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Lines in Euclidean Ramsey theory

David Conlon∗ Jacob Fox†

Abstract

Let ℓm be a sequence of m points on a line with consecutive points of distance one. For every
natural number n, we prove the existence of a red/blue-coloring of En containing no red copy of ℓ2
and no blue copy of ℓm for any m ≥ 2cn. This is best possible up to the constant c in the exponent.
It also answers a question of Erdős, Graham, Montgomery, Rothschild, Spencer and Straus from
1973. They asked if, for every natural number n, there is a set K ⊂ E

1 and a red/blue-coloring of
E
n containing no red copy of ℓ2 and no blue copy of K.

1 Introduction

Let E
n denote n-dimensional Euclidean space, that is, R

n equipped with the Euclidean distance.

Following Erdős, Graham, Montgomery, Rothschild, Spencer and Straus [4], we study the following

question.

Question 1.1 For which subsets K ⊂ E
n does every red/blue-coloring of En contain a red pair of

points of distance one or a blue isometric copy of K?

In what follows, we will write ℓm for a sequence of m points on a line with consecutive points of

distance one and E
n −→ (ℓ2,K) if every red/blue-coloring of En contains either a red copy of ℓ2 or a

blue copy of K, where a copy of a set will always mean an isometric copy. Conversely, En 6−→ (ℓ2,K)

expresses the fact that there is some red/blue-coloring of En which contains neither a red copy of ℓ2
nor a blue copy of K.

The problem of determining which n and K satisfy the relation E
n −→ (ℓ2,K) has received consid-

erable attention, with a particular focus on small values of n. For example, Erdős et al. [4] showed

that E
2 −→ (ℓ2, ℓ4) and E

2 −→ (ℓ2,K) for any three-point set K. Juhász [8] later improved the

latter result to cover all four-point planar sets, while just recently Tsaturian [16] improved the former

result by showing that E
2 −→ (ℓ2, ℓ5). In three dimensions, Iván [7] showed that E

3 −→ (ℓ2,K) for

any five-point set K ⊂ E
3. The particular case where K = ℓ5 was recently improved by Arman and

Tsaturian [1], who showed that E3 −→ (ℓ2, ℓ6).

On the other hand, Csizmadia and Tóth [2] identified a set K of 8 points in the plane, namely, a

regular heptagon with its center, such that E2 6−→ (ℓ2,K). This improved a result of Juhász [8], who

had previously identified a set K of 12 points with the same property. Our chief concern in this paper

will be with extending these results to higher dimensions by studying the smallest possible size of a

set K ⊂ E
n such that En 6−→ (ℓ2,K).
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In general, |K| can be unbounded in terms of n and still satisfy E
n −→ (ℓ2,K). For example, any

subset K of the unit sphere in E
n satisfies E

n −→ (ℓ2,K). Indeed, in a red/blue-coloring of En, if

there is no red point, then we clearly get a copy of K, while if there is a red point, then the sphere of

radius one around that point must be blue, so we again get a blue copy of K.

However, our main result shows that under some mild conditions a setK ⊂ E
n such that En −→ (ℓ2,K)

can have size at most exponential in n. To state the result, we say that a point set S ⊂ E
n is t-separated

if any two points in S have distance at least t. Here and throughout, we use log to denote log base 2.

Theorem 1.1 If R > 2 and K is a 1-separated set of points in E
n with diameter at most R− 1 and

|K| > 104n logR, then E
n 6−→ (ℓ2,K).

In particular, for m = 105n, we see that E
n 6−→ (ℓ2, ℓm). This simple corollary is already enough to

answer a problem raised by Erdős et al. [4], namely, whether, for every natural number d, there is a

natural number n depending only on d such that E
n → (ℓ2,K) for every K ⊂ E

d. Erdős et al. state

that they expect the answer to this question to be negative and our result confirms this already for

d = 1, a special case stressed in [4], showing that n must grow logarithmically in the size of |K|.
The exponential dependence in Theorem 1.1, and hence the logarithmic dependence above, is also

necessary. In fact, Szlam [14] proved the stronger result that every red/blue-coloring of En contains

either a red copy of ℓ2 or a blue translate of any set K of size at most 2c
′n. For the sake of completeness,

we include his short proof here. We will need the seminal result of Frankl and Wilson [5] that there

exists a positive constant c′ such that any coloring of En with at most 2c
′n colors contains a pair of

points of distance one with the same color (see [13] for the current best estimate on c′).

