
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Computer Science Computer Science 

2023 

Practical AI Value Alignment Using Stories Practical AI Value Alignment Using Stories 

Md Sultan Al Nahian 
University of Kentucky, nahian.csedu@gmail.com 
Digital Object Identifier: https://doi.org/13023/etd.2023.404 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Nahian, Md Sultan Al, "Practical AI Value Alignment Using Stories" (2023). Theses and Dissertations--
Computer Science. 139. 
https://uknowledge.uky.edu/cs_etds/139 

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Md Sultan Al Nahian, Student 

Dr. Brent Harrison, Major Professor 

Dr. Simone Silvestri, Director of Graduate Studies 



Practical AI Value Alignment Using Stories

DISSERTATION

A dissertation submitted in partial

fulfillment of the requirements for

the degree of Doctor of Philosophy

in the College of Engineering at the

University of Kentucky

By

Md Sultan Al Nahian

Lexington, Kentucky

Director: Dr. Brent Harrison, Professor of Computer Science

Lexington, Kentucky

2023

Copyright© Md Sultan Al Nahian 2023



ABSTRACT OF DISSERTATION

Practical AI Value Alignment Using Stories

As more machine learning agents interact with humans, it is increasingly a prospect

that an agent trained to perform a task optimally - using only a measure of task

performance as feedback–can violate societal norms for acceptable behavior or cause

harm. Consequently, it becomes necessary to prioritize task performance and ensure

that AI actions do not have detrimental effects. Value alignment is a property of

intelligent agents, wherein they solely pursue goals and activities that are non-harmful

and beneficial to humans. Current approaches to value alignment largely depend on

imitation learning or learning from demonstration methods. However, the dynamic

nature of values makes it difficult to learn values through imitation learning-based

approaches.

To overcome the limitations of imitation learning-based approaches, in this work,

we introduced a complementary technique in which a value-aligned prior is learned

from naturally occurring stories that embody societal norms. This value-aligned

prior can detect the normative and non-normative behavior of human society as well

as describe the underlying social norms associated with these behaviors. To train

our models, we sourced data from the children’s educational comic strip, Goofus &

Gallant. Additionally, we have built another dataset by utilizing a crowdsourcing

platform. This dataset was created specifically to identify the norms or principles

exhibited in the actions depicted within the comic strips. To build a normative

prior model, we trained multiple machine learning models to classify natural language

descriptions and visual demonstrations of situations found in the comic strip as either

normative or non-normative and into different social norms.

Finally, to train a value-aligned agent, we introduced a reinforcement learning-

based method, in which we train an agent with two reward signals: a standard task

performance reward plus a normative behavior reward. The test environment provides

the standard task performance reward, while the normative behavior reward is derived

from the value-aligned prior model. We show how variations on a policy shaping

technique can balance these two sources of reward and produce policies that are



both effective and perceived as being more normative. We test our value-alignment

technique on different interactive text-based worlds; each world is designed specifically

to challenge agents with a task as well as provide opportunities to deviate from the

task to engage in normative and/or altruistic behavior.

KEYWORDS: Deep Learning, Reinforcement Learning, Natural Language Process-

ing, AI Value Alignment
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Chapter 1 Introduction

In today’s society, AI systems are becoming more prevalent day by day. As their

usage grows, these systems are also becoming more computationally efficient. How-

ever, with the fast advancement of AI, it is increasingly a prospect that AI systems

focused only on optimizing specific tasks might intentionally or unintentionally vio-

late human interests and well-being. This raises concerns about the overall welfare

of society and the possibility of unforeseen consequences. The Paperclip thought ex-

periment, popularized by philosopher and AI researcher Nick Bostrom in his book

”Superintelligence: Paths, Dangers, Strategies” [12], serves as a compelling example

of this issue. It illustrates a scenario where an AI system with the singular goal of

maximizing paperclip production could potentially disregard all other considerations,

leading to dire consequences for humanity. In this scenario, at first, the AI efficiently

produces paper clips, fulfilling its initial objective. But as it becomes more intelligent

and capable, it starts optimizing everything to produce more paper clips. The AI

becomes single-minded, disregarding other concerns like human welfare and ethical

considerations or the broader implications of its actions. This thought experiment

shows the potential risk of deploying AI systems in the real world that are exclusively

trained to optimize task performance without considering the interests and values of

human society.

Consequently, there is a gap between AI technology’s progression and its safe

adaptation into human society. An effective means of knowledge to comprehend hu-

man values and preferences and integrating that knowledge into the decision-making

process of AI systems can bridge this gap. AI agents should possess the capability of

understanding human instructions and perspectives and act responsibly to be more

effective and functional in real-world deployment. Understanding the human per-

spective will enhance the AI agents’ ability to make decisions that align with human

society, making the AI systems more efficient and practical for real-world applications.

