4 research outputs found

    Ethanol Vapor Sensing Properties of Triangular Silver Nanostructures Based on Localized Surface Plasmon Resonance

    Get PDF
    A sensitive volatile organic vapor sensor based on the LSPR properties of silver triangular nanoprisms is proposed in this paper. The triangular nanoprisms were fabricated by a nanosphere lithography (NSL) method. They have sharp vertices and edges, and are arranged in an ideal hexangular array. These characteristics ensure that they exhibit an excellent LSPR spectrum and a high sensitivity to the exterior environment changes. The LSPR spectra responding to ethanol vapor and four other volatile organic vapors—acetone, benzene, hexane and propanol—were measured with a UV-vis spectrometer in real time. Compared with the other four vapors, ethanol exhibits the highest sensitivity (∼0.1 nm/mg L−1) and the lowest detection limit (∼10 mg/L) in the spectral tests. The ethanol vapor test process is also fast (∼4 s) and reversible. These insights demonstrate that the triangular nanoprism based nano-sensor can be used in ethanol vapor detection applications

    Sensitive Gas-Sensing by Creating Adsorption Active Sites: Coating an SnOâ‚‚ Layer on Triangle Arrays

    Get PDF
    It is a widely used strategy to enhance gas sensor sensitivity by improving its surface area, but this process, including bonding the sensing block into a device substrate, needs complex manipulations. This work shows a concept of creating adsorption active sites, in which an SnO2 layer (6.85 nm thin) is directly coated on a triangle array substrate to be of an ensemble of triangular convex adsorption active sites (TCAASs). The resultant SnO2 gas sensors, with TCAAS periods ranging from 289 to 1154 nm, exhibit an adsorption-active-site-dependent sensitivity and present a low detection limit of around 6 ppm ethanol gas at room temperature. By characterizations of Kelvin force microscopy, a large surface potential variation exists on these adsorption active sites after introducing ethanol gas, distinctly showing a local adsorption enhancement. These results confirm that the creation of adsorption active sites can efficiently increase surface adsorption of a sensor to realize its sensitive gas-sensing

    The recent progress on silver nanoparticles: Synthesis and electronic applications

    Get PDF
    Nanoscience enables researchers to develop new and cost-effective nanomaterials for energy, healthcare, and medical applications. Silver nanoparticles (Ag NPs) are currently increasingly synthesized for their superior physicochemical and electronic properties. Good knowledge of these characteristics allows the development of applications in all sensitive and essential fields in the service of humans and the environment. This review aims to summarize the Ag NPs synthesis methods, properties, applications, and future challenges. Generally, Ag NPs can be synthesized using physical, chemical, and biological routes. Due to the great and increasing demand for metal and metal oxide nanoparticles, researchers have invented a new, environmentally friendly, inexpensive synthetic method that replaces other methods with many defects. Studies of Ag NPs have increased after clear and substantial support from governments to develop nanotechnology. Ag NPs are the most widely due to their various potent properties. Thus, this comprehensive review discusses the different synthesis procedures and electronic applications of Ag NPs
    corecore