provided by DCU Online Research Access Service

Flexible Coordination Techniques for Dynamic
Cloud Service Collaboration’

Gary Creaner and Claus Pahl
School of Computing, Dublin City University, Dublin, Ireland

ABSTRACT

The provision of individual, but also composed services is central in cloud service provisioning. We
describe a framework for the coordination of cloud services, based on a tuple-space architecture
which uses an ontology to describe the services. Current techniques for service collaboration offer
limited scope for flexibility. They are based on statically describing and compositing services. With
the open nature of the web and cloud services, the need for a more flexible, dynamic approach to
service coordination becomes evident. In order to support open communities of service providers,
there should be the option for these providers to offer and withdraw their services to/from the
community. For this to be realised, there needs to be a degree of self-organisation. Our techniques
for coordination and service matching aim to achieve this through matching goal-oriented service
requests with providers that advertise their offerings dynamically. Scalability of the solution is a
particular concern that will be evaluated in detail.

INTRODUCTION

Service-oriented architecture (SOA) is an architectural style that allows for business processes to be
implemented by integrating various services. These services can be thought of as software
components. Cloud computing builds up on service architecture as the platform, providing cross-
organisational, externally hosted services.

Most current SOA implementations use web services as the technology platform based on message
passing, a service registry and static service description respectively. This approach is rigid in that it
requires services publish the details of their functionality and how to interact with them to a
registry. This information must then be used by the requestor to bind to and invoke the service in
the way in which the provider has published, usually using WS-BPEL. This is a property that does not
meet the flexibility requirements of cloud computing, in particular if flexible service brokering and
mediation is required where offered and requested cloud services are matched dynamically through
a cloud brokering service. Intermediaries such as brokers that bundle and customise offerings in

L This chapter appears in “Adaptive Web Services for Modular and Reusable Software
Development: Tactics and Solution” edited by J. Cubo and G. Ortiz, Copyright 2012, iG]
Global, www.igi-global.com. Posted by permission of the publisher.

https://core.ac.uk/display/11310968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

response to dynamic needs will become more important in the cloud domain in the near future.
Currently, a cloud service user or broker would have to completely define what services are to be
used, the order in which they would be used and how the input and output is passed from one
service to another in order to implement a full business process.

Current approaches to service collaboration (Pahl, 2002) are web service orchestrations and
choreographies like WS-BPEL (orchestration) and WS-CDL (choreography). Both require the services
used to be specified prior to the execution of the process. This kind of static process specification
does not lend itself to a dynamic, flexible approach in which provided cloud services could be used
as part of a process without prior knowledge of the service.

In order to overcome the limitations described, a framework is needed allowing services to be
chosen dynamically at run-time. Our framework introduces a coordination space for providers to
collaborate their activities in order to fulfil requests. The coordination space consists of a tuple space
where requestors can deposit their requests and providers can take on requests according to their
capabilities (Doberkat et al., 1992; Li & Parashar, 2005; Pahl et al., 2011).

Ontologies can be used to add semantic descriptions to web services (Pahl, 2005; Pahl, 2007). There
are ontologies available which offer ways of describing services in terms of their functionality. These
will be discussed and the way in which they could be used in the context of service matching will also
be explored. Matching requested and provided web services is possible based on these ontological
descriptions (Klusch et al., 2006; Sirin et al., 2003; Sycara et al., 2003; Nixon et al., 2007). However,
these have not been integrated in a tuple space as their coordination platform. We integrate goal-
based service matching into tuple space coordination in order to add flexibility and allow in-exact
matches.

The proposed framework would change the service coordination model from a pull model to a push
model, whereby requests are published to the coordination space and providers search for requests
that they would be able to fulfil. This means that requestors would be able to focus more on the
definition of their request rather than on the services that are provided to them.

The next section will introduce core technologies used and discuss related work. A use-case scenario
will then be introduced. There, we will also discuss how a tuple space architecture could be used to
implement a coordination space for web services. Afterwards, we will give some detail on how the
matching of providers and requestors is performed. We discuss on the scalability tests which were
performed on the architecture in order to evaluate such an approach. An evaluation of the work
discussing possible limitations and ways of overcoming these limitations is also provided.

BACKGROUND

Tuple spaces are widely used to support coordination activities (Johannson & Fox, 2004; Li &
Parashar, 2005; Nixon et al., 2007). We present their principles, an overview of the chosen platform,
and some background regarding a semantic extension of tuple matching. We also review literature
on service composition and coordination.

