11,331 research outputs found
The impact of intrinsic anhydrite in an experimental calcium sulfoaluminate cement from a novel, carbon-minimized production process
Gulf Organisation for Research and Development EG016-RG11757 Open access via Springer Compcat Agreement The authors are grateful for the financial support of the Gulf Organization for Research and Development (GORD) through grant EG016-RG11757. Mr Mathieu Antoni of LafargeHolcim is thanked for his assistance in processing the grinding of the experimental clinker. Mr Theodore Hanein is thanked for insight gained in discussions regarding thermodynamic modelling of the CaO-Al2O3-SO3-SiO2 system within the kiln environment.Peer reviewedPublisher PD
Lime stabilisation for earthworks: a UK perspective
Lime stabilisation is a versatile technique applied during earthworks operations. Modern soil recycling units are much more efficient at pulverising fill material and intermixing the added binder/water than machinery available 20 years ago. While supplier innovation adds flexibility to the site working method, specifications have not been sufficiently updated to permit optimal application. This review paper details the physico-chemical changes instigated through the lime-clay soil reaction, updating previous reviews. It aims to assist scientific debate, current practitioners and future specification changes. For example, the application of the minimum 24 h mellowing periods (mandatory to UK specifications) with high reactivity, quicklime powders is concluded to cause increased air voids in the compacted fill. Increased air voids are associated with reduced long-term strength and potential volume change from water ingress, which is of particular concern for sulfate swelling. Shorter mellowing periods and/or use of hydrated lime may lesson this issue; however, a 'one size fits all' approach is discouraged in preference to site-specific methodologies refined to suit the fill material and project requirements. The discussion also summarises working methods which may lower the risk of sulfate swell and defines areas requiring further practical research
Effect of calcium aluminate cement variety on the hydration of Portland cement in blended system
Two kinds of CACs with different monocalcium aluminate (CA) contents were used in the PC/CAC (PAC) mixtures. Effects of CA and CACs on the properties of PAC were analyzed by setting times and the compressive strength tests, and also by means of calorimetry, XRD, DTA-TG and ESEM. The experimental results show that the compressive strength of the PAC mortars decreases with increasing content of CAC while it declines sharply with a higher content of CA in CAC. Compared with neat PC paste, the content of calcium hydroxide in hydrates of PAC paste decreases significantly, and the hydration time of PC is prominently prolonged. Additionally, the higher the content of CA in CAC, the more obviously the hydration of PC is delayed, confirming that the CA phase in CAC plays an important role in the delay of PC hydration
A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C₃A and Their Hydration Products in the Presence of Gypsum.
This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped) polymorphs of tricalcium aluminate (C₃A), which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C₃A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C₃A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C₃A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C₃A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments
Setting control of completely recyclable concrete with slag and aluminate cements
A completely recyclable concrete (CRC) is designed to have a chemical composition equivalent to the one of general raw materials for cement production. By doing so, this CRC can be used at the end of its service life in cement manufacturing without the need for ingredient adjustments. In one of the designed CRC compositions, blast-furnace slag cement (BFSC) was combined with calcium aluminate cement (CAC), which resulted in fast setting. In an attempt to control this fast setting, different retarders and/or the combination of lime and calcium sulfate were added to the system. The workability (slump and flow), setting time (ultrasonic transmission measurements and Vicat), strength development (compressive strength tests), and hydration behavior (isothermal calorimetry) were studied. It was found that the combined addition of lime and calcium sulfate results in a workable mixture that becomes even more workable if a retarder is also added to the system
In-situ early age hydration of cement-based materials by synchrotron X-ray powder diffraction
Cement based binders are building materials of worldwide importance. Since these samples are very complex, the knowledge/control of their mineralogical composition are essential to design and predict materials with specific/improved performance. Rietveld quantitative phase analysis (RQPA) allows the quantification of crystalline phases and, when combined with specific methodologies, as the addition of an internal standard or the external standard approach (G-factor), amorphous and non-crystalline phases can also be quantified. However, to carry out a proper RQPA in hydrated cementitious-materials, a good powder diffraction pattern is necessary. In this work, synchrotron X-ray powder diffraction (SXRPD) has been used, allowing in-situ measurements during the early-age hydration process.
This work deals with the early hydration study of cement-based materials. The studied samples were: a laboratory-prepared belite calcium sulphoaluminate (BCSAF) clinker (non-active) mixed with 10wt% gypsum, labelled G10B0; two active laboratory-prepared BCSAF clinkers (activated with 2wt% borax), one mixed with 10wt% gypsum and the other one with 10wt% monoclinic-bassanite, hereafter named G10B2 and B10B2, respectively; and an environmentally-friendly cement sample from Henkel, composed of bassanite mixed with 15wt% Portland cement and 10wt% Metakaolin, labelled H1.
Anhydrous G10B0 contains beta-belite and orthorhombic-ye'elimite as main phases, while alpha'H-belite and pseudo-cubic-ye'elimite are stabilized in G10B2 and B10B2, with the corresponding sulphate source. Anhydrous H1 contains monoclinic and hexagonal bassanite and alite as main phases.
