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Abstract

The interdependency across natural gas, power and heating systems is increasingly

tightened due to the wide development of cogeneration plants and electrified heating

facilities. Multi-energy integration is a prevalent trend and the energy hub, which acts

as an intermediary agent between providers and consumers, is expected to play a central

role in allocating energy resources more efficiently. However, uncertainties originat-

ing from multiple kinds of energy demands challenge the operation of energy hubs and

may compromise system efficiency. Energy trading and sharing among individual hubs

offer a unique opportunity to increase system flexibility and reduce the cost under de-

mand uncertainty. In this paper, three quintessential schemes for organizing a cluster of

energy hubs at demand side, i.e., individual, sharing market, and aggregation, are stud-

ied under a stochastic framework with probabilistic load forecasts. First, we perform

theoretical analysis and compare their economic efficiencies from a maximum-utility

(or minimum-cost) perspective. Utility curves of respective schemes are given, and

several important phenomena are revealed from the economic analysis. Then we dis-

cuss the concrete decision-making models of energy hubs under the three schemes,

taking into account the change of electricity price in response to the total demand,

which give rise to bilevel optimization problems and are technically transformed into

mixed-integer linear programs. Finally, we conduct numerical experiments, which val-
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idate the theoretical outcomes, and reveal that the sharing scheme can achieve nearly

optimal efficiency without a central organizer, and hence appears to be a promising

direction for future multi-energy systems.

Keywords: Demand uncertainty, energy hub, energy-sharing market, multi-carrier

energy system, organization scheme, stochastic bilevel game.

Nomenclature

Indices and Sets

i Index of energy hubs

t Index of time periods

ω Index of scenarios

j Index of power generators

n Index of buses in power system

Parameter

NE The number of energy hubs

ηeh Efficiency of electricity to heat conversion

ηgh Efficiency of gas to heat conversion

ηge Efficiency of gas to electricity conversion

λ ec
t ,λe Electricity price in the day-ahead market

λ
gc
t ,λg Natural gas price in the day-ahead market

λ M
t,ω ,λM Gas-to-power price in the sharing market

rmn,xmn Resistance/Reactance of line mn

vn,vn Bounds of voltage magnitude square at bus n

P j,P j Bounds of active output of unit j

Q j,Q j Bounds of reactive output of unit j

lmn Square current capacity of line mn

pl
n,ql

n Active/reactive electricity demand at bus n

c j Cost of generation unit j
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π , πω Probability of each scenario

Ī Budget of the energy hub

de,l̃e
it,ω Real-time power demand

dh,l̃h
it,ω Real-time heat demand

Em,Hm The capacity of power/heat storage unit

R±pm,R±hm Maximum charge/discharge rate of storage unit

M A large enough constant

(ps,λs) Breakpoints in piecewise linear technique

Decision Variable

θ The expenditure of power

ρit Proportion of power converted into heat

pe,in
it ,pg,in

it Input electricity/gas of the energy hub

pe,out
it ,ph,out

it Output electricity/heat of the energy hub

pdis
it ,pch

it Discharge/charge rate of power storage unit

hdis
it ,hch

it Discharge/charge rate of heat storage unit

λ er
t,ω ,λ

hr
t,ω Price of electricity/heat in the real-time market

uit ,sit Binary variables indicate the status of storages

Et ,Ht Energy amount of power storage/heat storage

pe0
it ,pg0

it Contracted power/gas in day-ahead market

δ
e+
it,ω ,δ h+

it,ω Power/heat bought from the real-time market

δ
e−
it,ω ,δ h−

it,ω Power/heat sold to the real-time market

pex
it,ω Energy exchange in the sharing market

p j,q j The active/reactive output of power generator j

lmn Square of the current in line mn

vn Square of voltage magnitude at bus n

Pmn Active power flow in line mn

Qmn Reactive power flow in line mn

λn Dual variable of the power balancing condition
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αs Continuous weight variables used in piecewise linear technique

βs Binary variables used in piecewise linear technique

γs Auxiliary variables used in objective function linearization

1. Introduction

Due to the synergy among different energy carriers [1], traditionally independently

operated energy infrastructures such as the power grid, heating system, and natural gas

system are now becoming increasingly interdependent because of the proliferation of

co-generation plants, energy conversion devices, and energy storage units. Gas-fired

combined heat and power (CHP) units have been proved to be more efficient compared

with the separate production (an illustrative example can be found in [2]). The state-

of-art air-source/ground-source heat pumps have a coefficient-of-performance (COP)

up to 3-5 [3], which means that 3-5 times thermal energy can be extracted by con-

suming merely one unit amount of electricity. Although electric boilers have relative

lower electricity-heat efficiency, they are very cheap to deploy and can absorb excessive

renewable generation which is otherwise curtailed. In Europe, nearly 11% of its elec-

tricity was generated via cogeneration [4] while Demark, the Netherlands and Finland

are the world’s most intensive cogeneration economies [5]. In Germany, over 50% of

the nation’s total electricity demand could be provided by cogeneration and it aims to

double the share of cogeneration by 2020 [6]. In the UK, there has been a trend towards

“multi-utility” bundling [7], increasing the coupling of multiple energy markets. CHP

is already an important resource for the United State and constitutes 8% of generation

capacity [8]. In this regard, the interdependence across multiple energy infrastructures

will become more prevalent, especially in the countries/regions with long cold winter,

creating strong interdependency in energy flow and market behavior [9].

Coordinated operation of multi-carrier energy systems has become a hot topic in

recent years. The flexibility of combined heat and power system with thermal storage

was evaluated based on a generic model in [10]. The energy flow of combined cooling

heating and power system was analyzed under electrical demand management mode

and thermal demand management mode respectively in [11]. The efficiency of separate
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operation and combined operation of heat and power production were compared in

[12]. In many researches mentioned above, an implicit assumption is that a central

operator has the authority to control components in all related systems. However, in

current practice, different energy systems are usually owned or governed by individual

entities, which may be unwilling to accept compulsory dispatch orders. In this regard,

energy markets turn out to play an important role in allocating resources in a fairer way,

since individual market participants can make decisions regarding their own purposes.

The modeling and strategic planning methods of sustainable interdependent networks

were presented in [13], where typical application examples can also be found.

The power market has been studied for decades. One classic organization is the

pool-based market with the locational marginal price (LMP) scheme [14]. Traditional

power market appears at the transmission level, and the market clearing comes down to

a direct-current (DC) optimal power flow (OPF) problem [15]. Smart grid technologies

allow the similar paradigm to be implemented in distribution systems. However, be-

cause the resistance to reactance ratio (r/X) of distribution lines is higher than that in

transmission grids, the alternating current (AC) OPF model is used to clear the distribu-

tion market [16]. The gas market is much less competitive and flexible than the electric-

ity market. In the gas spot market, the price tends to be proportional to the gas demand

and usually remains unchanged throughout a day [17]. To study the strategic interac-

tions among multiple stakeholders in the gas market, a generalized Nash-Cournot game

model was proposed in [18], and complementarity programming models were devel-

oped in [19] which were applied in South Stream [20]. As we restrict our attentions on

the intra-day transaction, the gas price is assumed to be fixed as in [21].

With the increasingly tightened coupling of energy systems with multiple carri-

ers, the advent of integrated energy markets will greatly promote energy transaction

and sharing among different physical systems. Along this line of research, the market

power of natural gas producers on the power market was investigated in [22]. A multi-

lateral trading model for the gas-heat-power coupled system was proposed in [23] and

the market behaviors of different energy systems were considered. In [24], a strategic

offering model for the gas-power system was presented. The gas market is cleared in a

similar way as the power market. All the studies above consider the real-time market
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without uncertainty. However, in the day-ahead market, the uncertain factors such as

load forecast errors can no longer be neglected and may affect the real-time decisions.