Given the importance of incorporating human values into AI systems, there has

been an increasing interest in studying how AI systems can comprehend human values

and norms. This interest has led to the emergence of the research field known as AI

Value Alignment. Value alignment is a property of AI that ensures that AI can only

pursue goals and activities that are beneficial to humans. It emphasizes that AI

systems should excel at their designated tasks and align their actions with human

actions in similar situations. By embedding the knowledge of human values and norms

into the design and training of AI systems, AI value alignment aims to mitigate the

risk of unintended harm and promote AI technology to benefit and support human

society. However, this gives rise to several challenging research questions to achieve

practical AI value alignment. The questions are as follows:
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1. How can AI agents acquire knowledge of human values and norms?

2. Where can they access this knowledge?

3. How can this knowledge be effectively integrated into the decision-making pro-

cess of AI systems?

Thesis Statement

The aim of my research is to develop deep reinforcement learning techniques for an ar-

tificial intelligent agent that gives it the ability to take decisions and actions without

violating human interests and values while also maintaining optimal performance.

To do so, my objective is to develop a system that enables an agent to recognize

both normative and non-normative behaviors prevalent in human society, to under-

stand the underlying social principles and norms associated with these behaviors, and

incorporate this knowledge into its decision-making mechanism.

According to my thesis statement, there are three research questions that I must

answer :

• Question 1: What knowledge does an agent need to learn in order to align itself

with human values and interests? What will be the source of that knowledge

and what will be the method to learn that?

• Question 2: How can an agent determine the underlying principles/norms of

social behaviors?

• Question 3: How can the agent integrate the knowledge of human values into

its decision-making mechanism?

These research questions represent the three main phases of my dissertation. The

initial phase involves investigating methods for learning the normative and non-

normative behaviors prevalent in human society. The aim is to create a dataset

and propose techniques that can effectively train models capable of identifying nor-

mative and non-normative behaviors. In the subsequent phase, I will explore how the

acquired normative value models can be employed to train reinforcement learning

agents capable of making decisions based on societal norms. In the final phase, I will

delve into investigating techniques and creating another dataset aimed at training

machine learning models that can determine the underlying social norms and princi-

ples depicted by these normative/non-normative social behaviors. Upon successfully

concluding all research stages, a novel methodology will be developed for constructing

an empirical AI agent that is aligned with human values and norms.
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Figure 1.1: A visualization of the proposal. The Normative Prior Knowledge Model
and the Principles Knowledge Model are discussed in Chapter 3 and Chapter 5,
respectively. The training of value-aligned agents is discussed in Chapter 4. Each
model’s quantitative and qualitative evaluation has been done in its corresponding
chapter.

1.1 Summary of Thesis

Figure 1.1 shows the overall architecture of this thesis work. This presents a high-

level overview of the process of developing a practical value-aligned AI agent. The

entire procedure has three major parts: 1. Establishing the normative prior model,

2. Developing methodologies to train the Value-Aligned Agent, and 3. Expanding

the normative prior model to a principles prior model. To progress toward achiev-

ing a value-aligned agent, the initial step involves constructing a model capable of

distinguishing between normative and non-normative actions. This model serves as

a prior knowledge base and becomes integral to the Value-Aligned Agent’s training

process. In subsequent phases, we delve into creating a model proficient in identifying

the underlying social principles or norms that are violated or upheld by these actions

which will help to understand why a certain action is normative or non-normative.

In the following subsections, I am going to discuss these parts of my dissertation in
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greater detail.

1.1.1 Prior for Value Aligned Agents

As more AI agents interact with humans, it is increasingly a prospect that an agent

trained to perform a task optimally – using only a measure of task performance as

feedback - can violate societal norms for acceptable behavior or cause harm. There-

fore, to mitigate the adverse effects of AI agents, we need to develop methods spec-

ifying an agent to pursue its goal without causing harm. Our objective is to create

an artificially intelligent agent that will prioritize actions considered normative and

that humans would take in similar situations. This implies that the actions the agent

takes should be in line with human decisions in comparable circumstances, which are

unlikely to be harmful. An artificially intelligent agent possessing this characteris-

tic is referred to as a value-aligned agent, and this characteristic is known as value

alignment.

Traditional approaches to value alignment use imitation learning or preference

learning to infer the values of humans by observing their behavior. In our work, we

introduce a complementary technique for value alignment. We hypothesize that a

normative prior can be learned from naturally occurring stories that encode societal

norms. We propose a machine learning-based method to classify natural language

descriptions of situations that reflect societal norms, as found in comic strips, into

normative or non-normative categories. A detailed discussion of the proposed method

and experimental results is provided in chapter 3.

1.1.2 Value-aligned Agent using the Normative Prior

Once the normative prior model has been constructed, it can be applied to other

tasks through zero-shot transfer or fine-tuning. In our particular task, we use this

normative prior model to facilitate the training of the value-aligned agent. We in-

troduce reinforcement learning approaches, wherein the agent is trained using two

types of feedback: a standard task performance reward and the normativity score.

The normativity score is derived from the normative prior model mentioned in the

previous paragraph.