Coordination and Tuple Spaces

The tuple space architecture was introduced in (Gelernter, 1985) as a means of communication in
distributed programming. Tuples are constructs which consist of a collection of actuals. Templates,
used for matching, consist of a collection of formals or actuals, or a mixture of both. out() and in()
are the two key operations proposed for Linda. The out() operation takes a tuple as input and adds
the tuple to the tuple space. The in() operation takes a template as input and searches the tuple
space for a tuple which matches the provided template, returns it to the process that called it and
removes it from the tuple space blocking access to it by another process. There is also a read()
operation which will return a tuple matching the template, but will not remove it from the tuple
space. This allows more than one process to access the tuple. With both the in() and read()
operations, the calling processes will block until a matching tuple is found. If no matching tuples are
in the space when the calls are made, the processes will block until a matching tuple becomes
available.

A prototype of our service request coordination architecture is based on the LighTS (Balzarotti et al.,
2007) tuple space, which was designed as an open-source, lightweight, customisable tuple space
framework. It provides support for the Linda operations described above and can also be easily
extended or modified to change how the tuple space itself is implemented or how the matching is
performed. We have added ontology-based matching and process-level coordination techniques.

The Semantic Web

The Semantic Web aims to give meaning to the web resources and describe the information
provided in a machine interpretable way. The Resource Description Framework (RDF) is an XML
based language used to create statements. These statements consist of a subject, predicate and
object, or resource, property, and property value. The Web Ontology Language (OWL) is based on
RDF. It provides constructs that can be used to aid reasoning about the ontologies. An application of
OWL is OWL-S (Web Ontology Working Group, 2006), which is an OWL ontology to describe services
in terms of functional and non-functional attributes. The non-functional description can include
information such as the service name, and contact information of the provider. The functional
description is used to describe the web service in terms of its inputs, outputs, preconditions and
effects. OWL-S based matching of tuples containing service descriptions is our aim.

A number of techniques are used in our implementation. SWRL is a rule language for ontologies. The
body and head of a rule consist of so-called atoms. Atoms can state that something is a member of a
class, has a value for a certain property, is the same as or is different from something else. These
atoms can be combined into atomlists. The atomlists can be used in the preconditions and effects
part of the OWL-S service descriptions without the need for implication rules to be defined. SPARQL
is a query language which can be used to implement queries on RDF graphs. It can be easily used to
follow links between the various resources and provides SELECT, ASK, CONSTRUCT, and DESCRIBE
queries. It also allows for WHERE clauses to be added to the queries. Jena is an open-source Java

framework for programming with OWL and SWRL, which provides a programmatic interface to
access the various technologies listed above. We combined LighTS and Jena in our implementation.

Service Composition and Coordination

The work on semantic service descriptions has continued to support the discovery and composition
of services using ontologies (Klusch et al., 2006; Sirin et al., 2002; Sycara et al., 2003), allowing
matching between requests and provided services taking a variety of concerns into account.
Recently, dynamic composition, particularly as a result of failure occurring at runtime, has been
addressed (Cavallaro & Di Nitto, 2008; Moser et al., 2008; Wang et al., 2009). Failure handling is not
our primary concern, but enabling a marketplace where negotiations can be automated through
dynamic ontology-based coordination. Kiingas and Popova (2011) describe a step in this direction,
where objects are the central artefacts that are processed by processes dynamically. We add an
ontology-based technique here.

A TUPLE SPACE ARCHITECTURE FOR SERVICE COORDINATION
Use Case

As a use case to illustrate our work, we have chosen a case where a company would like to store
data on their products in the cloud, but would also like this data validated before it is stored. In
order to formulate this into a request, the company would need to specify in their request that they
would need both actions to be carried out.

There are many cloud based storage solutions available currently - Amazon's simple storage server is
an example. This is quickly becoming an attractive solution to companies for storage and sharing of
their data. Some providers offer cloud-based data validation for companies wishing their data to be
compliant with the relevant standards. If a company is looking to share data on their products with
other companies then it must be ensured that the data is compliant with the industry standards, e.g.
to ensure their data conforms to standards like GS1.

In this situation, a broker might take on the initial request and then involve other cloud providers to
validate and then store the data.

