In the second part, the step change characteristic of LMP and the Critical Load Level (CLL) effect are investigated together with the stochastic wind power to evaluate the impacts on the market price volatility. A lookup table based Monte Carlo simulation has been adopted to capture the probabilistic nature of wind power as well as assessing the probabilistic distribution of the price signals. In the third part, a probability-driven, multilayer framework is proposed for ISOs to schedule intermittent wind power and other renewables. The fundamental idea is to view the intermittent renewable energy as a product with a lower quality than dispatchable power plants, from the operator’s viewpoint. The new concept used to handle the scheduling problem with uncertainty greatly relieves the intensive computational burden of the stochastic Unit Commitment (UC) and Economic Dispatch (ED). In the last part, due to the relatively high but similar R/X ratio along the radial distribution feeder, a modified DC power flow approach can be used to simplify the computational effort. In addition, distribution LMP (DLMP) has been formulated to have both real and reactive power price, under the linearized optimal power flow (OPF) model

    Pricing Schemes in Electric Energy Markets

    Get PDF
    abstract: Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design. Locational marginal pricing scheme is the core pricing scheme in energy markets. Locational marginal prices are good pricing signals for dispatch marginal costs. However, the locational marginal prices alone are not incentive compatible since energy markets are non-convex markets. Locational marginal prices capture dispatch costs but fail to capture commitment costs such as startup cost, no-load cost, and shutdown cost. As a result, uplift payments are paid to generators in markets in order to provide incentives for generators to follow market solutions. The uplift payments distort pricing signals. In this thesis, pricing schemes in electric energy markets are studied. In the first part, convex hull pricing scheme is studied and the pricing model is extended with network constraints. The subgradient algorithm is applied to solve the pricing model. In the second part, a stochastic dispatchable pricing model is proposed to better address the non-convexity and uncertainty issues in day-ahead energy markets. In the third part, an energy storage arbitrage model with the current locational marginal price scheme is studied. Numerical test cases are studied to show the arguments in this thesis. The overall market and pricing scheme design is a very complex problem. This thesis gives a thorough overview of pricing schemes in day-ahead energy markets and addressed several key issues in the markets. New pricing schemes are proposed to improve market efficiency.Dissertation/ThesisMasters Thesis Electrical Engineering 201
    • …
    corecore