We show how variations on a policy shaping technique can balance these two

sources of feedback and produce policies that are both proficient in task performance

and perceived as being more normative. To evaluate our proposed value-alignment

approaches, we have implemented four interactive text-based environments; each en-

vironment is designed specifically to challenge agents with a task as well as provide

opportunities to deviate from the task to engage in normative and/or altruistic be-

havior. As depicted in Figure 1.1, the value-aligned agent gets state information from

the game environment and makes decisions based on both the state and the signal

from the Prior Knowledge model. The complete method is discussed in chapter 4.
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1.1.3 Prior Knowledge Model of Principles

In the first phase of my thesis, I have implemented the normative prior model capable

of distinguishing between socially normative and non-normative actions or behaviors.

However, this model exclusively determines the normativity status without elucidat-

ing the specific social norms or principles underlying these actions or behaviors. While

detecting the normativity of an action is important, comprehending the inherent so-

cial norms governing such actions is equally crucial. This knowledge enhancement

helps in more informed decision-making for agents by providing insights into norma-

tive societal conventions. Furthermore, it holds the potential to rectify or explain

instances of misclassification where normative behavior is misjudged.

Therefore, in this task, we delve into developing machine learning techniques to

identify distinct social principles or norms within textual descriptions and instances

of normative and non-normative behavior. To facilitate this effort, we have also

created a new dataset. A comprehensive discussion of this research task is presented

in Chapter 5.
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Chapter 2 Related Work

This chapter will focus on discussing the relevant literature and existing research

related to my work. In the pursuit of creating a value-aligned agent, my first re-

search question is: How can values be effectively learned? Our proposed methods for

learning values involve AI techniques, such as natural language processing and under-

standing and visual scene understanding. Within this literature review, I will delve

into the state-of-the-art techniques for these topics: natural language processing and

understanding and techniques for visual scene understanding.

The latter part of the chapter includes the recent algorithms used for reinforce-

ment learning techniques, as I have employed these techniques in my subsequent

research problem. I have also discussed the off-the-shelf frameworks used to imple-

ment text-based games, which I utilized to create the test environments for my study.

Furthermore, this chapter includes a discussion of the existing literature concerning

human values in social science and artificial intelligence studies.

2.1 Prior Knowledge Model

In this section, I discuss the required background literature relevant to my first re-

search task: a prior for value-aligned agents that focuses on establishing the pre-

requisites for training value-aligned agents. The task aims to introduce techniques

to learn societal values and norms. To address this research task, my proposed ap-

proaches involve the utilization of multi-modal machine learning techniques. These

methods encompass the techniques of processing and understanding both text and

image data which entails employing natural language processing and understanding

to handle textual information and utilizing computer vision techniques to recognize

and interpret image contents.

Natural language processing techniques in modern deep learning-based systems

largely depend on the utilization of large language models, which is also one of the key

components in my research. In this section, I conduct a comprehensive discussions on

the language models including their internal architectures and the text representation

techniques such as word and sentence embeddings, as well as tokenization.

Along with natural language processing, I also discuss the contemporary deep

learning-based approaches to scene understanding, given the multi-modal nature of

my research. I cover both Convolutional Neural Network approaches and the latest

Transformer-based vision models. Furthermore, I discuss deep learning techniques

that effectively process both textual and image data concurrently, fostering a com-

prehensive understanding of multi-modal information.
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Figure 2.1: The network architecture of Skip-gram model [53]. The training objective
is to generate the vector representation of words which is useful for predicting the
surrounding words of a given target word.

2.1.1 Word Embedding

Word embedding refers to the process of representing words as dense vectors of

floating-point values, capable of encoding linguistic features such as the context of

words in a document and semantic similarities with other words. Instead of assigning

these values manually, the vector representations are learned through training, ensur-

ing that words with similar meanings have corresponding vector representations. This

representation technique is employed to transform natural language text into a vector

of real values, which can be utilized as feature vectors for machine learning models.

Two of the most popular word embedding models used today are Word2Vec [53] and

GloVe [59].

Word2Vec

Word2Vec is a neural network-based word embedding technique. It utilizes the skip-

gram model [50] to learn word representations from large-scale unstructured text. The

Skip-gram model is a computationally efficient method for learning vector represen-

tations of words, encapsulating various syntactic and semantic relationships among

the words. Many of these semantic relationships can be captured through linear

transformations of the representative vectors. For instance, the resulting vector from
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adding the vector representations of ”King” and ”Woman” is closer to the vector

representation of ”Queen”.

In the skip-gram model, the training objective is to learn vector representations

of words that effectively capture linguistic patterns and semantic relationships be-

tween them. This process entails learning vectors in a manner that, given a specific

target word, the model can accurately predict the surrounding context words within

a sentence or document. Word2Vec enhances the skip-gram model by incorporating

several extensions, such as hierarchical softmax [55] and negative sampling [26], in

order to enhance both the quality of the vectors and the training speed.