Tuple Spaces for Service Coordination

In using a tuple space for service coordination, we suggested in (Pahl et al., 2011) that the tuples
could consist of three fields:
e an object field, which would contain the input of the request, such as the data in our use
case.

e agoal field which would contain a description of what should be achieved by processing this
request, such as validated(data) -> stored(data), which means that only successfully
validated data should be stored.

e also an optional process field is included which would guide the choosing of services to
complete the request, e.g. a conditional statement if validate(data) then store(data) that
sequences validation and storage.

The tuple space is the central coordination component (Li & Parashar, 2005). Requestors deposit
goal-based requests here (Andersson et al., 2005). Providers see if they can meet these requests. In
doing so, they themselves can deposit further new requests into the tuple space. This allows the
original goal to be broken into sub-goals and these to be deposited into the tuple space to be met by
other services, forming a goal resolution process. In terms of the use case, this would involve a
request tuple being created with the object field containing the data to be processed or perhaps a
URI link to the data. The goal field would consist of an expression that data needs to be both
validated and stored.

Service Coordination Architecture and Process

A service that provides any of the requested operations could chose to take on the processing of the
request. It might then see if it can find another service that is able to fulfil parts of the task that it
cannot fulfil. The service would then remove the tuple from the tuple space, blocking any other
service from accessing it. This is a commitment to process the request and it should result in a
completed tuple being entered in the tuple space later. Note, that in a negotiation process between
cloud service users and providers, the handshake needs to be complete, i.e. the requestor would
need to approve a provider. This would only require a simple coordination protocol (without
significantly affecting the described tuple space functions) to be added and shall be neglected here.

—_———)
Requestor [object, goal, process] X‘
7

Coordination Space | Service
3a Provider
Service sb]
Provider —*| [object, goal, process] b o -
| S 6

" 4b.
Sem.' ¢ —————— | [object, goal, process]
Provider ‘T_

Figure 1. Coordination and Knowledge Space Architecture. (Adapted from C. Pahl, V. Gacitua-Decar,
K. Yapa Bandara, M. Wang. Ontology-based Composition and Matching for Dynamic Service
Coordination. Workshop on Ontology, Models, Conceptualization and Epistemology in Social,
Artificial and Natural Systems Workshop ONTOSE’2011. 2011).

Overall, the services involved in completing a request do not need to be specified prior to the
request being formed. This method is a much more flexible approach than current approaches. As
the services are picked dynamically at run time, this allows providers to join and leave the cloud

market community as they wish. With other approaches like WS-BPEL, a service may be part of a
BPEL process and the whole process could then fail if the service is no longer available. With the
proposed method, a different service that provides similar functionality could take on that part of
the process and the request could still be completed. The diagram in Figure 1 explains this in more
detail. The numbered arrows in the diagram show the sequence of events.

e The original request is entered into the tuple space (1), relating to the use case. This would
be the request for the data to be validated and stored.

e The tuple is then taken by a broker service (2) which can coordinate the full request. This
would require a validation service (3a) and, if necessary, storage (3b) - both deposited as
two more detailed requests with storage and validation of the data as the respective goals.

e The validation service would retrieve the data validation tuple from the tuple space (4a). The
storage service (5a) would then store this tuple from the tuple space and complete the
request.

e Both would then put completed tuples back into the tuple space (4b), (5b).

e These would then be returned to the broker for the original requestor (6) to retrieve its
completed request from the tuple space (7), (8).

Implementation based on LighTS

LighTS supports the Linda operations. The data structure used for the tuple space is implemented
using Java vectors. The tuples in LighTS are also implemented as vectors and consist of fields. Fields
can be of any type. Any amount of fields can be added to a tuple. A valued field has a specific value
and a typed field just has a type. For a tuple to be added to the tuple space, it must consist of only
valued fields. Templates can consist of both valued and typed fields.

The out() method in this implementation takes a tuple as input, adds this tuple to the vector by
calling its addElement() method. It then notifies any processes that are blocked to inform them that
a new tuple has become available.

The in() method takes a template as its input. It compares the template to each element in the tuple
space until it either finds a match or has tried every tuple and not found a match. If no match is
found before the end of the tuple space operation, the process will be suspended in the while loop
by calling a wait() inside a section of code that is synchronised on the tuple space. If a match is
found, it will be assigned to the result tuple and this will cause the process to exit.

The matching in LighTS between a tuple and a template is performed by first checking if the tuple
and template contain the same number of fields. If this is true, then the fields themselves are
matched. For fields to match, the valued fields in the template must match the values in the tuple
and the types of the typed fields in the templates must be of the same as the types of their
corresponding tuple fields. The in() method removes the matching tuple from the tuple space.