In power market analysis, the impacts of load and price uncertainties have been

investigated. Because of the competition and strategic behaviors of individual market

participants, incorporating uncertainty in a market equilibrium model is much more

difficult than doing so in a centralized dispatch problem. For the supply-side power

market, a robust Cournot-Bertrand model was proposed in [25] to mimic risk-averse

bidding strategies of generation companies in a congested power grid. Reference [26]

proposed a day-ahead decentralized energy trading algorithm for power grid with gen-

eration uncertainty. A robust Nash game model was suggested in [27] to describe the

market equilibrium of hydro-dominated power systems with strategic producers and

water inflow uncertainty. For the demand-side market, the retailer is expected to play

an active role. A stochastic optimization method was used in [28] to optimize the

medium-term decision making for a power retailer. Uncertainty of future pool prices,

client demands, and rival-retailer prices are taken into account. A stochastic multi-

objective Nash-Cournot model was adopted in [29] to simulate the demand response

under load uncertainty. A game based linear approach for retailer’s scheduling under

uncertain pool prices and load demands was presented in [30]. The scenario generation

method and conditional value at risk (CVaR) are used for risk measurement. Bilateral

contracting and selling price determination problem for an electricity retailer under

load uncertainty was proposed in [31]. Three pricing cases are compared, including

the fixed pricing, time-of-use pricing and real-time pricing. The bidding and pricing

strategies of retailer under market price uncertainty was studied in [32] using a robust

bilevel programming model.

In a multi-energy system, energy hub is a new concept and initiatively related with

multi-carrier energy linking [33]. An energy hub can be modeled as a multi-input

multi-output prosumer which can receive, send, convert and store different types of

energies [34]. In this sense, other energy system integration concepts with multiple

energy inputs and multiple energy outputs can be described as a sort of energy hubs.

For example, reference [35] modeled the networked micro-grids using the concept of

multi-carrier energy hub, while an energy hub model was used to describe interactions
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Figure 1: Sketch of three organization schemes.

among multiple energy systems in [36]. Application of the energy hub concept for

the description of tri-generation devices was reported in [37]. Models for integrated

energy and transportation systems were presented in [38]. The energy hub idea was also

picked up by a municipal utility in Switzerland to model a micro-system containing

wood chip gasification, methanation and a cogeneration plant [33]. After years of

wonderful research, deterministic decision making for the energy hub dispatch problem

has become a relatively mature field. Some works incorporating uncertainties have

been carried out. For example, the decision-making problem of multi-energy players

participating in the electricity market considering uncertain renewable energies was

modeled in [39]. A stochastic bi-level model for energy hub manager was developed

in [40]. The hub manager seeks to maximize its profit by selling electricity and heat

under uncertain pool prices and load uncertainty.

A main research focus of energy hub is the modeling method to enable the in-

corporation of different energy facilities. This issue has been studied in the existing

literature by using the automatic construction procedure [41], the block schematic di-

agram method [42], the decoupling method [43] and the linearized modeling method

[36], to name a few. Another important problem is the business model of energy hubs

taking their self-regarding behaviors into account, calling for a thorough study on trad-

ing scheme design, which is exactly the main motivation of this paper. The real-time

scheduling of energy hubs in a dynamic pricing market was modeled as an exact po-

tential game in [44] and an online distributed algorithm was proposed to find the Nash

Equilibrium (NE). The existence and uniqueness of the NE was also investigated.

Different from aforementioned studies, which aim to provide optimal strategies

for participants in a market, this paper investigates the economic efficiencies of three
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typical organization schemes, i.e., individual scheme, sharing scheme and aggregation

scheme, of a cluster of energy hubs from a maximum-utility (or minimum-cost) per-

spective. A visual representation of three typical organization schemes is shown in

Figure 1. Specifically, we consider an integrated energy system with electricity, natural

gas as well as heat. The proposed model describes a bilevel trading framework which

allows allocating a certain portion of resources in the upper level and coping with un-

certainty in the lower level. Day-ahead and real-time markets are the most common

and mature ones in the current electricity industry, and therefore are studied in this

paper. The proposed method can be easily extended to problems with different time

scales. The main contributions of this paper are twofold.

1) Theoretical analysis on the economic efficiencies of three typical energy-hub

organization schemes. The economic efficiencies of individual, sharing, and ag-

gregation schemes for energy transaction are examined from a maximum-utility (or

minimum-cost) perspective under inaccurate load forecasts. Under reasonable as-

sumptions, we prove that the aggregation scheme is the most efficient while the

individual scheme is the most inefficient due to the lack of flexibility in real-time

energy exchange. By allowing real-time energy transaction restricted by a fixed

exchanging rate, which serves as the price in the sharing market, the efficiency of

sharing scheme is in-between, but very close to the aggregation scheme, implying

its promising perspective. The price in the sharing market is also revealed.

2) Concrete mathematical formulation of the three market schemes in a demand-

side integrated energy system and characterization of the market equilibrium.

First, a bilevel framework of the studied system is set forth. In the pool-based

market level, an ACOPF model is used to clear the distribution power market and

retrieve the electricity price while the natural gas price and heat price are assumed

as fixed values. In the demand-side integrated energy system level, stochastic op-

timization is employed to model the strategic behaviors of individual energy hubs.

Aforementioned organization schemes are modeled via different constraints on en-

ergy exchange and allocation. To identify the market equilibria, the mathemati-

cal models are reformulated as mixed-integer linear programs (MILPs) based upon
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duality theory, linearization techniques and two properties of potential game and

cooperative game. Finally, the proposed models are used to test and quantify the

performance gaps of the three schemes using typical system data. Our method pro-

vides a systematic approach to formulating and efficiently computing equilibria of

multi-energy markets.

The rest of this paper is organized as follows. Theoretical analysis is given in

Section 2 to compare the economical efficiencies of the three energy hub organization

schemes. The practical implementation and mathematical formulations of the energy

hub decision-making under three organization schemes are presented in Section 3. So-

lution methodology is developed in Section 4. Case studies are performed in Section

5. Finally, conclusions are drawn in Section 6.

2. Economical Efficiency: Theoretical Analysis

Starting from a abstract formulation, we present a theoretical analysis on the effi-

ciency of different organization schemes in the integrated energy systems with elec-

tricity, natural gas, and heat. Energy hubs participate in the day-ahead power and gas

markets. At the supply side, electricity and natural gas are bought at prices λe and λg,

respectively. At the demand side, electricity and heat are needed. de refers to the real-

time power demand, which is a scalar and its SI unit is Watt. When the energy hub is

going to sign a contract in the day-ahead market, it is not sure about the exact demands

of its customers in the future. Here, system efficiency refers to the expected utility

under demand uncertainty. The utility function can be defined as the profit function,

which is the difference between incomes and costs.