Suppose now that K = {k1, . . . , kt} ⊂ E
n is a set of size at most 2c

′n and there is a red/blue-coloring

of En with no blue copy of K. Then, for each p ∈ E
n, there is at least one i such that p + ki is red,

since otherwise the set p +K would be a blue translate of K. We may therefore color the points of

E
n in t ≤ 2c

′n colors, giving the point p the color i for some i such that p+ ki is red, always choosing

the minimum such i. By the result of Frankl and Wilson, there must then exist two points p and p′

of distance one which receive the same color, say j. But then p + kj and p′ + kj are two points of

distance one both of which are colored red. This gives the required result. In particular, we have the

following counterpart to Theorem 1.1, which we again stress is due to Szlam [14].

Theorem 1.2 There exists a positive constant c′ such that En −→ (ℓ2,K) for any set K ⊂ E
n of size

at most 2c
′n.

2 Proof of Theorem 1.1

We will prove the existence of a periodic red/blue-coloring of E
n (with period R in the standard

coordinates) such that no two red points have distance one and there is no blue copy of K.

Let Tn
R = (E/RZ)n be the n-dimensional torus with period R in each direction. Let P be any maximal

1/3-separated subset of Tn
R. One can simply construct such a set P greedily. Consider the Voronoi

decomposition of Tn
R with respect to P . This partitions T

n
R into cells Vp, one for each point p ∈ P ,

where Vp consists of the set of points closer to p than any other point in P . From the maximality of

P , every point in Vp has distance at most 1/3 from p. In particular, each Vp has diameter at most 2/3.

Lemma 2.1 |P | ≤ (4n1/2R)n.
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Proof: Since each pair of points in P have distance at least 1/3, the balls of radius r = 1/6 around

each point are disjoint. A ball in n-space of radius r has volume rnπn/2/Γ(n/2+1), where the gamma

function satisfies Γ(n/2 + 1) = (n/2)! if n is even and Γ(n/2 + 1) =
√
π · n!!/2(n+1)/2 if n is odd. In

either case, we have Γ(n/2+1) ≤ nn/2, so the volume of the n-dimensional ball is at least (r2π/n)n/2.

The balls of radius 1/6 around the points of P are disjoint and the volume of the torus Tn
R is Rn, so

the number of points in P is at most Rn/((1/6)2π/n)n/2 = (36nR2/π)n/2 < (4n1/2R)n. ✷

Lemma 2.2 If S ⊂ E
n is t-separated, then, for any point p ∈ E

n and any s ≥ 0, the number of points

of S within distance s of p is at most (2s/t+ 1)n.

Proof: The balls of radius t/2 around each point of S are disjoint and, for each point p′ ∈ S with

distance at most s from p, the ball of radius s + t/2 around p contains the ball of radius t/2 around

p′. Hence, by a volume argument, there are at most (s+t/2
t/2 )n = (2s/t+1)n points of distance at most

s from p. ✷

Lemma 2.3 Each copy in E
n of the Voronoi cell Vp is a convex body defined by the intersection of at

most 5n half-spaces.

Proof: A point q on the boundary of Vp is on the hyperplane equidistant to p and some other point

p′ ∈ P , where this distance is at most 1/3. This implies that p′ has distance at most 2/3 from p.

Since the points in P are 1/3-separated, Lemma 2.2 implies that there are at most 5n points of P of

distance at most 2/3 from p. Therefore, since the Voronoi cell Vp is the intersection of half-spaces that

are defined by hyperplanes which are equidistant from p and p′ for some p′ of distance at most 2/3

from p, the result follows. ✷

Lemma 2.4 If K is a 1-separated point set in E
n and s ≥ 1, then there is a set K ′ ⊂ K that is

s-separated and has size at least |K|/(2s + 1)n.

Proof: By Lemma 2.2 with t = 1, for each point p, there are at most (2s + 1)n points of K within

distance s of p (including p itself). We can then greedily construct the set K ′, getting at least one

point in K ′ for every (2s + 1)n points from K, giving the desired bound. ✷

Let Q be a random subset of P formed by picking each point in P with probability x = 20−n

independently of the other points. Let S be the subset of Q where s ∈ S if and only if there is no other

point s′ ∈ Q of distance at most 5/3 from s. By Lemma 2.2, there are at most (2(5/3)/(1/3)+1)n = 11n

points of P of distance at most 5/3 from any point. For a given point p ∈ P , the probability that

p ∈ S is therefore at least x(1− x)11
n
> x/2 as x = 20−n.

Let V1, . . . , Vm be the Voronoi cells of points in S. We will color the points in these Voronoi cells red,

including the boundaries, and everything else blue. We consider the periodic coloring of En given by

the coloring of Tn
R. Observe that there is a pair of red points of distance one in T

n
R if and only if there

is a pair of red points of distance one in the periodic coloring of En and there is a blue copy of K in

T
n
R if and only if there is a blue copy of K in E

n.