The LighTS platform implements a strict form of matching that does not take flexibility regarding
parameter typing and effect specifications for services into account. We add ontology-based tuple
matching - introduced below.

Ontology-based Matching of Providers to Requestors

The matching of providers and requestors in the cloud service setting requires matching the
declared goals of the providers to requestors. The simple matching semantics offered by the LighTS
platform is not sufficient. The LighTS platform offers exact matching on the values of fields or
matching on the types of the fields. For the architecture described in the previous section, there
would need to be a more flexible partial matching provided. This partial matching is needed to allow
a provider to determine if they can take on the request even if they cannot fully complete it and
decompose the goal to involve other providers or if they can over-satisfy the requirements (Pahl &
Zhu, 2006). More functionality must be added to the framework to enable providers to work out
which part of the request they cannot fulfil. This will enable them to formulate a new request with a
sub-goal which can be completed by another provider for the original request to be fully completed.

We used the OWL-S ontology to describe the services offered and their goals. OWL-S was also used
to describe the request. OWL-S is based on the RDF format. The RDF format is a means of
representing the resources in ontological format and the links between all the resources. It can be
thought of as a graph or a collection of triples. The triples are composed of a subject, a predicate and
an object. The subjects and objects are nodes in the graph and the predicate is the link between the
nodes. For the given case study example,

validate(data) = GS1-compliant

or [data,validate,GS1-compliant] in triple notation, is a goal expressing the aim to have the subject
data being validated (predicate) as GS1-compliant (object — the goal here).

OWL-S service descriptions can consist of non-functional properties, such as the name and contact
information, but also describe the service in functional terms. The functional description is based on
the inputs, outputs, preconditions and effects (IOPEs). It is this functional description that we use
here to match the requestors and providers. SWRL expressions are used to define the effects of the
services and the requested goal:

validated(data) -> stored(data)

In the implemented platform, the SWRL expressions in the effect descriptions are matched with
each other. They are based on atomlists, which can be divided into atoms. Atoms can be thought of
as representing ontology properties. The atomlists in the effect part of the OWL-S files can be
thought of as describing the new state that the object will transition to when the service has
completed.

The Jena platform offers a programmatic interface for interacting with RDF models using the Java
interface, used for accessing and manipulating the ontology information (including SPARQL queries).
This was used to extract the atomlists from the service and query descriptions. When these are
extracted by the tuple space to see if they match, we attempt to match part of the query with the
provider. If part of it matches, then the part that does not match is added - like validate(data) or
store(data) - to a new tuple and this is added to the tuple space for another provider to take on this

sub-goal. If this sub-goal can be completed by another service, then the original goal can be
completed by the original provider service. Jena OWL-processing is used to determine which part of
the goals match and also to build the goals from parts that do not match.

The completed tuples are removed from the tuple space by using a field to indicate whether it is
completed or not and once the request is placed in the tuple space, the process that deposited it
should try to match it again with the completed field set to true.

Scalability of the Tuple Space Architecture

One of the main concerns with such a coordination architecture is its scalability. How the platform
will perform with varying numbers of providers and requestors, with differently sized tuples, and
matching different data types needs to be looked at to demonstrate the applicability beyond toy
examples.

Ideally, the tests would have to be carried out by providers making an in() call and waiting for a
request to enter the tuple space. However, as in() calls are blocking, it would require the creation of
a separate thread for each provider. As the aim of the scalability tests is to assess the time needed
for the matching of requests to providers, the processing overhead that managing these threads
would incur, would greatly skew the results obtained for large provider numbers. To overcome this,
requests were first placed in the tuple space and then in() calls were made. Although this is opposite
to the order which would be expected to occur, requests would not be removed from the tuple
space until matched with a provider. It does not affect the results as the providers wait for a tuple to
be introduced to the tuple space when no match is found and are woken when a new tuple becomes
available. Access to the tuple space is synchronous, so the providers would be allowed access to the
tuple space in an order similar to the way in which the requests are searched in order using this
method.

The steps involved in carrying out the tests were:

1. Create an array of initialised tuples and rearrange their order within the array so that they

are not searched for in the same order they were entered.

2. Insert the tuples into the tuple space using the out() operation.

3. Create an array of templates to match tuples and again rearrange the order.

4. Remove the matching tuples from the tuple space using the in() operation.
The time taken to perform the in() operations was measured to evaluate the scalability of using a
tuple space architecture for service coordination.