For the sake of conciseness and illustration, we consider two extreme situations

in real time: all the consumers need electricity with a probability of π and all the

consumers need heat with a probability of 1− π . For the in-between cases where

both power and heat are needed, the conclusion still holds. The utilities of the energy

hub when it supplies electricity and heat are u1(de) and u2(dh), which are concave,

monotonically increasing, and differentiable [45]. Concavity and monotonicity are

mild assumptions for utilities of smart grid users, as suggested in [46], such as the
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quadratic utility functions used in [45] and the logarithmic utility functions used in

[47]. The energy hub allocates its budget on electricity and natural gas to maximize its

expected utility,

U(de,dh) = E[u] = πu1(de)+(1−π)u2(dh) (1)

which is also concave. The contour line of the utility is a curve define as U(de,dh) = c

where c is a constant. We write the contour line as an explicit function,

dh = fcont(de) = u−1
2

(
c−πu1(de)

1−π

)
Proposition 1. The contour line dh = fcont(de) is a convex function which is decreasing

in the first quadrant.

The monotonicity is clear: because πu1(de) is increasing in de and (1−π)u2(dh)

is increasing in dh, and their summation is a constant c, the growth in de must lead to

the decrease in dh. To see the convexity, as u1(de) is concave, function

g(de) =
c−πu1(de)

1−π

is convex. Moreover, since u2(dh) is concave and increasing. Its inverse function u−1
2

is also increasing with a positive second-order derivative given by,

(u−1
2 )′′ =− u′′2

(u′2)
2 > 0

It implies u−1
2 is convex. According to the composition law ([48], page 84), function

dh = fcont(de) is also convex.

Assume the energy hub has a total budget of Ī, which is a constant scalar, and θ is

spent on buying power and the rest on natural gas. The energy hub can produce heat

from electricity with an efficiency of ηeh, and can convert natural gas into electricity

and heat with efficiencies of ηge and ηgh, respectively. It is reasonable to make the

following assumptions.

A1. Buying electricity directly is better than buying gas and producing electricity from

gas, i.e.,
1
λe
≥

ηge

λg
(2)
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A2. Both gas and electricity have none-zero contracts in day-ahead markets.

The day-ahead gas/electricity contract might be zero, if the day-ahead price is much

higher than that in the real-time market or buying one kind of energy is more favorable.

However, in such situations, the problem becomes much easier: if both day-ahead

contracts are zero, since no uncertainty exists at the real-time stage, the energy hub can

exactly determine the amount of each kind of energy according to the real demands,

and exchange is not needed; if the day-ahead gas (electricity) contract is zero, which

means all energy hubs buy gas (electricity) only, there is no exchange either. Therefore,

the problem degenerates into a trivial one and we simply exclude this trivial case by

assuming A2.

Because energy hub can switch the usage between electricity and natural gas, im-

plying the potential of energy sharing among different energy hubs, it is interesting to

study how the utilities of individual energy hubs can be improved by allowing energy

exchange. Here, we analyze three emblematic energy hub organization schemes:

1) Individual scheme (IDL): each energy hub makes its decision respectively and no

trading among energy hubs is allowed. Operation of energy hubs following this

scheme has been discussed in the medium-term management problem [49] and the

intra-day decision-making problem [50].

2) Sharing market scheme (SMK): an energy hub can exchange energy with others at

a fixed ratio λM , which is called the price in the sharing market. In fact, it is not

a financial concept with a monetary unit but a barter ratio. It defines how much

electricity can be exchanged with one unit natural gas. In this regard, the sharing

market is a platform for energy sharing without monetary transaction. Operation of

networked microgrids following this scheme can be found in [51], and a decentral-

ized energy exchange strategy for prosumers in smart grid was presented in [52].

3) Aggregation scheme(AGG): a central aggregator (or retailer) is eligible to collect

and redistribute energy among all energy hubs. This scheme has been discussed

under the concept of multi-energy player in electricity markets [40] and in local

energy system [53].

Next we analyze the three organization schemes theoretically.
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(1) Individual (IDL)

In this case, the total budget Ī is allocated to electricity with the amount of θ and

natural gas with Ī−θ . In the all power demand situation, the electricity supply is,

de =
θ

λe
+

Ī−θ

λg
·ηge (3)

where the first term represents electrical power that is directly purchased from the

power grid, and the second one stands for which is produced by the CHP unit. In

the all heat demand situation, the heat supply is,

dh =
θ

λe
·ηeh +

Ī−θ

λg
·ηgh (4)

where the first term represents heat that is converted from the electrified heating de-

vices, and the second one stands for heat produced by the CHP unit.

The optimal decision in the IDL scheme is shown in Figure 2. If θ = 0, then

de = ηge Ī/λg and dh = ηgh Ī/λg; if θ = Ī, then de = Ī/λe and dh = ηeh Ī/λe; otherwise

when θ constantly changes from 0 to Ī, the point (de,dh) forms a line segment ab. The

contour line of U(de,dh) is also shown in Figure 2, whose shape has been revealed

in Proposition 1. We can observe that the optimal choice of an energy hub is to buy

electricity as long as Assumption A.1 holds.

(2) Sharing market (SMK)

In the sharing market, energy hubs can trade with each other to meet energy de-

mands. Assume that λM is the price (exchange ratio) at equilibrium, then the energy

supply in the two extreme situations are shown as,
de =

θ

λe
+max

{
Ī−θ

λg
λM,

Ī−θ

λg
ηge

}
dh = max

{
θ

λe
ηeh,

θ

λe

1
λM

ηgh

}
+

Ī−θ

λg
ηgh

(5)

Take the electricity demand for example, the first term represents electrical power that

is directly purchased from the power grid, and the rest can be obtained in two ways:

one is to trade with other hubs in the sharing market, and the other is to dispatch the

CHP. The second term picks up the bigger one in the curly braces. The latter equation

in (5) has a similar interpretation. To analyze the sharing market, we give the following

Lemma.
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Lemma 1. Assume Assumption A.1 and A.2 hold, we have,

ηeh

λe
≤

ηgh

λg
; λM =

λg

λe
; de =

Ī
λe

; dh =
Ī

λe
ηgh (6)

Proof. First of all we consider the first inequality. For the sake of contradiction, assume

ηeh

λe
>

ηgh

λg

It implies that producing heat from electricity is cheaper than using natural gas. More-

over, as indicated by (2), purchasing electricity from the power grid has a lower cost

than buying gas and using CHP units. As a result, all energy hubs will consume elec-

tricity, and natural gas will lose all market share, which is in contradiction with As-

sumption A.2. So
ηeh

λe
≤

ηgh

λg

must hold.

Combined with (2), we have,

ηge ≤
λg

λe
≤

ηgh

ηeh
(7)

Next we consider the second assertion. The following discussion is divided into

three cases.

1) If λM ≤ ηge, with (7) we have ηgh/λM ≥ ηeh. Hence the max qualifier in (5) can

be dropped and the energy demands in the two extreme situations can be expressed as,
de =

θ

λe
+

Ī−θ

λg
ηge

dh =
θ

λe

ηgh

λM
+

Ī−θ

λg
ηgh

(8)

We can conclude from (7) that λM ≤ λg/λe. And then we have

ηgh

λeλM
≥

ηgh

λg

which indicates that purchasing electricity from the power grid and trading gas in the

sharing market is a better way than buying natural gas directly for producing heat. So

all energy hubs will buy electricity and no gas contract will be signed, contradicting

Assumption A.2.
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2) If λM > ηge and ηgh/λM ≥ ηeh, then the energy demands in the two extreme

situations can be expressed by,
de =

θ

λe
+λM

Ī−θ

λg

dh =
θ

λe

ηgh

λM
+

Ī−θ

λg
ηgh

(9)

In such a circumstance, if

λM >
λg

λe
or

1
λg

>
1

λeλM

which means that signing a contract with the gas market can get more natural gas than

buying electricity and then trading gas in the sharing market with the same amount of

expenditure. As a consequence, all energy hubs will not buy electricity. On contrary,

no one will buy natural gas. This is in contradiction with the assumption. So we have,

λM =
λg

λe

3) If λM > ηge and ηgh/λM < ηeh, then the energy demands in the two extreme

situations can be written as,
de =

θ

λe
+λM

Ī−θ

λg

dh =
θ

λe
ηeh +

Ī−θ

λg
ηgh

(10)

In such a circumstance, we can conclude that λM > λg/λe owing to the second in-

equality of (7), which is the same to the case we have discussed in Item 2), in which all

energy hubs will buy gas and no electricity contract will be signed.

