1,068 research outputs found

    width-k Eulerian polynomials of type A and B and its Gamma-positivity

    Full text link
    We define some generalizations of the classical descent and inversion statistics on signed permutations that arise from the work of Sack and Ulfarsson [20] and called after width-k descents and width-k inversionsof type A in Davis's work [8]. Using the aforementioned new statistics, we derive some new generalizations of Eulerian polynomials of type A, B and D. It should also be noticed that we establish the Gamma-positivity of the "width-k" Eulerian polynomials and we give a combinatorial interpretation of finite sequences associated to these new polynomials using quasisymmetric functions and P-partition in Petersen's work [18].Comment: 28 page

    Eulerian quasisymmetric functions

    Get PDF
    We introduce a family of quasisymmetric functions called {\em Eulerian quasisymmetric functions}, which specialize to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distribution of major index and descent number on permutations of fixed cycle type. Our central result is a formula for the generating function for the Eulerian quasisymmetric functions, which specializes to a new and surprising qq-analog of a classical formula of Euler for the exponential generating function of the Eulerian polynomials. This qq-analog computes the joint distribution of excedance number and major index, the only of the four important Euler-Mahonian distributions that had not yet been computed. Our study of the Eulerian quasisymmetric functions also yields results that include the descent statistic and refine results of Gessel and Reutenauer. We also obtain qq-analogs, (q,p)(q,p)-analogs and quasisymmetric function analogs of classical results on the symmetry and unimodality of the Eulerian polynomials. Our Eulerian quasisymmetric functions refine symmetric functions that have occurred in various representation theoretic and enumerative contexts including MacMahon's study of multiset derangements, work of Procesi and Stanley on toric varieties of Coxeter complexes, Stanley's work on chromatic symmetric functions, and the work of the authors on the homology of a certain poset introduced by Bj\"orner and Welker.Comment: Final version; to appear in Advances in Mathematics; 52 pages; this paper was originally part of the longer paper arXiv:0805.2416v1, which has been split into three paper

    Stable multivariate WW-Eulerian polynomials

    Full text link
    We prove a multivariate strengthening of Brenti's result that every root of the Eulerian polynomial of type BB is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability-a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Our results extend naturally to colored permutations, and we also give stable generalizations of recent real-rootedness results due to Dilks, Petersen, and Stembridge on affine Eulerian polynomials of types AA and CC. Finally, although we are not able to settle Brenti's real-rootedness conjecture for Eulerian polynomials of type DD, nor prove a companion conjecture of Dilks, Petersen, and Stembridge for affine Eulerian polynomials of types BB and DD, we indicate some methods of attack and pose some related open problems.Comment: 17 pages. To appear in J. Combin. Theory Ser.

    The symmetric and unimodal expansion of Eulerian polynomials via continued fractions

    Get PDF
    This paper was motivated by a conjecture of Br\"{a}nd\'{e}n (European J. Combin. \textbf{29} (2008), no.~2, 514--531) about the divisibility of the coefficients in an expansion of generalized Eulerian polynomials, which implies the symmetric and unimodal property of the Eulerian numbers. We show that such a formula with the conjectured property can be derived from the combinatorial theory of continued fractions. We also discuss an analogous expansion for the corresponding formula for derangements and prove a (p,q)(p,q)-analogue of the fact that the (-1)-evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). The (p,q)(p,q)-analogue unifies and generalizes our recent results (European J. Combin. \textbf{31} (2010), no.~7, 1689--1705.) and that of Josuat-Verg\`es (European J. Combin. \textbf{31} (2010), no.~7, 1892--1906).Comment: 19 pages, 2 figure
    • …
    corecore