The tuples consisted of 3 fields. The first was used for value-based matching and tests were run with
this as an integer, a short, a long, a float, a double and a string. The second field was a byte array.
This was only matched on type, not value and its size was varied between 100 bytes, 1000, bytes,
and 10000 bytes. The third was a string that was value matched and was the same for each tuple.
Tests were run with 100, 1000 and 10000 requesters and providers, then doubling and tripling their
respective numbers. Each test was run 10 times. Note, that we have displayed results as linear
approximations for simplicity in Figure 2, although the actual functions might be non-linear.

As expected, the more tuples that were being matched, the longer the matching process took. The
results in the graphs are taken from using integers as the matching type and the same number of
providers as requestors. A typical example of such a graph from the data collected can be seen in
Figure 2 (top left). The legend on the side indicates the size of tuples used for matching in the
graphs.

Differenca in Number of Tuples

Diference in Numbsr of Providers

Matching Different Types

ha Differance in Size o Tuplas

Figure 2. Performance Evaluation Results (different number of requests; different number of
providers per request; differently sized tuples; matching different data types).

The difference between the number of providers per request can be seen in Figure 2 (top right). The
more providers are available per request, the longer the matching process takes. While there are
more matching tuples per request, there are even more non-matching tuples per request and,
therefore, more incorrect matches to check before finding a correct match. For the tests shown in
the graph, the matching was done using short as the type, 10000 requests were matched. The
legend on the side indicates the size of the byte array in the tuple.

Figure 2 (bottom left) shows the results of varying the size of the byte array in the tuple. The results
are for a double valued field for matching and 10000 match requests. The numbers in the legend
indicate the number of providers per request. The trend observed in this graph is unexpected, but
can be explained through platform functions like garbage collection affecting the smaller inputs
unduly.

The graph in Figure 2 (bottom right) illustrates the difference in using different types for matching.
They all produce similar results except for strings, because the string used is much longer than the
other types, but resembles more the ontology-based triple elements that we aim to simulate here.
LighTS uses the default matches() methods of the data type to determine whether they match. For

this graph, the time was taken from matching 10000 tuples with 3 providers per request and a byte
array of 10000 bytes.

Overall, this demonstrates that the solution is scalable. In some situations, the performance is not
linear anymore, but even the practically very high numbers still demonstrate acceptable
performance.

Discussion of Ontology-based Matching

To evaluate the platform for the concrete use case, we created two OWL-S description files for two
services - one which would offer the service of validation of data and one which would offer storage
of the data. To do this, we created a data ontology using OWL which included properties locatedAt
and isValidated. The locatedAt property was a link between the resources Data and DatalLocation
and the isValidated property was a link between the Data resource and a Boolean value to represent
whether the data has been validated or not. Ontologies allow us to reason about described
properties. This means that conclusions can be drawn about a resource’s properties from other
properties of the service resource. We created the properties that were needed for the services and
requests and used the same properties to represent the same information for each.

For our implementation, the focus for the matching was put on the functional properties of the
services. As explained previously, the effect of the services was expressed using SWRL expressions
which consist of atomlists. The atomlists offer first and rest properties to describe what happens. For
our implementation, we limited the services to only contain a first property. This means that each
service must only offer one function. The request can have a first and a rest property. For the use
case, the validation service’s effect states that it changes the isValidated property changes from false
to true. The storage service’s effect states that it changes the locatedAt property changes from the
input data’s location to the location that will be returned. The request for validation and storage
consists of an effect that specifies its first property should change isValidated from false to true and
the rest indicates that isLocated should change from the input location to the output location.

When searching the tuple space for a provider to match the specified request, it first checks if they
fully match. This means that the first property of the provider matches that of the request and that
the request’s rest property is empty. If this is not the case, then it checks if it is a partial match. This
is true when the first properties match, but there is also a rest property in the request. If this is the
case, a new goal model will be returned with the first property set to what the rest property of the
original request was. This is then entered into the tuple space as a request to be met by a different
provider. The provider then acts as a requestor and waits for the request to be returned to the tuple
space with an indication of completion. If this is the case, the original provider can then remove the
request tuple from the tuple space, blocking further access to it. It will then proceed to complete the
request in the same manner in which it decided if it could meet the request.