In summary, λM = λg/λe must hold, implying assertion 2) holds.

Substituting it into (9) yields

de =
Ī

λe
, dh =

Ī
λe

ηgh (11)

Then assertions 3) and 4) hold, which completes the proof.

Equation (11) interprets that an energy hub will purchase both electricity and heat,

and exchange in sharing market depending on whether electricity or heat is needed.
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The optimal strategy of the energy hub in the sharing market is plotted as point c in

Figure 2.

(3) Aggregation (AGG)

In this organization scheme, a large number of energy hubs are coordinated by an

aggregator, who is eligible to sign aggregated contracts with the power and gas markets

on behalf of the energy hubs and redistribute energies among the clients. According to

the Law of Large Numbers in the probability theory, the number of energy hubs which

buy electricity (or natural gas) is Nπ (or N(1−π)). Hence the energy demands satisfy,
Nπ ·de =

Nθ

λe

N(1−π) ·dh =
N(Ī−θ)

λg
ηgh

(12)

From an average point of view, it is,

de =
θ

πλe
, dh =

(Ī−θ)ηgh

(1−π)λg

The optimal decision in the aggregation mode is also shown in Figure 2. When θ

varies from 0 to Ī, the point (de,dh) forms the line segment de. The optimal solution

will be found at point f where line de is tangent to a contour line of U(de,dh).
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Figure 2: Optimal decisions under three organization modes.

With above analysis, we have the following proposition.
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Proposition 2. Let EUIDL, EUSMK , and EUAGG be the optimal expected utility U(de,dh)

in the individual, sharing market, and aggregation schemes. There must be,

EUIDL < EUSMK < EUAGG

The relationship of the three organization schemes can be observed from Figure 2.

The optimal expected utilities are evaluated at points b, c, and f. Because U(de,dh) is

increasing in the two inputs, clearly we have EUIDL < EUSMK . Moreover, it is easy

to verify that point c belongs to line segment de, and U(de,dh) perceives the largest

value at point f when the pair (de,dh) varies in the line segment de. Therefore, we have

EUSMK < EUAGG.

3. Implementation in the Integrated Energy System

The conclusion drawn in Proposition 2 is based on the abstract model without re-

flecting practical system configurations. For further investigation, we propose thorough

mathematical formulations for an integrated energy system with a cluster of energy

hubs, which can be modeled as stochastic bilevel problems. In the energy hub level,

stochastic optimization models are adopted to analyze the energy hubs’ strategic be-

haviors under three organization schemes. In the pool-based market level, an ACOPF

model is used to retrieve the LMP. Detailed formulation of each parts are given in the

following subsections.

3.1. Energy Hub Model

Energy hub is the substantial participant in the multi-carrier energy market. In this

paper, we consider an energy hub with two inputs (electricity and gas) and two outputs
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(electricity and heat). Its structure is illustrated in Figure 3. The import electricity can

be transformed into heat by an electric boiler (EB), or be used to charge an electricity

storage unit (ESU). Heat pumps can be modeled by the same way as the EB with

a higher efficiency coefficient. Natural gas is burnt by a CHP unit which generates

electricity and heat. The heat can be stored in a heat storage unit (HSU). Operating

constraints include,

(1−ρit)pe,in
it + pg,in

it ηge + pdis
it − pch

it = pe,out
it (13a)

ρit pe,in
it ηeh + pg,in

it ηgh +hdis
it −hch

it = ph,out
it (13b)

Ei(t+1) = Eit + pch
it η

+
es− pdis

it /η
−
es , Ei0 = 0 (13c)

Hi(t+1) = Hit +hch
it η

+
hs−hdis

it η
−
hs, Hi0 = 0 (13d)

0≤ pch
it ≤ uitR+

pm, 0≤ pdis
it ≤ (1−uit)R−pm (13e)

0≤ hch
it ≤ sitR+

hm,0≤ hdis
it ≤ (1− sit)R−hm (13f)

0≤ Eit ≤ Em,0≤ Hit ≤ Hm (13g)

where ρit represents the proportion of import electricity which is used for heat pro-

duction. Constraints (13a)-(13b) are electric power and thermal balancing conditions;

(13c)-(13d) describe charging dynamics of energy storage units; (13e)-(13f) impose

maximal charging and discharging rates on storage units as well as their complemen-

tarity; (13g) limits the energy stored in the ESU and the HSU. Although the first terms

in (13a) and (13b) are bilinear, they can be replaced by two new variables pe,e
it and pe,h

it

in combination with an equality constraint pe,e
it + pe,h

it = pe,in
it . In this way, all constraints

in (13) are linear.
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3.2. Real-time Power Market Clearing Model

We assume that the real-time electricity price is equal to the LMP released by a dis-

tribution power market. Because the resistance of distribution lines have notable impact

on LMP, we use the following branch flow model [54] based AC-OPF for distribution

power market clearing in the real-time stage

min ∑c j p j (14a)

s.t. vm− vn = 2(rmnPmn + xmnQmn)− (r2
mn + x2

mn)lmn (14b)

lmnvm = P2
mn +Q2

mn (14c)

pn− pl
n = ∑

k:n→k
Pnk− (Pmn− lmnrmn) : λn (14d)

qn−ql
n = ∑

k:n→k
Qnk− (Qmn− lmnxmn) (14e)

P j ≤ p j ≤ P j, Q j ≤ q j ≤ Q j (14f)

vn ≤ vn ≤ vn;0≤ lmn ≤ l̄mn (14g)

where c j and p j are the cost coefficient and output of generation units, respectively.

Objective function (14a) is to minimize the operating cost. Constraints (14b)-(14e)

state the branch flow model developed in [54], which provides the same solution as

the traditional bus injection model for radial networks [55]. pl
n is the active power

demand at bus n, including the fixed residential/industrial demand and elastic demand

from energy hubs. Dual variable λn associated with nodal active power balancing con-

dition (14d) interprets the LMP. Physical limitations of generator output, bus voltage

magnitudes, and line currents are included in constraints (14f)-(14g). We assume the

real-time power market is cleared every period according to a single-period OPF prob-

lem, which is in compliance with the current power market practice. Hence we omit

the time index in (14). The typical frequency is once per hour.

Remark 1: For the distribution power market, various entities can participate and

bid their demands as shown in Figure 4. Multi-energy trading is restricted at the de-

mand side. For clarity and simplification, this paper only considers the strategic behav-

iors of energy hubs and assumes that the bids of other participants are given as fixed

nodal power demands. Demand response can be incorporated via a price-sensitive load
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with a price-demand function as is suggested in [56].

Power Market Heat Market Gas Market

Energy

Hub

Industrial

Loads

Residential

Loads

Prices Amount Amount Amount

Market Layer

Demand Layer

Figure 4: Structure of the bilevel multi-energy market.