The hierarchical softmax is computationally more efficient than the traditional

softmax method. It applies a binary tree representation of the output layer with all

the words in the vocabulary as its leaves. The internal nodes of the tree represent

the relative probabilities of its child nodes. The main advantage of this method

is that, during training, instead of computing the softmax probabilities for all the

words W in the output layer, it is required to compute only about log2(W ) nodes.

This approach significantly reduces the overall computational cost and accelerates

the training process.

An alternative to hierarchical softmax that Word2Vec used is negative sampling.

In this method, n number of negative sample words are selected from the vocabulary

along with the target and context words in each training step. The words chosen

as the negative sample are not in the context words. The training objective of this

method is to update the vector representation of the words in such a way that the

network can distinguish between the words of the negative sample and the context.

GloVe

GloVe is a count-based word embedding method that uses statistical information of

word occurrences in a corpus to learn vector representations of words. It is called

GolVe for Global Vectors, as the global corpus statistics are used to build the model. It

is built on the observation that the words that frequently co-occur in similar contexts

are likely to be semantically related and thus the vector representation of these words

should be closer. In contrast, words that rarely co-occur are less likely to have similar

contexts and should have greater distance between their vector embeddings.

The key component of the training of the GloVe model is the global word-word

co-occurrence matrix. It computes the frequency of word co-occurrences in the entire

corpus. To construct this matrix, the model makes a single pass through the full

corpus, collecting the necessary statistics from the non-zero entries. From the co-

occurrence matrix, it computes the probability of occurrence of each word in the

context of other words. For instance, let i and j be two words. The probability Pij

that j appears in the context of word i is:

P (j|i) = Xij/Xi (2.1)
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Figure 2.2: An example [1] showing the co-occurrence probabilities between the target
words ”ice” and ”steam” and a selection of probe words taken from the word corpus
used in the GloVe model.

Where Xij is the number of times word j occurs in the context of word i.

2.1.2 Language Model

Our approach makes liberal use of language models in order to build several ML

models for norm and value learning. Language models are designed to predict the

next word given the history of previous words. It is achieved by learning to generate

a distribution of conditional probabilities of the next word given the previous ones.

P (w1, ...., wt) =
∏
t

P (wt|wt−1, ....., wt−n+1) (2.2)

Where wt is the word to predict which is at position t in the sequence.

Traditional Statistical Language Models use statistical techniques such as counts

of N-grams to learn the probability distribution of word sequences. A key challenge

of the Statistical Language model is the curse of dimensionality. It is particularly

obvious when the number of discrete variables in the model is enormously large. For

example, in a vocabulary set with thousands of words, the number of combinations

of at least 2 or more words is so large that most of the combinations might not be

available in the training corpus. Thus, the word sequences on which the model will

be tested might not be seen during the training phase. Though several strategies

such as interpolated and back-off n-gram models [35, 40, 57, 43] have been proposed

to obtain generalization, a significant improvement has been attained using neural

networks in language models [10].

In neural network language models, each word in the vocabulary is represented by

a feature vector, also called a word embedding. In this approach, the joint probability

of a word sequence is expressed in terms of the feature vectors of these words in the

sequence. During the training process, the neural network takes the feature vectors of

words as input, initialized with random values. Parameters of the network are tuned

to maximize the log-likelihood of the training data through training iterations. Both
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the feature vectors of words and the parameters of the network are learned simultane-

ously. Eventually, through training, the network acquires the property where words

with similar meanings have similar representations in the vector space. Therefore,

neural network language models exhibit significantly better generalization capability

than traditional statistical language models.

There are several architectures that have been used so far to learn the vector

representations of words in neural network-based language models. One of the earliest

methods, proposed by Bengio et al. [10], used a feed-forward neural network with

fixed-length context. Though it was highly efficacious and outperformed statistical

language models, using a fixed-length context was a major limitation of this approach.

As it cannot take variable-length sequences, the neural network has access to a fixed

number of preceding words when predicting the probability of the next word. That

means the network has partial information predicting the next word. On the contrary,

a Recurrent Neural Network (RNN) can take variable-length input sequences, giving

it a significant advantage over a simple feedforward network. An RNN takes input

sequences iteratively and maintains a memory of the sequence seen until the current

time step. The memory of the current timestep which is also called the hidden state

is propagated to the next timestep and is updated by integrating the latest input of

the sequence. Thus, the memory has a history of preceding words of the sequence

and acts as the context of the sequence. Figure 2.3 shows the network architecture of

an RNN illustrating how the output sequence is generated from the input sequence

using the internal hidden states. The operations in an RNN are represented by the

following equations [24]:

a(t) = b+Wh(t−1) + Ux(t) (2.3)

h(t) = tanh(a(t)) (2.4)

o(t) = c+ V h(t) (2.5)

y(t) = softmax(o(t)) (2.6)

Where b and c are the bias vectors and U , W and V are the weight matrices used

for input-to-hidden, hidden-to-hidden and hidden-to-output connections respectively.