FUTURE RESEARCH DIRECTIONS

These experimental executions realise a process that demonstrates the enhanced matching
capabilities. However, we now discuss some implementation aspects, which demonstrate key

difficulties in implementing a full-scale solution. The prototype currently does not allow for the case
where a provider may provide a more complicated service that cannot be described by only a first
property in its atomlist. However, the platform could be easily extended through more manipulation
of the goal model before deciding how much of a match it is. Another current limitation of the
model is that only the effect is considered when matching providers to requestors. It is assumed that
for the input to all services needed, the process will be the same for the use case. However, some
processes would need the output of one service to be the input of the next - validation is a
requirement for storage. The OWL-S service descriptions contain resources that describe the inputs
and outputs of their service and their types. This would have to be incorporated into a final model
and some more work done in creating the subgoal request tuples and some more manipulation of
the service descriptions in order to determine if the requests can be met. It would have to be
ensured that one service can produce as its output the input needed by the next service to meet the

sequencing constraint.

In terms of a cloud service brokerage or mediation solution, we have demonstrated the scalability of
a flexible coordination model and the feasibility of ontology-based request matching. There are still
areas for further investigation. Greater control over what providers are used to achieve the goal
could be incorporated in the form of a simple negotiation protocol - the process element of the
request triples can serve this purpose here. As a basic solution, a ranking system for order of
preference can be utilised. In the framework discussed in this chapter, the first matching service is
the one to obtain the request. However, a negotiation process could be added whereby the
matching services compete to see which one should be given the request. This could include the
requestor specified control described above, but other properties could also be taken into
consideration. If requestors are being charged for using services, the price of those services could be
taken into account. Security characteristics of the web services are other non-functional properties
that could influence this.

CONCLUSION

Current methods of service collaboration show limitations. We discussed limitations regarding the
flexibility for the dynamic collaboration of the services involved in the process and introduced a
framework for service collaboration that is suitable for cloud computing settings. A Linda tuple
space model was implemented as a coordination space that service providers could use to advertise
their capabilities. We have demonstrated the scalability of the solution through extensive tests. We
also looked at the feasibility of an ontology-enhanced matching technique. We have focussed here
on stateless coordination, as our aim was to explore advanced matching techniques. The original
Linda coordination model was extended to include an ontology-based goal matching aspect, as the
matching semantics used by the original model would not be sufficient. It has been shown that this
is an effective way to offer flexible, dynamic collaboration of services where the providers have the
freedom to advertise and withdraw their services when needed. Its ability to deal with a large
number of providers and requesters working concurrently with a large number of differently typed
and sized requests demonstrates the suitability of the approach for large multi-user service
coordination environments such as cloud computing.

KEY TERMS AND DEFINITIONS

e Cloud service: a cloud service is a software service (typically a Web service) offered as part of a
cloud platform (at SaaS, PaasS, or laaS layer).

e Service coordination: refers to protocols, languages and tools that support the coordinated
interaction between service users and service providers.

e Tuple space: the tuple space architecture is a means of communication in distributed
programming that allows a flexible coordination of participants.

e Coordination space: an infrastructure that acts as a mediation tool between service requestors
and service provider through the provision of standard operations to deposit and retrieve
coordination data.

e Semantic service description: usually ontology-based annotation of services to cover functional
and non-functional properties for automated processing.

e Dynamic service matching: refers to the association of a provided service to a service request at
runtime that satisfies the requirements of the requestor.

o Cloud broker: a mediator that matches service provider and requestor according to their needs
and supports the negotiation of an agreement.

REFERENCES

Andersson, B., Bider, I., Johannesson, P. and Perjons, E. (2005). Towards a formal definition of goal-
oriented business process patterns. BPM Journal, 11, 650-662.

Balzarotti, D., Costa, P. and Picco, G. P. (2007). The lights tuple space framework and its
customization for context-aware applications. Web Intelligence and Agent Systems, 5(2), 215-231.

Barrett, R., Patcas, L., Murphy, J. and Pahl, C. (2006). Model driven distribution pattern design for
dynamic web service compositions. In: International Conference on Web Engineering ICWE’06, 10-11
Jul 2006, Palo Alto, US.

Cavallaro, L. and Di Nitto, E. (2008). An approach to adapt service requests to actual service
interfaces. In Proceedings of SEAMS Conference.

Doberkat, E.-E., Franke, W., Gutenbeil, U., Hasselbring, W., Lammers, U. and Pahl, C. (1992). PROSET
A Language for Prototyping with Sets. In Proceedings Third International Workshop on Rapid System
Prototyping (pp. 235-248).

