4 research outputs found

    Active control of time-varying broadband noise and vibrations using a sliding-window Kalman filter

    Get PDF
    Recently, a multiple-input/multiple-output Kalman filter technique was presented to control time-varying broadband noise and vibrations. By describing the feed-forward broadband active noise control problem in terms of a state estimation problem it was possible to achieve a faster rate of convergence than instantaneousgradient least-mean-squares algorithms and possibly also a better tracking performance. A multiple input/ multiple output Kalman algorithm was derived to perform this state estimation. To make the algorithm more suitable for real-time applications, the Kalman filter was written in a fast array form and the secondary path state matrices were implemented in output normal form. The resulting filter implementation was verified in simulations and in real-time experiments. It was found that for a constant primary path the filter had a fast rate of convergence and was able to track time-varying spectra. For a forgetting factor equal to unity the system was robust but the filter was unable to track rapid changes in the primary path. A forgetting factor lower than unity gave a significantly improved tracking performance but led to a numerical instability for the fast array form of the algorithm. To improve the numerical behavior, while enabling fast tracking and convergence, several variants are described in this paper. Results will be shown for a sliding window Recursive Least Squares filter in fast array form, which will later be extended to a full Kalman filter implementation by taking into account the uncertainty of the secondary path between the control sources and the error sensors. Multiple variants will be discussed in this paper. The first variant is the standard sliding window technique, which applies both updates and downdates to the filter coefficients. The second variant is an algorithm which only applies an update step to the filter coefficients and interprets the downdate step as an addition of a covariance matrix to the Riccati equation. The third variant uses an implicit forgetting factor. These implementations use a factorized form of the hyperbolic orthogonal transformation matrix. The different techniques will be applied to measured data of noise in houses near the runway of an airport. Results are given of the performance regarding tracking, convergence and numerical stability of the algorithms

    Estimation-based synthesis of H∞-optimal adaptive FIR filtersfor filtered-LMS problems

    Get PDF
    This paper presents a systematic synthesis procedure for H∞-optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an H∞ estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal

    H∞ Estimation Approach to Active Noise Control: Theory, Algorithm and Real-Time Implementation

    Full text link
    This paper presents an H∞ estimation approach to active control of acoustic noise inside an enclosure. It is shown how H∞ filter theory and algorithm can be effectively applied to active noise control to provide important robustness property. Real-time implementation of the algorithm is performed on Digital Signal Processor. Experimental comparison to conventional FxLMS algorithm for active noise control is presented for both single channel and multichannel cases. While providing some new results, this paper also serves as a brief review on H∞ filter theory and on active noise control
    corecore