3.3. Holistic Market Configurations

The structure of the integrated energy system is shown in Figure 5. In the day-

ahead market, the energy hubs determine their gas and power consumptions and sign

forward contracts with the power market and natural gas market with fixed prices λ ec
t

and λ
gc
t . At this time, the exact electricity and heat demands are not known exactly,

and we have probabilistic forecasts on their possible values. When the exact load is

revealed or can be predicted with high accuracy, energy hubs can buy (sell) energies

from (to) the real-time markets. The real-time electricity price is given by the market

clearing problem stated in (14). According to the current gas/heat market organization,

the gas/heat price does not vary intraday, so λ
gc
t and λ hr

t are equal to given values.

In addition, energy hubs could convert undesired energy into the desired form and

exchange energies with other hubs. Three organization schemes are considered. For the

individual scheme, energy hubs cannot trade with others, so they must satisfy real-time

energy demands by energy conversion and energy purchase. For the sharing market

scheme, energy hubs can exchange electricity and natural gas with other hubs subject

to an exchange price/ratio. For the aggregation scheme, the retailer will collect and

redistribute energies to all participants.

In analogy to the organization of current deregulated power markets, we consider

two phases in the proposed organization scheme:

Phase 1: Day-ahead stage

Assume that the electricity price is λ ec
t , and the gas price is λ

gc
t .

For IDL and SMK schemes, each energy hub decides on its contracted electricity

19



pe0
it and gas pg0

it . For AGG scheme, the aggregator will collect the demand from all

energy hubs and decide the total contracted electricity ∑i pe0
it and total contracted gas

∑i pg0
it .

Phase 2: Real-time stage

Assume that the electricity price is λ er
t (LMP) and the gas price is λ hr

t .

For IDL scheme, each energy hub buys/sells electricity δ
e±
it,w and heat δ

h±
it,w from/to

the real-time market to meet load demand. For SMK scheme, each energy hub can

exchange gas pex
it for power pex

it λ M
t,w with other energy hubs at a fixed ratio λ M

t,w, and

buys/sells electricity δ
e±
it,w and heat δ

h±
it,w from/to the real-time market to meet load de-

mand. For AGG scheme, the aggregator buys/sells electricity ∑i δ
e±
it,w and heat ∑i δ

h±
it,w

from/to the real-time market and redistributes the energies to each hub to meet load

demand.

3.4. Formulation of the Market Equilibrium Problems

In the integrated energy system, each energy hub tries to maximize (minimize) its

own utility (payoff). The payoff function of energy hub i has the following form

CH
i = ∑

t

(
λ

ec
t pe0

it +λ
gc
t pg0

it +
Ω

∑
ω=1

πω

[
−λ

er
t,ω δ

e−
it,ω

−λ
hr
t,ω δ

h−
it,ω +λ

er
t,ω δ

e+
it,ω +λ

hr
t,ω δ

h+
it,ω +Pen(δ h±

it,ω ,δ
e±
it,ω)

]) (15)

The sum of the first and second terms denotes the cost of buying energies from the day-

ahead markets; the remaining terms describe the income and the payment in real-time

electricity and district heating markets, which are scenario dependent. The last term is

a penalty for being unable to fulfill the contract.

The energy transaction constraints are formulated as,

∑
t

(
λ

ec
t pe0

it +λ
gc
t pg0

it

)
≤ Ī (16a)

pe,out
it,ω +δ

e+
it,ω −δ

e−
it,ω = l̃e

it,ω ,∀t (16b)

ph,out
it,ω +δ

h+
it,ω −δ

h−
it,ω = l̃h

it,ω ,∀t (16c)

δ
e+
it,ω , δ

e−
it,ω , δ

h+
it,ω , δ

h−
it,ω , pe0

it , pg0
it ≥ 0,∀t (16d)
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where (16a) is the budget limit in the day-ahead market; (16b) and (16c) are the real-

time power and heat balance conditions; (16d) prevents negative values on decision

variables.

As mentioned above, apart from energy transaction with the pool-based distribu-

tion market, the organization scheme of energy hubs also affects the economical effi-

ciency. Next, we set forth the energy hub decision problems under the three organiza-

tion schemes.

(1) Individual scheme. Under this setting, each energy hub makes decision indi-

vidually and cannot trade with other hubs. In the real-time, they narrow the gap be-

tween forward contract and real demand by using conversion facilities, such as electric

boilers, CHPs and storage units. The problem for each energy hub i is shown below.

min CH
i

s.t. energy transaction constraints (16)

hub operating constraints (13)

market clearing condition (14), ∀t

pe0
it = pe,in

it,ω , pg0
it = pg,in

it,ω ,∀i,∀t


, ∀i (17)

The last constraint characterizes energy availability in the individual setting. Because

energy exchange among hubs is prohibited, the import energies follow the forward

contracts. Moreover, the real time electricity price λ er
t is determined by the market

clearing problem (14). Thus, problem (17) is in fact a bilevel program, whose solution

strategy will be illuminated in the next section.

(2) Sharing market scheme. Under this setting, energy hubs have more flexibility

because they can trade with each other. Let λ M
t,ω be the sharing market price in scenario
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ω at period t. The problem for each energy hub i is shown below

min CH
i

s.t. energy transaction constraints (16)

hub operating constraints (13)

market clearing condition (14), ∀t

pe0
it − pex

it,ω λ
M
t,ω = pe,in

it,ω ,∀t

pg0
it + pex

it,ω = pg,in
it,ω ,∀t



, ∀i

∑
NE
i=1 pex

it,ω = 0,∀t

(18)

The constraints in (18) are similar to those in (17) except for the energy allocation

conditions. In this setting, the imports of energy hubs come not only from the forward

contracts but also from the energy exchanges in the sharing market. In addition, the

total natural gas exchange in the system in every period should be balanced (so should

the electricity), which is ensured by the last equality. Problem (18) can be transformed

to a mathematical program with equilibrium constraints, which will be detailed in the

next section.

(3)Aggregation scheme. Under this setting, the retailer/aggregator is responsible

for collecting the requirements of all energy hubs and makes a centralized decision.

The problem for the retailer is shown below,

min ∑
NE
i=1 CH

i

s.t. energy transaction constraints (16), ∀i

hub operating constraints (13), ∀i

market clearing condition (14), ∀t,∀i
NE

∑
i=1

pe0
it =

NE

∑
i=1

pe,in
it,ω ,

NE

∑
i=1

pg0
it =

NE

∑
i=1

pg,out
it,ω ,∀t,∀i

(19)

Compared to problem (18), problem (19) minimizes the total payoff of all energy hubs

subject to the Cartesian product of their feasible regions together with a system-level

import energy constraint depending on the forward energy contracts.

It can be observed that the difference among problems (17)-(19) mainly stems from
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the energy allocation conditions. The feasible region becomes more relaxed when the

organization switches from individual to sharing market and moreover to aggregation.

4. Solution Methodology

The energy hubs’ problems (17) and (18) in individual and sharing market schemes

are multi-leader single-follower games, where the follower problem captures the mar-

ket clearing process. The remaining one has a single retailer in the upper level, and

comes down to a traditional bilevel program or a Stackelberg game. In this section, we

first show the former two problems are actually potential games, so their objective can

be aggregated into a single one for the ease of computation. Then we present MILP

approximations for problems (17)-(19), which can be solved efficiently by commercial

software. By exploiting the problem structure, our method does not rely on KKT opti-

mality conditions, and is more efficient and scalable compared with existing methods

for bi-level programs.