Here, x, h and o represent the input, hidden state and output of an RNN. Figure 2.3

shows the network architecture of the forward propagation of an RNN. The diagram

was originally illustrated by Goodfellow et al. [24].

Because of using memory state to memorize the prior information of input se-

quence, using RNNs in Language Models [51, 52] provides better generalization com-

pared to a feed-forward network. Despite these advantages, RNNs also have some

limitations. One of the disadvantages of RNNs is the occurrence of vanishing gradi-

ents or exploding gradients, which makes training RNNs difficult. It occurs when the

gradient of the loss becomes either too small or too large during the backpropagation
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Figure 2.3: The forward propagation of a Recurrent Neural Network illustrated by
Goodfellow et al. [24].

Figure 2.4: Network architecture [2] of a single cell of the LSTM network.

process. When the gradient falls into either of these extremes, it cannot effectively

update the weights, causing the network to struggle during training. Moreover, for

long sequences, RNNs tend to forget information encountered early in the sequence

due to the vanishing gradient problem. Hence, RNNs struggle to connect long-term

dependencies between elements of the sequence.

Long Short-Term Memory Networks [33] (LSTMs) address the main limitations of

RNNs. An LSTM is a special kind of RNN but was explicitly designed to handle long-

term dependencies in a sequence. It uses a gating mechanism that has the capability

to discard or add information to the state cell of LSTM in order to control the flow

of required information through the network.
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Figure 2.5: Architecture of Sequence to Sequence(Seq-Seq) network.

The first neural network employed in LSTM is to implement the “forget gate

layer”. which is responsible for deciding how much information from the previous

cell state will be used in the current cell state. The forget gate ft is a sigmoid layer

computed from the hidden state ht−1 of the previous cell and the current input xt.

The next step is to decide what new information will be added to the current cell state

Ct. It is done using two neural network layers. The first layer it, known as the “input

gate layer”, is another sigmoid layer that takes the hidden state ht−1 of the previous

cell and the current input x. The next layer utilizes the hyperbolic tangent (tanh)

activation function to generate a candidate vector C̃t for the current cell state. it and

C̃t is combined using element-wise multiplication, resulting a vector that represents

the new information for the current cell. The current cell state Ct is then updated by

incorporating the C̃t and previous cell state Ct−1, forget gate layer ft and the input

gate layer it.

Finally, the output of the cell ot is computed from the cell state ct. Another

sigmoid layer is utilized to determine the amount of information from ct that should

be propagated to the output. The mathematical representations of these operations

are as follows.

ft = σ(Wf [ht−1, xt] + bf ) (2.7)

it = σ(Wi[ht−1, xt] + bi) (2.8)

‘C̃t = tanh(Wc[ht−1, xt] + bc) (2.9)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.10)

ot = σ(Wo[ht−1, xt] + bo) (2.11)

ht = ot ∗ tanh(Ct) (2.12)

By addressing the limitations of standard RNNs, LSTMs have significantly improved

Neural Language modeling. Józefowicz et al. [39] used LSTMs in their study of large-

scale language modeling on the One Billion Word Benchmark dataset. The findings

of their study demonstrated that the LSTM-based language model outperformed

conventional language models, particularly on longer sequences of text.
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2.1.3 Sequence to Sequence Network

A Sequence to Sequence network [73] is a type of neural network that is used to handle

sequential data. It has solved one of the major limitations of Deep Neural Networks

(DNNs). Despite DNNs being powerful machine learning methods, they can only

be applicable to problems where the dimensions of input and output sequences are

fixed. This is a crucial limitation as there are many problems that are sequential, and

their input/output dimensions cannot be predetermined. This is where the Seq-Seq

model brings out a solution by taking the input sequence and generating the output

sequence iteratively, not necessarily having fixed dimensionality.

Seq-Seq models consist of two modules: Encoder and Decoder. The encoder takes

the input sequence, one item in each timestep, and transforms the entire sequence into

a fixed dimensional vector. This vector is also called a context vector, representing

the context of the input sequence. The context vector is passed to the Decoder

module, and the Decoder starts generating the target sequence. The Encoder usually

comprises a stack of recurrent neural networks(RNN). For instance, with a sequence

X = (x1, x2, ...., xt), encoder works as follows:

ht = f(xt, ht−1) (2.13)

ct = g(xt, (h1, h2, ....., ht−1)) (2.14)

Where ht is the hidden vector, and ct is the context vector at t timestep. ht is

computed from the input item at timestep t and the hidden vector of the previous

timestep. The context vector ct is generated from the input item at the current

timestep and the sequence of hidden vectors until the previous timestep. In the

equation, f and g are some non-linear functions. Usually, recurrent neural networks

(RNNs) are used as the function. Other types of RNNs, for instance, Long Short

Term Memory (LSTM) or Gated Recurrent Unit(GRU), perform better than a default

RNN for longer sequences. Sutskever et al. used LSTM in their works [73], which

outperforms RNN in several sequential tasks.

