1,004 research outputs found

    Considerations about Continuous Experimentation for Resource-Constrained Platforms in Self-Driving Vehicles

    Full text link
    Autonomous vehicles are slowly becoming reality thanks to the efforts of many academic and industrial organizations. Due to the complexity of the software powering these systems and the dynamicity of the development processes, an architectural solution capable of supporting long-term evolution and maintenance is required. Continuous Experimentation (CE) is an already increasingly adopted practice in software-intensive web-based software systems to steadily improve them over time. CE allows organizations to steer the development efforts by basing decisions on data collected about the system in its field of application. Despite the advantages of Continuous Experimentation, this practice is only rarely adopted in cyber-physical systems and in the automotive domain. Reasons for this include the strict safety constraints and the computational capabilities needed from the target systems. In this work, a concept for using Continuous Experimentation for resource-constrained platforms like a self-driving vehicle is outlined.Comment: Copyright 2017 Springer. Paper submitted and accepted at the 11th European Conference on Software Architecture. 8 pages, 1 figure. Published in Lecture Notes in Computer Science vol 10475 (Springer), https://link.springer.com/chapter/10.1007/978-3-319-65831-5_

    Towards Using Probabilistic Models to Design Software Systems with Inherent Uncertainty

    Full text link
    The adoption of machine learning (ML) components in software systems raises new engineering challenges. In particular, the inherent uncertainty regarding functional suitability and the operation environment makes architecture evaluation and trade-off analysis difficult. We propose a software architecture evaluation method called Modeling Uncertainty During Design (MUDD) that explicitly models the uncertainty associated to ML components and evaluates how it propagates through a system. The method supports reasoning over how architectural patterns can mitigate uncertainty and enables comparison of different architectures focused on the interplay between ML and classical software components. While our approach is domain-agnostic and suitable for any system where uncertainty plays a central role, we demonstrate our approach using as example a perception system for autonomous driving.Comment: Published at the European Conference on Software Architecture (ECSA

    Trust Management in the Internet of Everything

    Full text link
    Digitalization is leading us towards a future where people, processes, data and things are not only interacting with each other, but might start forming societies on their own. In these dynamic systems enhanced by artificial intelligence, trust management on the level of human-to-machine as well as machine-to-machine interaction becomes an essential ingredient in supervising safe and secure progress of our digitalized future. This tutorial paper discusses the essential elements of trust management in complex digital ecosystems, guiding the reader through the definitions and core concepts of trust management. Furthermore, it explains how trust-building can be leveraged to support people in safe interaction with other (possibly autonomous) digital agents, as trust governance may allow the ecosystem to trigger an auto-immune response towards untrusted digital agents, protecting human safety.Comment: Proceedings of the 16th European Conference on Software Architecture-Companion Volum

    HITA: An Architecture for System-level Testing of Healthcare IoT Applications

    Full text link
    System-level testing of healthcare Internet of Things (IoT_ applications requires creating a test infrastructure with integrated medical devices and third-party applications. A significant challenge in creating such test infrastructure is that healthcare IoT applications evolve continuously with the addition of new medical devices from different vendors and new services offered by different third-party organizations following different architectures. Moreover, creating test infrastructure with a large number of different types of medical devices is time-consuming, financially expensive, and practically infeasible. Oslo City healthcare department faced these challenges while working with various healthcare IoT applications. This paper presents a real-world software architecture (HITA) to create a test infrastructure for healthcare IoT applications. We discuss the quality requirements achieved by HITA and the status of work products developing as a part of HITA. We also present our experiences and lessons learned from the architectural work related to HITA.Comment: To appear in the Proceedings of the 17th European Conference on Software Architecture (ECSA 2023

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    Flexible coordination techniques for dynamic cloud service collaboration

    Get PDF
    The provision of individual, but also composed services is central in cloud service provisioning. We describe a framework for the coordination of cloud services, based on a tuple‐space architecture which uses an ontology to describe the services. Current techniques for service collaboration offer limited scope for flexibility. They are based on statically describing and compositing services. With the open nature of the web and cloud services, the need for a more flexible, dynamic approach to service coordination becomes evident. In order to support open communities of service providers, there should be the option for these providers to offer and withdraw their services to/from the community. For this to be realised, there needs to be a degree of self‐organisation. Our techniques for coordination and service matching aim to achieve this through matching goal‐oriented service requests with providers that advertise their offerings dynamically. Scalability of the solution is a particular concern that will be evaluated in detail

    Continuous Experimentation for Automotive Software on the Example of a Heavy Commercial Vehicle in Daily Operation

    Full text link
    As the automotive industry focuses its attention more and more towards the software functionality of vehicles, techniques to deliver new software value at a fast pace are needed. Continuous Experimentation, a practice coming from the web-based systems world, is one of such techniques. It enables researchers and developers to use real-world data to verify their hypothesis and steer the software evolution based on performances and user preferences, reducing the reliance on simulations and guesswork. Several challenges prevent the verbatim adoption of this practice on automotive cyber-physical systems, e.g., safety concerns and limitations from computational resources; nonetheless, the automotive field is starting to take interest in this technique. This work aims at demonstrating and evaluating a prototypical Continuous Experimentation infrastructure, implemented on a distributed computational system housed in a commercial truck tractor that is used in daily operations by a logistic company on public roads. The system comprises computing units and sensors, and software deployment and data retrieval are only possible remotely via a mobile data connection due to the commercial interests of the logistics company. This study shows that the proposed experimentation process resulted in the development team being able to base software development choices on the real-world data collected during the experimental procedure. Additionally, a set of previously identified design criteria to enable Continuous Experimentation on automotive systems was discussed and their validity confirmed in the light of the presented work.Comment: Paper accepted to the 14th European Conference on Software Architecture (ECSA 2020). 16 pages, 5 figure
    • 

    corecore