4.1. Additivity of the Objective Functions

In problem (17), although the objective functions are totally decoupled, the market

clearing condition depends on the joint actions of all energy hubs. Therefore, the indi-

vidual problems for each hub are still correlated. Nevertheless, the following proposi-

tion asserts that their objective functions can be added together, resulting in a traditional

Stackelberg game.

Proposition 3. Problem (17) and the following Stackelberg game share the same equi-

librium solution.

min ∑
NE
i=1 CH

i

s.t. energy transaction constraints (16), ∀i

hub operating constraints (13)

market clearing condition (14), ∀t

pe0
it = pe,in

it,ω , pg0
it = pg,in

it,ω ,∀i,∀t

(20)
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According to the property of potential games [57], it is easy to verify that fatk =

∑
NE
i CH

i is a potential function for problem (17). The result of single-level potential

games has been generalized to bilevel games in [58]. The equilibrium consistency

between a multi-leader common-follower game and its corresponding potential Stack-

elberg game is demonstrated by comparing their stationarity conditions. Proposition 3

is a straightforward application of the outcome therein. By such equivalence, we can

also claim that problem (17) possesses a pure-strategy equilibrium as long as problem

(20) has a feasible solution (since it must be bounded).

A similar conclusion holds for problem (18) and the following Stackelberg game:

min ∑
NE
i=1 CH

i

s.t. energy transaction constraints (16), ∀i

hub operating constraints (13)

market clearing condition (14), ∀t

pe0
it − pex

it,ω λ
M
t,ω = pe,in

it,ω ,∀t,∀i

pg0
it + pex

it,ω = pg,in
it,ω ,∀t, ∀i

∑
NE
i=1 pex

it,ω = 0,∀t,∀i

(21)

Since no competition exists in the upper levels of problems (20) and (21), they

are easier to solve than the original ones in (17) and (18). A problem remaining to

be answered is: why will the energy hubs form a whole coalition? Is it possible that

multiple smaller sharing markets exist at the same time?

Proposition 4. All the energy hubs will take part in a whole sharing market.

This proposition is a natural implication of the coalition based cooperative game

theory. Suppose that there are two sub-markets, and if they could exchange energy

with the each other following the rule of energy trading and clearing in (18), then the

total payoff must be no greater than the sum of respective sub-markets. That is because,

two independent operating sub-markets is simply a special case of the whole sharing

market, where the energy exchange between two sub-markets is prohibited. So the

operating feasible region of the whole sharing market is enlarged. In this regard, the
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cooperation among energy hubs can be described as a super additive game, where the

grant coalition must grab the highest profit (or the lowest cost) [59].

Standard approaches for solving a bi-level program relies on replacing the lower-

level problem with its KKT optimality conditions. However, in problems (19)-(21),

the market clearing problem in the lower level are non-convex, and KKT conditions

are only necessary and remain computational challenging. In what follows, we will

develop a decomposition method for coping with such an issue by exploiting the fact

that only the LMP at a single bus is involved.

4.2. Mixed Integer Linear Programming based Approximations

To overcome the computation challenges brought by the lower-level market clear-

ing problem and solve problems (19)-(21) in a systematic way, they are approximated

by MILPs after performing the following three steps. The motivation of performing

linearization is raised by observing the matter of fact: the majority of constraints are

linear in our model. If we can linearize the objective function and the few nonlin-

ear constraints generated by the primal-dual condition, the problem becomes an MILP

which can be solved efficiently by CPLEX. The benefit is that the (approximate) global

optimal solution can be found in reasonable time while a nonlinear model can only be

solved locally.

(1) Portraying the LMP curve

Problem (14) is non-convex due to the quadratic equality (14c). The convex re-

laxation method [54] is performed which replaces “=” in (14c) with “≥”, as such

the non-convex quality is turned into a rotated second-order cone. Sufficient condi-

tions that guarantee the exactness of such a convex relaxation are revealed in [60],

and are usually satisfied in most distribution systems with radial topology. Given the

net injections, the relaxed problem, i.e., an second-order cone problem (SOCP), can

be efficiently solved, and the LMP λ at the connection bus can be retrieved from the

dual variable associated with the nodal active power balancing equality in (14d). This

function is supported in off-the-shelf solvers, such as MOSEK.

Changing the power demand at the connection bus over a desired interval, and

recording the corresponding values of λ , we obtain the LMP-demand curve needed in
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Figure 6: Piecewise constant approximation of the LMP curve.

the payoff function (15). When such a function is explicitly given, the market clearing

problems (14) can be omitted from problems (19)-(21).

(2) Piecewise constant representation of the LMP curve

Another difficulty that prevents problem (19)-(21) from being efficiently solved

is the product terms in the payoff function (15), which consist of the multiplication

of LMP variables and energy quantity variables, because they are bilinear thus non-

convex. Our strategy is to approximate the LMP curve through a piecewise constant

function which is expressed via binary variables, and then linearize each product term

using integer programming techniques.

To this end, the feasible interval of demand is partitioned into S−1 segments (asso-

ciated with binary variables βs, s= 1, · · · , S−1) by S breakpoints p1, · · · , pS (associated

with continuous weight variables αs, s = 1, · · · , S). In the s-th interval between ps and

ps+1, the value of λ is approximated by the arithmetic mean λs = 0.5[λ (ps)+λ (ps+1)],

s = 1, · · · , S−1, as illustrated in Figure 6. Such a paradigm does not require a continu-

ous assumption on the LMP curve, which is important because LMP could be discon-

tinuous [61]. As a result, an arbitrary LMP-demand curve λ (p) can be approximated

by a piecewise constant function with an MILP-compatible form as follows,

p = ∑
S
s=1 αs ps, λ = ∑

S−1
s=1 βsλs (22a)

α1 ≤ β1, αS ≤ βS−1 (22b)

αs ≤ βs−1 +βs, s = 2, · · · ,S−1 (22c)
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αs ≥ 0, s = 1, · · · ,S, ∑
S
s=1 αs = 1 (22d)

βs ∈ {0,1},s = 1, · · · ,S−1, ∑
S−1
s=1 βs = 1 (22e)

In (22), binary variable βs = 1 indicates interval s is activated, and constraint (22e)

ensures that only one interval will be activated; Furthermore, constraints (22b)-(22d)

enforce weight coefficients αs, s = 1, · · · , S to be a special-ordered set of type-2, i.e.,

only adjacent two elements can be strictly positive, and their summation is 1, whereas

the rest are equal to 0; Finally, constraint (22a) expresses p and λ via the linear com-

bination of sampled values.

(3) Linearizing the objective function

The advantage of piecewise constant formulation (22) lies in the binary expression

of λ , such that the product λδ involving another continuous variable δ can be easily

linearized via the integer programming technique. To see this, expand λ using the

formula in (22a), λδ = ∑
S−1
s=1 βsλsδ , where βs is binary, λs is constant, and δ is non-

negative and continuous. Let γs = βsδ , the product λδ has a linear form ∑
S−1
s=1 λsγs, and

the relation among γs, βs, and δ is captured by,

0≤ δ − γs ≤M(1−βs), 0≤ γs ≤Mβs (23)

where M is a constant which is greater than the value of δ at optimum. From (23), we

can observe: whenever βs = 0, γs = 0 is imposed by the second inequality, and the first

constraint is redundant; otherwise, if βs = 1, γs = δ is enforced by the first inequality,

and the second one is redundant. In either case, γs = βsδ holds true.