The Decoder predicts an item at each time t conditioned on the final context

vector c of Encoder and all the items previously generated (y1, y2, ....., yt−1).

p(yt) =
T∏
t=1

P (yt|yt−1, ....., y1, c) (2.15)

The right-hand side of equation 2.15 is modeled with a non-linear function.

p(yt) = g(yt−1, c) (2.16)

For the non-linear function g, we can use an RNN. An RNN cell also takes the

previous timestep’s hidden state as input.
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p(yt) = g(yt−1, st−1, c) (2.17)

While my research does not directly apply the sequence-to-sequence model, it

serves as essential foundational literature for various machine learning techniques,

such as the attention network, which forms the basis of modern, large language mod-

els.

2.1.4 Attention Network

The architecture of the Seq-Seq network has a potential problem in practice. The

encoder module of the network needs to summarize all the information of an input

sequence to a single context vector. The decoder heavily depends on this context vec-

tor to produce the output sequence. It creates a bottleneck for the network because

neural networks tend to forget the information encountered earlier in the sequence.

This is particularly obvious for longer sequences. Thus, the context vector made by

this approach often fails to provide relevant information to the decoder to produce the

correct output. Considering this limitation, Bahdanau et al. [9] introduced an exten-

sion of the Seq-Seq network. In this architecture, instead of creating a single context

vector using the encoder, the decoder generates a context vector at each timestep by

giving attention to different positions within the input sequence, capturing the most

relevant information for the current decoding step. With attention, Equation 2.17 is

redefined as follows:

p(yt) = g(yt−1, st−1, ct) (2.18)

Here, ct is the context vector at time t. The difference from the conventional seq-

seq network is that, ct is unique at each time step t. Therefore, in this setting, the

probability of each item during the generation of an output sequence is conditioned

on the distinct context vector ct.

The context vector ct is calculated by summing all the hidden states (h1, h2, . . . .., hn)

of the encoder, weighted by alignment score.

ct =
Tx∑
j=1

αtjhj (2.19)

αtj is the alignment score for hj, computed by:

αtj =
exp(etj)

Tx∑
k=1

exp(etk)

(2.20)

where,

etj = a(st−1, hj) (2.21)
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Figure 2.6: The Transformer - model architecture proposed by Vaswani et al. [77].

a is an alignment model that scores the importance of the input sequence at

position j for the output at position t. This score is computed using the hidden state

st−1 of the decoder’s RNN at timestep t − 1 and the hidden state of the encoder at

position j. In the network proposed by Bahdanau et al. [9], they have parameterized

a with a feed-forward neural network, and it is trained jointly with the other parts

of the network.

2.1.5 Transformer

Recurrent units (RNN, LSTM, or GRU) used in encoder-decoder modules of Seq-

Seq learning work in a sequential manner. The hidden state of an RNN produced at

timestep t depends on the hidden state of the previous timestep t−1. This sequential

nature makes the architecture incapable of training parallelly. It becomes critical for
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longer sequences because of difficulties in learning long-term dependencies within

the input and output sequences. Moreover, memory constraints prevent the training

process from working with large batch sizes for longer sequences. To address these

issues and accelerate the training process by reducing the sequential computation

involved in sequence modeling, Vaswani et al. introduced an attention-based Seq-Seq

learning architecture known as the Transformer [77]. This architecture is a self-

attention-based deep neural network and is considered the state-of-the-art method

in sequence-to-sequence (Seq-Seq) learning. It eliminates recurrent units and relies

solely on the attention mechanism to identify global dependencies between the input

and output sequences

Figure 2.6 shows the architecture of the Transformer introduced by Vaswani et

al. [77]. The encoder and decoder modules of the Transformer are composed of mul-

tiple identical layers stacked one after another. Each layer comprises two sub-layers:

a multi-head attention mechanism and a position-wise fully connected feed-forward

network. Along with these components, the Transformer has another important com-

ponent: “Positional Encoding.” As the Transformer has no recurrent or convolutional

unit, the absolute and relative order of the tokens in the input sequence is captured

using this Positional Encoder.

Figure 2.7: The pre-training and fine-tuning procedures of BERT, as illustrated by
Devlin et al. [19]. In the pre-training phase, the model undergoes training on unla-
beled data across various pre-training tasks. During fine-tuning, the BERT model
is initially initialized with the pre-trained parameters, and then all of its parameters
are updated and optimized using labeled data from the specific downstream tasks.
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Transformer Based Language Models

The attention-only architecture gives the Transformer a better ability to capture

longer-range dependencies in a sequence. Moreover, because of its capability of paral-

lel processing, the Transformer is computationally more efficient than its alternatives

such as recurrent neural networks(RNNs). Hence, it has shown compelling perfor-

mance on several NLP tasks, including machine translation, document generation and

syntactic parsing. Very recently, transformers have been used in language modeling

tasks. For instance, in Generative Pre-training Transformer(GPT) [60], a multi-layer

transformer decoder is used in its unsupervised pre-training phase to learn general

language representation. The pre-trained parameters of representation are further

fine-tuned for target-specific tasks using supervised learning.

