138 research outputs found

    Affective image content analysis: two decades review and new perspectives

    Get PDF

    Affective Image Content Analysis: Two Decades Review and New Perspectives

    Get PDF
    Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.Comment: Accepted by IEEE TPAM

    Practical AI Value Alignment Using Stories

    Get PDF
    As more machine learning agents interact with humans, it is increasingly a prospect that an agent trained to perform a task optimally - using only a measure of task performance as feedback--can violate societal norms for acceptable behavior or cause harm. Consequently, it becomes necessary to prioritize task performance and ensure that AI actions do not have detrimental effects. Value alignment is a property of intelligent agents, wherein they solely pursue goals and activities that are non-harmful and beneficial to humans. Current approaches to value alignment largely depend on imitation learning or learning from demonstration methods. However, the dynamic nature of values makes it difficult to learn values through imitation learning-based approaches. To overcome the limitations of imitation learning-based approaches, in this work, we introduced a complementary technique in which a value-aligned prior is learned from naturally occurring stories that embody societal norms. This value-aligned prior can detect the normative and non-normative behavior of human society as well as describe the underlying social norms associated with these behaviors. To train our models, we sourced data from the children’s educational comic strip, Goofus \& Gallant. Additionally, we have built another dataset by utilizing a crowdsourcing platform. This dataset was created specifically to identify the norms or principles exhibited in the actions depicted within the comic strips. To build a normative prior model, we trained multiple machine learning models to classify natural language descriptions and visual demonstrations of situations found in the comic strip as either normative or non-normative and into different social norms. Finally, to train a value-aligned agent, we introduced a reinforcement learning-based method, in which we train an agent with two reward signals: a standard task performance reward plus a normative behavior reward. The test environment provides the standard task performance reward, while the normative behavior reward is derived from the value-aligned prior model. We show how variations on a policy shaping technique can balance these two sources of reward and produce policies that are both effective and perceived as being more normative. We test our value-alignment technique on different interactive text-based worlds; each world is designed specifically to challenge agents with a task as well as provide opportunities to deviate from the task to engage in normative and/or altruistic behavior

    Inferring Implicit 3D Representations from Human Figures on Pictorial Maps

    Full text link
    In this work, we present an automated workflow to bring human figures, one of the most frequently appearing entities on pictorial maps, to the third dimension. Our workflow is based on training data and neural networks for single-view 3D reconstruction of real humans from photos. We first let a network consisting of fully connected layers estimate the depth coordinate of 2D pose points. The gained 3D pose points are inputted together with 2D masks of body parts into a deep implicit surface network to infer 3D signed distance fields (SDFs). By assembling all body parts, we derive 2D depth images and body part masks of the whole figure for different views, which are fed into a fully convolutional network to predict UV images. These UV images and the texture for the given perspective are inserted into a generative network to inpaint the textures for the other views. The textures are enhanced by a cartoonization network and facial details are resynthesized by an autoencoder. Finally, the generated textures are assigned to the inferred body parts in a ray marcher. We test our workflow with 12 pictorial human figures after having validated several network configurations. The created 3D models look generally promising, especially when considering the challenges of silhouette-based 3D recovery and real-time rendering of the implicit SDFs. Further improvement is needed to reduce gaps between the body parts and to add pictorial details to the textures. Overall, the constructed figures may be used for animation and storytelling in digital 3D maps.Comment: to be published in 'Cartography and Geographic Information Science

    Digital Interaction and Machine Intelligence

    Get PDF
    This book is open access, which means that you have free and unlimited access. This book presents the Proceedings of the 9th Machine Intelligence and Digital Interaction Conference. Significant progress in the development of artificial intelligence (AI) and its wider use in many interactive products are quickly transforming further areas of our life, which results in the emergence of various new social phenomena. Many countries have been making efforts to understand these phenomena and find answers on how to put the development of artificial intelligence on the right track to support the common good of people and societies. These attempts require interdisciplinary actions, covering not only science disciplines involved in the development of artificial intelligence and human-computer interaction but also close cooperation between researchers and practitioners. For this reason, the main goal of the MIDI conference held on 9-10.12.2021 as a virtual event is to integrate two, until recently, independent fields of research in computer science: broadly understood artificial intelligence and human-technology interaction
    • …
    corecore