Apply the above procedure to terms λ er
t δ

e−
it , λ hr

t δ
h−
it in energy hub payoff function

(15), problems (19)-(21) can boil down to MILPs. An appealing feature is that the sizes

of these MILPs are independent to the scale of the distribution system, since the exact

AC power flow model has already been taken into account during the construction

of the LMP curve. If the energy is connected to different buses, the situation will

be much more complicated because we need an LMP surface with multiple inputs.

Nevertheless, in the sharing market or the aggregation mode, energy hub should be

geographically close to each other for the ease of energy delivery, so the proposed

approach is appropriate in this special application.
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Remark 2:There are some optimization algorithms and software tools for nonlin-

ear mixed integer programming, which might be used to solve this problem. In the

literature, there have been some researches on the comparison of genetic algorithm

(GA) based methods and MILP based methods. An improved real-coded genetic algo-

rithm and an enhanced MILP based method were used to solve the unit commitment

and economic dispatch of microgrids and compared in terms of computational time

and accuracy in [62]. The results show that the MILP method needs less time to con-

verge, while the GA method can achieve higher accuracy but is much more time costly.

Admittedly, an improved GA method may solve our problem; however, as this paper

mainly focus on economic efficiency difference among three organization schemes, so

we just use the MILP approximation to solve it efficiently.

5. Case Studies

5.1. System Configuration

Numerical experiments were conducted on a modified IEEE 33-bus distribution

system to validate the proposed model and theory. The topology of the test system is

shown in Figure 7; the sites of 5 generators are marked in the same figure. The group

of 30 energy hubs is connected to bus 3. We consider a dispatch period of 4 hours. The

day-ahead gas price λ
gc
t , day-ahead electricity price λ ec

t , and real-time heat price λ hr
t

are shown in Table 1. Other data of each energy hub are listed in Table 2. The load

uncertainty is assumed to have a normal distribution. The predicted electric load in

each period is [3.74, 3.75, 4.12, 3.73]MWh, and the predicted heat load in each period

is [2.18, 2.25, 3.45, 2.89]MWh. The standard deviation is set as 0.2. A fast-forward

scenario reduction method based on the Kontorwish distance [63] is used for scenario

selection. 5 typical scenarios are selected in the benchmark case. All the data of the

test system can be found in [64]. MILP models were solved by CPLEX12.6 on a laptop

with Intel(R) Core(TM) i7 CPU with 2.00GHz and 8 GB of RAM.

5.2. Benchmark Case

Numerical results for the market models under three organization schemes are listed

in Table 3. The computational time is acceptable in all the tests. The payoffs satisfy
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Figure 7: Topology of 33-node power system

Table 1: Energy prices ($/MWh)

Period 1 2 3 4

λ
gc
t 145.6 151.9 157.4 149.2

λ ec
t 264.9 270.6 272.2 262.4

λ hr
t 328.0 337.8 345.2 332.1

Table 2: Energy hub data

Para. MW Para. MW Para. no unit

pch [0,2.0] E [0,10] ηes 0.98

pdis [0,2.0] H [0,10] ηhs 0.98

hch [0,2.0] ηeh 0.98 Ī 5000

hdis [0,2.0] ηgh 0.65 ηge 0.35

ECIDL(= $69194.11)> ECSMK(= $65528.38)> ECAGG(= $65267.25), which is con-

sistent with Proposition 2. The total electric power demand and natural gas demand

in the day-ahead market vary with time periods and depend on various factors, e.g.,

energy price, energy conversion efficiencies and storage capacities. For example, in

period 3, although the day-ahead gas price is cheaper than the electricity price, energy

hubs barely buy gas because of the low gas-to-power conversion efficiency; although

the day-ahead electricity price in period 1 is cheaper than those in periods 2-3, the

contracted power in period 1 is zero. That is because the gas price in period 1 is low

and the energy hubs can buy gas in period 1, turning it into electricity and shifting it to

other periods using energy storage units.

In addition, the MILP approximation accuracy can be adjusted by changing the
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Table 3: Results in the benchmark case

IDL SMK AGG

Time (s) 8.78 38.71 10.37

expected cost ($) 69194.11 65528.38 65267.25

∑i pe0
i1 (MWh) 0.00 0.00 0.00

∑i pe0
i2 (MWh) 1.30 9.81 2.71

∑i pe0
i3 (MWh) 72.45 65.98 69.65

∑i pe0
i4 (MWh) 30.94 27.73 30.65

∑i pg0
i1 Sm3h 466.07 466.32 466.32

∑i pg0
i2 Sm3h 298.09 277.86 301.81

∑i pg0
i3 Sm3h 0.00 14.23 0.00

∑i pg0
i4 Sm3h 57.93 65.30 56.94

Table 4: Optimal Values and computational time under different number of segments

Segments 3 4 5 6 7

IDL
Value($) 69244.30 69194.11 69180.48 69186.68 69194.41

Time(s) 11.72 8.78 213.46 525.35 879.59

SMK
Value($) 65562.82 65528.38 65530.41 65596.30 65546.54

Time(s) 30.78 38.71 275.52 629.88 1933.72

AGG
Value($) 65319.86 65267.25 65254.62 65263.41 65271.85

Time(s) 15.03 10.37 249.03 603.22 676.85

number of segments in linearization. Table 4 shows that, the linearized model with 4

segments maintains a satisfactory balance between computational time and accuracy.

5.3. Impact of Sampling and scenarios

To examine the impact of random sampling and the fast-forward scenario reduc-

tion technique, we repeat the benchmark case 5 times. The average costs and relative

standard deviation (RSD) are recorded in Table 5. Proposition 2 holds true in this set

of tests. The RSD is always less than 2%, indicating that the selected 5 scenarios can

mimic the uncertainty with satisfactory accuracy. The average computation time is

listed in Table 5, confirming the efficiency of the proposed MILP solution approach.

Then, we test the impact of the number of scenarios on the market equilibrium.

More scenarios are incorporated in our stochastic models (19)-(21). The costs and
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Table 5: Costs ($) and computational time (s) under different samples

Type IDL SMK AGG

Cost Time Cost Time Cost Time

1 68659.9 7.73 65119.8 47.12 64853.6 12.26

2 70440.9 10.59 66626.8 21.35 66363.4 11.78

3 70227.9 11.52 67055.9 46.61 66842.3 16.52

4 71661.3 9.72 68004.9 48.21 67740.1 14.89

5 69194.1 8.78 65528.4 38.71 65267.3 10.37

Avg. 70036.8 66467.1 66213.3

RSD 1.67 % 1.75 % 1.77 %

Table 6: Costs ($) and computational time (s) under numbers of scenarios

Type IDL SMK AGG

Cost Time Cost Time Cost Time

5 69011.1 11.14 65936.6 43.44 65690.2 17.75

6 68951.1 30.68 65769.8 57.06 65477.4 30.94

7 69589.5 36.98 65858.6 67.27 65591.5 56.23

8 68694.8 53.80 64996.9 113.24 64786.0 84.02

9 69432.5 55.97 65944.3 208.87 65678.2 127.65

computational time are listed in TABLE 6. The expected costs change little when

more scenarios are included, showing that five scenarios are enough in this case. It

takes longer time to solve the problem with the increasing number of scenarios, but the

overall efficiency is satisfactory, validating the scalability of the proposed method.