Gelernter, D. (1985). Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1), 80-112.

Johanson, B. and Fox, A. (2004). Extending Tuplespaces for Coordination in Interactive Workspaces.
Journal of Systems and Software, 69(3), 243-266.

Klusch, M., Fries, B. and Sycara, K. (2006). Automated semantic web service discovery with owls-mx.
In Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems AAMAS ‘06, (pp. 915-922). ACM.

Kingas, P. and Popova, V. (2011). Artifact-Centric Service Interoperation. In Estonian Information
Society Yearbook 2010. Chapter 3.2 of Estonian Department of State Information Systems.

Li, Z. and Parashar, M. (2005). Comet: A Scalable Coordination Space for Decentralized Distributed
Environments. In Proceedings of the Second international Workshop on Hot Topics in Peer-To-Peer
Systems HOT-P2P, (pp. 104-112). IEEE.

Moser, O., Rosenberg, F., and Dustdar, S. (2008). Non-Intrusive Monitoring and Adaptation for WS-
BPEL. In Proceedings of the 17th International World Wide Web Conference (Web Engineering Track)
Www'os.

Nixon, L., Antonechko, O. and Tolksdorf, R. (2007). Towards Semantic tuplespace computing: the
Semantic web spaces system. In Proceedings of the 2007 ACM Symposium on Applied Computing
SAC'07, (pp. 360-365). ACM.

Pahl, C. (2002). A Formal Composition and Interaction Model for a Web Component Platform. In
Proceedings ICALP'2002 Workshop on Formal Methods and Component Interaction. Electronic Notes
on Computer Science ENTCS, 66(4).

Pahl, C. (2005). Layered Ontological Modelling for Web Service-oriented Model-Driven Architecture.
In Proceedings European Conference on Model-Driven Architecture — Foundations and Applications
ECMDA'2005 (pp. 88-102). Springer-Verlag, LNCS 3748.

Pahl, C. (2007). Semantic Model-Driven Architecting of Service-based Software Systems. Information
and Software Technology, 49(8), 838-850.

Pahl, C., Giesecke, S. and Hasselbring, W. (2007). An ontology-based approach for modelling
architectural styles. In: The European Conference on Software Architecture ECSA’2007. 24-26 Sept
2007, Madrid, Spain.

Pahl, C., Gacitua-Decar, V., Wang, M.X. and Bandara, K.Y. (2011). A coordination space architecture
for service collaboration and cooperation. In Proceedings CAiSE Workshops (pp. 366—377).

Pahl, C. and Zhu, Y. (2006). A Semantical Framework for the Orchestration and Choreography of Web
Services. In Proceedings of the International Workshop on Web Languages and Formal Methods
(WLFM 2005). Electronic Notes in Theoretical Computer Science 151(2), 3-18.

Sirin, E, Hendler, J. and Parsia, B. (2003). Semi-automatic composition of web services using semantic
descriptions. In Proceedings Web Services: Modeling, Architecture and Infrastructure Workshop at
ICEIS 2003 (pp. 17-24).

Sycara, K., Paolucci, M., Ankolekar, A. and Srinivasan, N. (2003). Automated discovery, interaction
and composition of semantic web services. Journal of Web Semantics, 1, 27-46

Wang, M., Yapa Bandara, K. and Pahl, C (2009). Integrated Constraint Violation Handling for Dynamic
Service Composition. In Proceedings IEEE International Conference on Services Computing SCC 2009.
(pp. 168-175).

Web Ontology Working Group. (2004). OWL-S - Semantic Markup for Web Services. W3C. Retrieved
26 January 2012 from http://www.w3.org/Submission/OWL-S/.

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004). Web Services - Concepts, Architectures and
Applications. Springer-Verlag, Berlin.

Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D., McDermott, D., Mcllraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K. (2002). DAML-S: Web service description for the
semantic web. In: Horrocks, ., Hendler, J. (eds.). Proceedings ISWC 2002 (pp. 279—-348). Springer-
Verlag, LNCS vol. 2342, Heidelberg.

Arroyo, A. and Sicilia, M.-A. (2008). SOPHIE: Use case and evaluation. Information and Software
Technology. 50(12), 1266-1280.

Baader, F., McGuiness, D., Nardi, D., and Schneider, P.P. (2003) The Description Logic Handbook.
Cambridge University Press, Cambridge.

Brogi, A. and Popescu, R. (2006) Automated Generation of BPEL Adapters. In Proceedings ICSOC’06
(pp. 27-39). Springer-Verlag, LNCS 4294.