Ye'elimite, in the non-active BCSAF cement pastes, dissolves at a higher pace than in the active one (degree of reaction is α~25% and α~10% at 1 h, respectively) (both prepared with gypsum), with the corresponding differences in ettringite crystallisation (degree of precipitation is α~30% and α~5%, respectively).
Moreover, the type of sulphate source has important consequences on the hydration of the active BCSAF cement pastes. Bassanite is quickly dissolved and it precipitates as gypsum within the first hour of hydration (in B10B2). At that time, ettringite starts to crystallize, and after 12 hours is almost fully crystallized, similar to G10B2.
In H1, bassanite transforms into gypsum within the first hour, being the principal hydration product; ettringite starts to be formed just after few hydration minutes.
These results are crucial in the understanding and development of improved cement materials.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
In-situ hydration studies of ye’elemite at early ages for understanding eco-cement performances'
Póster; ALBA User Meeting and VI AUSE Conferenc
Investigation of Premature Distress Around Joints in PCC Pavements: Parts I & II
Some of the Indiana concrete pavements constructed within the last 10-20 years have shown signs of premature deterioration, especially in the areas adjacent to the longitudinal and transverse joints. This deterioration typically manifested itself as cracking and spalling of concrete combined with the loss of material in the direct vicinity of the joint. In addition, in some cases “bulb-shaped” damage zones were also observed under the sealed parts of the joints.
The objective of this study was to investigate possible causes of this premature deterioration. To reach this objective, the characteristics of the concrete in and near the deteriorated joints were compared and contrasted to the concrete characteristics in the non-deteriorated sections of pavement. The study was conducted in two different phases (Phase I and Phase II), and the findings are presented as a two-part report.
The investigation started with a detailed inventory of selected areas of affected pavements in order to identify and classify the existing types of distresses and select locations for collection of the cores. During the Phase I of the study a total of 36 concrete cores were extracted from 5 different pavements.. During Phase II of the study a total of 18 cores were retrieved from five different pavement sections and subject to examination. The cores were subjected to eighth different tests: air-void system determination, Scanning Electronic Microscopy (SEM) analysis, X-ray diffraction (XRD) analysis, sorptivity test, freeze-thaw & resonance frequency test, resistance to chloride ion penetration (RCP) test and chloride profile (concentration) determination.
The test results identified several cases of in-filling of the air voids (especially smaller air bubbles) with secondary deposits. These deposits were most likely the result of the repetitive saturation of air voids with water and substantially reduced the effectiveness of the air voids system with respect to providing an adequate level of freeze-thaw protection. Specifically, it was observed that the existing air void system in the concrete from panels near the deteriorated longitudinal joint had neither spacing factors nor specific surface values within the range recommended for freeze-thaw durability. Contrary to this, nearly all the concrete in lanes without damage had an adequate air void system at the time of sampling. In addition, the affected concrete often displayed an extensive network of microcracks, had higher rates of absorption and reduced ability to resist chloride ions penetration.
From the observation of the drains performed using the remote camera it was obvious that not all the drains were functioning properly and some were entirely blocked. However, more precise or direct correlations could not be made between the conditions of the drains and observed pavement performance
Rheological and hydration characterization of calcium sulfoaluminate cement pastes
Calcium sulfoaluminate (CSA) cements are currently receiving a lot of attention because their manufacture produces less CO2 than ordinary Portland cement (OPC). However, it is essential to
understand all parameters which may affect the hydration processes. This work deals with the study of the effect of several parameters, such as superplasticizer (SP), gypsum contents (10, 20 and 30 wt%) and w/c ratio (0.4 and 0.5), on the properties of CSA pastes during early hydration. This characterization has been performed through rheological studies, Rietveld quantitative phase
analysis of measured x-ray diffraction patterns, thermal analysis and mercury porosimetry for
pastes, and by compressive strength measurements for mortars. The effect of the used SP on the
rheological properties has been established. Its addition makes little difference to the amount of
ettringite formed but strongly decreases the large pore fraction in the pastes. Furthermore, the SP role on compressive strength is variable, as it increases the values for mortars containing 30 wt% gypsum but decreases the strengths for mortars containing 10 wt% gypsum.This work has been supported by Spanish Ministry of Science and Innovation through MAT2010-
16213 research grant, which is co-funded by FEDER, and Ramón y Cajal Fellowship (RYC-2008-
03523)
Topics in Cement and Concrete Research
In recent decades, the construction sector has faced many changes. One of these changes is the shift in the role of national government from one-sided practices in which the government was solely responsible for strategic and long-term spatial planning to a multi-actor and multi-level arena. One outcome was a rearrangement of the balance between public and private responsibilities. This has led to new procurement routes and contracts as Private Finance Initiative (PFI) and Public Private Partnerships (PPP), as well as to a more performance-oriented client (both public and private). At the same time, construction firms changed their strategic focus from cost efficiency to adding value for money for the client, resulting in new contract forms such as Design & Construct (D&C), Building, Operate & Transfer (BOT) and variants there from. So far, governments of most European countries have their own restrictive specifications for the use of building materials
- …