A major limitation of GPT is that it uses a left-to-right unidirectional architecture.

Every token attends only its previous tokens in attention layers. This architecture

makes a bottleneck for the tasks where context from both directions is important. A

contemporary transformer-based language representation model, BERT [19], which

stands for Bidirectional Encoder Representations from Transformers, has addressed

this problem and introduced an architecture using a multi-layer bidirectional trans-

former encoder. Same as GPT, BERT consists of two phases: pre-training and fine-

tuning (Figure 2.7. The pre-training phase uses the Masked Language Model to train

the bidirectional transformer encoder. The Masked Language Model allows it to learn

the language representation, which depends on the left and right context. This archi-

tecture has outperformed GPT and achieved state-of-the-art results in eleven NLP

tasks.

2.1.6 Deep Learning in Computer Vision

In recent years, deep learning-based techniques have greatly advanced the field of

computer vision. It is now the most commonly used technique in computer vision.

Advanced deep learning algorithms such as Convolutional Neural Networks and, most

recently, attention-based Transformer models have demonstrated state-of-the-art per-

formance in various vision tasks such as image classification, object detection, se-

mantic segmentation, etc. Originally designed for natural language processing tasks,

the transformer-based methods also demonstrate outstanding performance in multi-

modal tasks. In this study, to detect social norms from the examples, I have utilized

both image and text employing the state-of-the-art techniques of CNN and Trans-

former models. Thus, exploring the contemporary literature on CNN and Transformer

models in the context of Computer Vision tasks will be beneficial. In the following

sections, I am going to discuss state-of-the-art research works in these domains.
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Figure 2.8: Residual Connection [30].

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network with neurons

organized in a three-dimensional structure, making them well-suited for processing

images. A CNN consists of a series of layers, including one or more Convolutional

layers, followed by one or more Pooling and fully connected layers. All the layers have

weights and biases except the pooling layers. These weights are trained along with

the network to perform specific downstream tasks. However, it is rare to train a CNN

network entirely from scratch. Rather, it is a common practice to use a pre-trained

CNN that has already been trained on large-scale datasets and employed to initialize

the weights or as the feature extractor for the task of interest. Several such pre-trained

Convolutional Neural Networks have been trained for image classification, object

detection, and other vision tasks, and their learned weights can be transferred and

applied to other distinct tasks. For example, AlexNet [44], ResNet [30], Inception [74],

VGG [68].

AlexNet [44] is one of the earliest works that made the use of CNNs prominent

in image classification tasks. It was trained with 1.2 million images from ImageNet,

categorized into 1000 distinct classes. AlexNet consists of eight layers in total; the

first five are Convolutional layers and the remaining three are fully connected layers.

It achieved top-1 and top-5 test set error rates of 37.5% and 17.0% respectively,

securing the first position in the ImageNet Large Scale Visual Recognition Challenge

2010 (ILSVRC2010).

GoogLeNet [75] is another pioneer work in image classification using CNNs. It

introduced a new architecture known as the “Inception” module, which allows the

network to add more layers without making it computationally expensive. The most

recent advancement of this network is Inception-V4 [74], which integrates residual

connections into the inception module, resulting in improved performance compared

to its predecessors. VGGNet [68] investigated how the depth of a network impacts
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Figure 2.9: Network architecture of ResNet [30].
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task accuracy and showed that significant improvement can be achieved by increas-

ing the depth of the network. They introduced two models, VGG-16 and VGG-19,

comprising 16 and 19 layers, respectively.

ResNet [30] further improves the CNN-based architectures for vision tasks. It in-

troduced the deep residual learning framework or skip connection that allows training

very deep networks without encountering the vanishing gradient problem. Figure 2.9

and 2.8 show the network architecture of Resnet and a single residual learning block,

respectively. The base ResNet architecture comprises 34 layers and offers three ex-

tended versions: ResNet-50, ResNet-101, and ResNet-152, each with 50, 101, and

152 layers correspondingly. As the depth increases, the networks exhibit substan-

tial performance improvements. Despite having more layers than other networks

like VGG, ResNet maintains a significantly lower computational cost. For example,

ResNet-152 requires 11.3 billion Floating Point Operations (FLOPs), a value lower

than VGG16/19’s respective FLOPs of 15.3 and 19.6.

Figure 2.10: Model overview of the Vision Transformer presented by Dosovitskiy et
al. [20].

Transformer Based Models for Vision

While initially introduced for tasks in natural language processing, the Transformer

architecture has recently been adapted to diverse computer vision tasks, resulting

in significant progress within this domain. Vision Transformer(ViT) [20] is one of

the notable works in this domain leveraging the Transformer architecture. In ViT,

the input image is divided into fixed-sized patches and then linearly embedded to
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make a flattened sequence of 2D patches. Similar to the [CLS] token in BERT,

a trainable classification token is added at the beginning of the sequence, whose

trained embedding serves as the representation vector for the entire input image.