We first claim that there are no two red points q and q′ at distance one. Indeed, if q and q′ are in the

same Voronoi cell, then, as the diameter of each Voronoi cell is at most 2/3, we have a contradiction. If

3



q and q′ are in copies of the same cell in the periodic tiling, then their distance is at least R−2/3 > 1.

If q and q′ are in different cells, with q ∈ Vp and q′ ∈ Vp′ , then, since q has distance at most 1/3 from p

and q′ has distance at most 1/3 from p′, p and p′ have distance at most 5/3. However, by construction,

if p ∈ S, then p′ is not in S, so these Voronoi cells are not both red and q and q′ cannot both be red.

To finish the proof, we need to show that with positive probability, there is no blue copy of K. Observe

that since the points of K have distance at most R − 1 from each other, if there is a blue copy of K

in the coloring of En, then we already have a blue copy in the axis-aligned box with one corner at the

origin and side length 3R. This box contains 3n|P | Voronoi cells, which we label U1, . . . , U3n|P |.

Let K ′ be a maximum subset of K which is 5-separated, so |K ′| ≥ 11−n|K| by Lemma 2.4. Denote the

points of K ′ by K ′ = {k0, k1, . . . , k|K ′|−1}, where we may assume that k0 is the origin and k1, . . . , kd
with d ≤ n form a basis for the vector space spanned by K ′, so each element of K ′ is a linear

combination of k1, . . . , kd. It suffices to show that with positive probability there is no blue copy of

K ′. For a map f : {0, 1, . . . , |K ′| − 1} → {1, 2, . . . , 3n|P |}, consider the bad event Bf that there is a

blue copy of K ′ with the copy of ki in Uf(i). As each pair of points from K ′ have distance at least

5, the Voronoi cells Vp and Vp′ that they map to under an isometry have centers of distance at least

5 − 2/3 = 13/3 > 2 · 5/3 apart. Moreover, since K has diameter at most R − 1, the centers have

distance at most R− 1 + 2/3 < R, so points from two copies of the same cell are never used. Hence,

the probability that p and p′ are in S are independent. Therefore, for any fixed f , the probability that

Bf happens is at most (1− x/2)|K
′| < e−x|K ′|/2.

We next estimate the number of bad events Bf that are realizable. That is, the number of f for

which there is a copy of K ′ with the copy of ki in Uf(i). Given a copy of K ′ in E
n where ki maps

to g(i) ∈ E
n for each i, we map the copy of K ′ to the point (g(0), g(1), . . . , g(d)) ∈ E

(d+1)n. This is

an injective map from the copies of K ′ in E
n to E

(d+1)n since the copy of K ′ is determined by which

points k0, k1, . . . , kd map to.

Let U be one of the Voronoi cells U1, . . . , U3n|P |, with center p. The Voronoi cell U is given as the

intersection of half-spaces Hpp′ which contain p and whose boundary is the hyperplane equidistant from

p and p′. By Lemma 2.3, there are at most 5n such half-spaces. The linear inequality defining whether

a point (x1, . . . , xn) is in a half-space H is of the form a1x1+ · · ·+anxn ≤ b for some a1, . . . , an, b ∈ E
1.

As ki is a linear combination of k1, . . . , kd, these observations show that, for any copy of K ′ in E
n and

any i and j, we can determine whether ki is mapped into Uj by considering a system of at most 5n

linear inequalities in the (d + 1)n coordinates of the point (g(0), g(1), . . . , g(d)) ∈ E
(d+1)n that K ′ is

mapped to. Since the number of pairs (i, j) is |K ′| · 3n|P |, we can therefore tell which Bf are feasible

(i.e., which mappings of the points of K ′ to Voronoi cells are actually realizable by a copy of K ′) by

the sign patterns of a sequence of 5n|K ′| · 3n|P | linear equations.
We can now bound the number of feasible Bf by using an appropriate version of the Milnor–Thom

theorem [11, 12, 15]. For a discussion of this theorem and its history, as well as the statement we

present below, we refer the interested reader to Section 6.2 of Matoušek’s book [10].

Theorem 2.1 For M ≥ N ≥ 2, the number of sign patterns of M polynomials in N variables, each

of degree at most D, is at most
(

50DM
N

)N
.