Buyya, R., Broberg, J. and Goscinski, A. (Eds.) (2011). Cloud Computing - Principles and Paradigms.
Wiley, Hoboken, NJ, US.

DAML-S Coalition (2002) DAML-S: Web Services Description for the Semantic Web. In Proceedings
First International Semantic Web Conference ISWC 2002 (pp. 279-291). Springer-Verlag, LNCS 2342.

Dingwall-Smith, A., Finkelstein, A. (2007). Checking Complex Compositions of Web Services Against
Policy Constraints. In Proceedings 5th International Workshop on Modelling, Simulation, Verification
and Validation of Enterprise Information Systems.

Doberkat, E.-E., Hasselbring, W. and Pahl, C. (1996). Investigating Strategies for Cooperative Planning
of Independent Agents through Prototype Evaluation. In Proceedings First International Conference

on Coordination Models and Languages (pp. 416-419). Springer-Verlag, LNCS 1061.

Doberkat, E.-E., Franke, W., Gutenbeil, U., Hasselbring, W., Lammers, U. and Pahl, C. (1992). PROSET
- Prototyping with Sets, Language Definition. Software-Engineering Memo 15, Universitat GH Essen.

Erl, T. (2005). Service-oriented Architecture — Concepts, Technology and Design. Prentice Hall.
Gacitua-Decar, V. and Pahl, C. (2009). Automatic Business Process Pattern Matching for Enterprise
Services Design. In Proceedings 4th International Workshop on Service- and Process-Oriented
Software Engineering (SOPOSE-09). |EEE Press.

Hayes, B. (2008). Cloud computing. Communications of the ACM, 51(7), 9-11.

Lara, R, Stollberg, M., Polleres, A., Feier, C., Bussler, C. and Fensel, D. (2005) Web Service Modeling
Ontology. Applied Ontology, 1(1), 77-106.

NIST. Process Specification Language (PSL) Ontology - Current Theories and Extensions. National
Institute of Standards and Technology, USA. Retrieved 26 January 2012 from
http://www.mel.nist.gov/psl/ontology.html.

Pahl, C. (2001). A Pi-Calculus based Framework for the Composition and Replacement of
Components. In Proceedings Conference on Object-Oriented Programming, Systems, Languages, and
Applications OOPSLA'2001 - Workshop on Specification and Verification of Component-Based
Systems. ACM Press.

Pahl, C. (2005). A Conceptual Architecture for Semantic Web Services Development and
Deployment. International Journal of Web and Grid Services, 1(3/4), 287-304.

Pahl, C. (2007). An Ontology for Software Component Description and Matching. International
Journal on Software Tools for Technology Transfer 9(2): 169-178.

Pahl, C. (2010). Dynamic Adaptive Service Architecture - Towards Coordinated Service Composition.
In European Conference on Software Architecture ECSA'2010. Springer-Verlag, LNCS, pp. 472-475.

Pahl, C., Giesecke, S. and Hasselbring, W. (2009). Ontology-based Modelling of Architectural Styles.
Information and Software Technology. 1(12), 1739-1749.

Rao, J. and Su, X. (2004). A Survey of Automated Web Service Composition Methods. In Proceedings
Intl. Workshop on Semantic Web Services and Web Process Composition 2004 (pp. 43-54). Springer-
Verlag, LNCS 3387.

Schaffert, S. (2004). Xcerpt: A Rule-Based Query and Transformation Language for the Web. PhD
Thesis, University of Munich.

Semantic Web Services Language (SWSL) Committee (2006). Semantic Web Services Framework
(SWSF). Retrieved 26 January 2012 from http://www.daml.org/services/swsf/1.0/.

Tsai, W.T., Xiao, B., Chen, Y. and Paul, R.A. (2006). Consumer-Centric Service-Oriented Architecture:
A New Approach. In Proceedings IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, and Workshop on Collaborative Computing, Integration, and Assurance (pp.
175-180).

Utschig-Utschig, C. (2008). Architecting Event-Driven SOA: A Primer. Oracle. Retrieved 26 January
2012 from http://www.oracle.com/technology/pub/articles/oraclesoa eventarch.html.

Wang, M., Yapa Bandara, K. and Pahl, C (2009). Integrated Constraint Violation Handling for Dynamic
Service Composition. In Proceedings IEEE International Conference on Services Computing SCC 2009
(pp. 168-175)

