1,098 research outputs found

    Lines in Euclidean Ramsey theory

    Get PDF
    Let ℓm\ell_m be a sequence of mm points on a line with consecutive points of distance one. For every natural number nn, we prove the existence of a red/blue-coloring of En\mathbb{E}^n containing no red copy of ℓ2\ell_2 and no blue copy of ℓm\ell_m for any m≥2cnm \geq 2^{cn}. This is best possible up to the constant cc in the exponent. It also answers a question of Erd\H{o}s, Graham, Montgomery, Rothschild, Spencer and Straus from 1973. They asked if, for every natural number nn, there is a set K⊂E1K \subset \mathbb{E}^1 and a red/blue-coloring of En\mathbb{E}^n containing no red copy of ℓ2\ell_2 and no blue copy of KK.Comment: 7 page

    Approximate Euclidean Ramsey theorems

    Full text link
    According to a classical result of Szemer\'{e}di, every dense subset of 1,2,...,N1,2,...,N contains an arbitrary long arithmetic progression, if NN is large enough. Its analogue in higher dimensions due to F\"urstenberg and Katznelson says that every dense subset of {1,2,...,N}d\{1,2,...,N\}^d contains an arbitrary large grid, if NN is large enough. Here we generalize these results for separated point sets on the line and respectively in the Euclidean space: (i) every dense separated set of points in some interval [0,L][0,L] on the line contains an arbitrary long approximate arithmetic progression, if LL is large enough. (ii) every dense separated set of points in the dd-dimensional cube [0,L]d[0,L]^d in \RR^d contains an arbitrary large approximate grid, if LL is large enough. A further generalization for any finite pattern in \RR^d is also established. The separation condition is shown to be necessary for such results to hold. In the end we show that every sufficiently large point set in \RR^d contains an arbitrarily large subset of almost collinear points. No separation condition is needed in this case.Comment: 11 pages, 1 figure

    Recent trends in Euclidean Ramsey theory

    Get PDF
    AbstractWe give a brief summary of several new results in Euclidean Ramsey theory, a subject which typically investigates properties of configurations in Euclidean space which are preserved under finite partitions of the space

    Euclidean ramsey theorems. I

    Get PDF
    AbstractThe general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ϵ A denote by R(a) the set {b ϵ B | (a, b) ϵ R}. R is called r-Ramsey if for any r-part partition of B there is some a ϵ A with R(a) in one part. We investigate questions of whether or not certain R are r-Ramsey where B is a Euclidean space and R is defined geometrically
    • …
    corecore