Taking D = 1, M = 5n|K ′| · 3n|P | ≤ |K ′|(60n1/2R)n and N = (d + 1)n, we see that the number of

feasible bad events Bf is at most

(

50DM

(d+ 1)n

)(d+1)n

≤
(

50|K ′|(60n1/2R)n
)2n2

≤ e2n
2 ln(50|K ′|)+2n3 ln(60n1/2R).
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Therefore, since each event Bf holds with probability at most e−x|K ′|/2, we see that as long as x|K ′|/2 >

2n2 ln(50|K ′|) + 2n3 ln(60n1/2R), then, with positive probability, the desired coloring exists. By using

x = 20−n, |K ′| ≥ 11−n|K| and |K| ≥ 104n logR, one may verify that x|K ′|/4 > 2n2 ln(50|K ′|) and

x|K ′|/4 > 2n3 ln(60n1/2R), completing the proof.

3 Concluding remarks

Let us say that a set X ⊂ E
d is f -Ramsey for a function f : N → N if any coloring of En, n ≥ d,

with at most f(n) colors contains a monochromatic copy of X. For instance, the result of Frankl and

Wilson [5] used to prove Theorem 1.2 was the statement that ℓ2 is 2c
′n-Ramsey. By substituting any

f -Ramsey set X for ℓ2 in the proof of that theorem, we can easily deduce the following result.

Theorem 3.1 For any f -Ramsey set X, En −→ (X,K) for any set K ⊂ E
n of size at most f(n).

When X is a rectangular parallelepiped or a non-degenerate simplex, results of Frankl and Rödl [6]

show that one may take f(n) = 2c
′n, where c′ may depend on the given configuration X. For all such

X, Theorem 1.1 easily implies that the estimate on the size of K in Theorem 3.1 is best possible up

to the constant c′ in the exponent.

Following [3], we say that a set X ⊂ E
d is Ramsey if it is f -Ramsey for some function f : N → N

with the property that f(n) → ∞ as n → ∞. Theorem 3.1 then says that for any Ramsey set X and

any finite set K ⊂ E
m, there exists n such that En −→ (X,K). In particular, by a beautiful result of

Kř́ıž [9], this holds when X is a regular polygon. The following result gives a converse.

Theorem 3.2 Assuming the axiom of choice, if X ⊂ E
d is a finite set which is not Ramsey, there

exists a natural number m and a finite set K ⊂ E
m such that En 6−→ (X,K) for all n.

Proof: Since X is not Ramsey, there exists a least natural number r such that En
r
6−→ X for all n. By

the minimality of r, there is anm such that every (r−1)-coloring of Em contains a monochromatic copy

of X. But then, by the De Bruijn–Erdős theorem (and it is here that we invoke the axiom of choice),

there must be a finite set K ⊂ E
m such that every (r − 1)-coloring of K contains a monochromatic

copy of X.

Suppose now that χ : En → {1, 2, . . . , r} is an r-coloring of En containing no monochromatic copy of

X. We claim that the red/blue-coloring of En where a point is colored red if it received color 1 under

χ and blue otherwise contains no red copy of X and no blue copy of K. Indeed, a red copy of X would

yield a copy of X in color 1 under χ, while a blue copy of K would yield an (r− 1)-colored copy of K

under χ, which, by the choice of K, would contain a monochromatic copy of X. In either case, this

would contradict the definition of χ. ✷

Being more particular about our choice of K, we were unable to decide whether, for every natural

number m, there exists a natural number n such that E
n −→ (ℓ3, ℓm). It seems unlikely that this

holds for large m, but we were at a loss to exhibit a coloring which confirms our suspicion. A first

step in the right direction was made by Erdős et al. [3], who showed that En 6−→ (ℓ6, ℓ6) for all n.

As a final note, we mention another problem of Erdős et al. [4]: for any natural number n, does

there exist a natural number m depending only on n such that for every set K ⊂ E
n of size m there
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is a two-coloring of En with no monochromatic copy of K? By rescaling, we may assume that the

smallest distance between any two points in K is equal to one and, therefore, that ℓ2 ⊂ K and K is

1-separated. Theorem 1.1 then implies that if the diameter of K is at most R− 1 and m ≥ 104n logR,

there is indeed a two-coloring of En with no monochromatic copy of K. This partially answers the

question of Erdős et al. and a complete answer would follow if we could remove the dependence on R

in Theorem 1.1 (a problem which is also interesting in its own right).

Acknowledgements. This paper was written while both authors were visiting the Simons Institute

for the Theory of Computing in Berkeley and we are grateful for their generous support. The authors

would also like to thank Noga Alon and Ben Green for helpful discussions. Finally, we wish to thank

David Ellis, Ron Graham and an anonymous referee for a number of useful comments and corrections.

In particular, the anonymous referee was the one to point us to the paper by Szlam [14], helping us

to greatly improve the results in the concluding remarks.

References

[1] A. Arman and S. Tsaturian, A result in asymmetric Euclidean Ramsey theory, preprint available

at arXiv:1702.04799 [math.CO].
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