5.4. Impact of the Number of Energy Hubs

The number of energy hubs is an pivotal factor that influences the performance

of different organization schemes. The extreme case is that there is only one energy

hub, in which the organization schemes are actually the same. We change the num-

ber of hubs from 10 to 60, meanwhile, we maintain the total capacity of energy hubs

unchanged to eliminate their influence on the real-time LMP and distribution system

operation security. The expected costs in the three organization schemes are shown in

Figure 8; The differences between any two schemes are presented in Figure 9.
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Figure 8: Costs under different numbers of energy hub.
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Figure 9: Cost Difference under different numbers of energy hub.

Several interesting phenomena are revealed. First, Proposition 2 always holds re-

gardless of the number N of energy hubs. Moreover, with the growth of N, the cost dif-

ferences between any two organization schemes first increase and then tend to be con-

stant as in Figure 9. This is because although the demand of a single energy hub is ran-

dom, the total demand of the group of energy hubs may exhibit weaker volatility. For

example, suppose when N = 1, the expectation is 3MW, and the variance is 0.04MW2,

then if N = 50, the expectation (variance) of each hubs is 0.06MW (1.6×10−5MW2);
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according to the Central Limit Theorem (or Large Number Law), the expected gross

demand is still 3MW, but the variance of gross demand is only 0.0008MW2. In reality,

this means the more energy hubs involved, and smaller uncertainty the system needs to

cope with. As a result, the cost differences change little when N ≥ 20. The co-operation

among larger number of market participants can bring more cost reduction.

5.5. Impact of Uncertainty

The degree of load uncertainty is another factor that greatly affects the costs of

energy hubs. In this test, load uncertainty still follows the Normal distribution with

expected values given in Subsection 5.1, and other system data are the same with the

benchmark case. We change the standard deviation of the Normal distribution from 0

to 0.4 MW, the expected costs in the three organization schemes are shown in Figure

10.

When the standard deviation is equal to 0, which means load is deterministic, all the

energy hubs can sign exactly contracts in the day-ahead market and there is no need for

real-time energy exchange as the day-ahead prices are always lower than the real-time

energy prices. In such a circumstance, all three organization schemes share the same

cost. With an increasing level of uncertainty, the expected costs grow accordingly.

Nonetheless, when the uncertainty is small (σ < 0.2MW), the expected costs in SMK

and AGG scheme are scarcely influenced thanks to the energy exchange in the real-time

stage. Even in the presence of large uncertainty, the cost growth rates in the SMK and

AGG modes are smaller than that in the IDL mode due to the redistribution of energy

in real time. This means that with a higher level of uncertainty, the cost differences

between IDL and SMK, IDL and AGG rise, and thus the potential of cost reduction

increases.

We can also find that, in the aforementioned cases, the cost differences between

SMK and AGG are tiny, showing that the sharing market mode can acheive relatively

high efficiency. Meanwhile, compared with the AGG mode, sharing market does not

require a central coordinator, so that it is easier for application. Managing the energy

hubs via the sharing market is promising.
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Figure 10: Costs under different standard deviation.
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Figure 11: Costs under different budgets.

5.6. Impact of Budget

We change the budget of each energy hub from $4600 to $5400, and the expected

costs in the three organization schemes are shown in Figure 11; The relative difference

between any two schemes are presented in Figure 12.

When the budget Ī increases, the total cost of IDL scheme is larger than that of

SMK scheme while the cost of AGG is always the least, which is in compliance with

Proposition 2. From Figure 11, we can find that the costs under three schemes all de-
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Figure 12: Cost relative differences under different budgets.

cline with the growth of Ī. This is because when Ī rises, the energy hubs have larger

feasible space in the day-ahead market and their flexibility in real time is also enhanced.

In Figure 12, the relative differences between IDL and AGG, IDL and SMK increase

rapidly while the relative difference between SMK and AGG grows moderately. When

more budgets is available in the day-ahead market, more energies will be bought, en-

riching the deployable resource in the real-time stage. In this regard, SMK and AGG

schemes can cut down more costs. The relative difference between SMK and AGG is

tiny, showing that SMK scheme can achieve a high efficiency similar to AGG.

5.7. Impact of Penalty Factor

we multiply the penalty factor with a ratio varying from 0.5 to 1.5 and other pa-

rameters remain the same as the benchmark case. The expected costs in the three

organization schemes are shown in Figure 13; The relative differences between any

two schemes are presented in Figure 14.

From Figure 13, we can find that Proposition 2 is always satisfied under differ-

ent penalty factors. With the growth of penalty factor, the total costs in three market

schemes all increase. The reason behind is straightforward: when the penalty factor is

increasing, the extra costs for unfulfilled demand rise and so do the total costs. When

the penalty cost accounts for a larger proportion of the total cost, the advantage of
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Figure 13: Costs under different penalty factors.
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Figure 14: Cost relative differences under different penalty factors.

SMK and AGG schemes in cost reduction is more evident. We can see from Figure 14

that the relative differences between IDL and AGG, IDL and SMK increase with the

penalty factor. Meanwhile, the relative difference between SMK and AGG is nearly

constant, implying that under such penalty factors, the flexibility of SMK and AGG is

fully exercised, and further increase in punishment cannot make a great difference.

Remark 3: The pool-market in the distribution system is organized by distribution

system operator (DSO). The sharing market could be organized by a non-profit inter-
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mediary entity. We have concluded that the sharing market scheme can achieve nearly

optimal efficiency without a central coordinator. Both the energy hubs and distribution

system can benefit from our findings. If energy hubs implement the proposed method

in a sharing market, they would have more flexibility in real-time and can reduce op-

eration costs; for the distribution system, a certain fraction of demand uncertainty is

mitigated in sharing market at the demand side, so the uncertainty faced by DSO is

lessened.

6. Conclusions

Technologies of poly-generation are becoming increasingly mature nowadays. To

promote the use of energy hubs, an effective business pattern is an important prerequi-

site. This paper presents a theoretical study on the efficiencies of individual, sharing,

and aggregation schemes for managing a cluster of energy hubs with multiple energy

demands. Under the individual scheme, each energy hub decides its own energy pur-

chase plan without energy exchange with others. Under the sharing scheme, there is

no central aggregator, each energy hub can decide its own energy purchase plan from

the pool-market and also exchange energy with other hubs. Under the aggregation

scheme, an aggregator collects the demand information from all energy hubs, signs

day-ahead contracts on behalf of them and allocates energies to each hub in real-time.

Utility curves of respective schemes are revealed, based on which the efficiencies are

compared. The optimal energy exchange rate in the sharing scheme, which is called

the price in the sharing market, is shown to be the day-ahead gas price to electricity

price ratio. Concrete energy hub decision-marking models under each scheme are re-

formulated as MILP problems based upon duality theory, linearization techniques and

theories of potential game and cooperative game. The optimal solution interprets the

equilibrium in the market. Case studies convey the following information:

1) The aggregation scheme is the most efficient; the sharing market scheme has

near optimal performance compared to the aggregation in various aspects, and requires

no central coordinator, thus could be a promising direction in the future.

2) The performance of the sharing scheme depends on the number of energy hubs
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that take part in the market. The more, the better.

3) A proper designed penalty factor can fully exercise the flexibility of sharing

without adding too much burden on each energy hubs.

To deploy sharing market scheme, an important task is to set up a platform (maybe

electronic) which allows the clients to announce their needs and willingness to share.

Sophisticated smart meters are also indispensable devices in the transition to the shar-

ing economy. The analysis in this paper provides useful insights for designing policies

for residential energy hubs and energy markets in the future. And the mathematical

model in this paper could serve as the fundamental tool for studying a wide spectrum

of market problems raised in multi-resource energy markets. Future research directions

include the market power analysis as well as the market impact of sharing economy.
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