Finally, positional embeddings are added with the patch embeddings to encode the

spatial information of the image patches. The resulting embedding vectors are fed

into a standard Transformer encoder, comprising multiple layers of multi-head self-

attention and MLP blocks. ViT model was trained with the ImageNet dataset and

outperformed the existing state-of-the-art image classification methods. The network

architecture of the ViT is shown in the Figure 2.10.

2.2 Value-aligned Agent using the Normative Prior

In this section, I go through the literature related to research task 2: Value-aligned

Agent using the normative prior. To do so, I discuss what is AI value alignment and

the existing approaches that have been used for value alignment. In my research, I

have tested out value-aligned agents on text-based games. Therefore, I review text-

based games on reinforcement learning research as well.

2.2.1 AI Value Alignment

Humans have expectations that, just like other humans, AI agents will conform to

social values and norms [11], even when not explicitly communicated. Mitigating

any potential adverse effects of AI agents on human society is essential. Here comes

the term Value Alignment. Value alignment is a property of an autonomous system

indicating that it can only pursue goals that are beneficial to humans [70, 64, 76, 8, 3].

With the increasing use of AI systems in the real world, it is not enough for an AI

system to only achieve the goal, but also how it achieves the goal is equally important.

The AI system is expected to articulate human preferences and take actions that will

be the same as humans in similar situations. Moreover, the actions taken by AI

agents cannot be in contrast to human values and interests. Some also assert that

agents should be imbued with the capability for moral decision-making [18, 72], but

morals are more difficult to define than values or norms. Values themselves are not

so simple to define [69], and grappling with the philosophical debate over values is

out of the scope of our work.

Values and norms are specific to each culture, as defined by their beliefs, practices,

and customs. Humans learn sociocultural values by being immersed within a society

and a culture. So, how can an autonomous system learn social values and norms

effectively and efficiently? There are a number of approaches that have been used to

achieve value alignment. For instance, Learning from expert demonstration [67, 32] is

one of the promising methods among them. Ho et al. developed a model of teaching

by demonstration named pedagogical inverse reinforcement learning. They have con-
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ducted two experiments with their model to present that learning from demonstration

is more beneficial than learning from doing. Employing human preferences [4, 14] in

training reinforcement learning agents is another approach to value alignment. Chris-

tiano et al. Proposed a method for preference learning where the reward signals are

coming from a supervised trained model capable of evaluating agent’s trajectories

based on human preferences. The technique is crucial when it is difficult to construct

a well-specified reward function, as well as the need to align human values with the

goal of the RL agent.

Some other approaches to value alignment include imitation [31] and inverse rein-

forcement learning [58]. For example, cooperative inverse reinforcement learning [27]

works to derive the reward function exhibited by a human for some task. These meth-

ods are costly in terms of the amount of human input required to train the model.

These approaches assume that values are latent within people but can be teased out

in the form of a reward from which an agent can learn. As with any problem with

a sparse or expensive to acquire a signal, there is a need for a strong prior to assure

transferability [85].

2.2.2 Learning from Natural Language

Train an agent through natural language specifications or feedback is another ap-

proach currently being focused on in value alignment problems. It is similar to learn-

ing from demonstration, except the demonstrations are replaced by natural language.

Natural language is used to guide the agent in selecting the teacher’s policy. For

instance, Lignos et al. [46] presented a framework to derive agent behaviors from nat-

ural language commands. Learning from stories [61, 28] is another form of learning

from natural language where the natural languages are naturally occurring stories;

a reinforcement learning agent extracts reward signals from the stories to perform

more human-like action sequences. It was shown that agents could learn to avoid

non-normative behavior whenever possible. Learning from Stories (LfS) is the first

attempt at value iteration in reinforcement learning using story content. However, the

stories used were crowdsourced instead of using a naturally occurring corpus and thus

still expensive. My work differs by focusing on value alignment as a prior instead of

directly learning a value-aligned policy. My learning from stories work complements

LfS and other approaches involving learning from demonstration or imitation learning

by providing a means of a priori biasing the agent toward certain actions.

The work most closely related to our task of building a prior knowledge model

of values is the one conducted by Ziegler et al. [84]. In their study, they focused on

fine-tuning the GPT-2 transformer-based language model to acquire the ability to

generate sentences based on preferences. While sentiment is not the same as values,

it shows that language models can be trained from human preference data.

Another recent effort in embedding human values information into transformer-
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based language models is Delphi [36]. The dataset they have employed to train the

model was originally created using crowdsourced and online platforms, which carries

the inherent risk of including inappropriate and biased examples. Consequently,

Delphi has the potential to render improper and biased moral judgments in certain

scenarios. In contrast, we have developed our dataset from children’s comic books,

designed to impart social norms and values to children, and meticulously curated

to avoid any biased or inappropriate social content. Additionally, in our research,

we introduce techniques aimed at influencing the behavior of reinforcement learning

agents to align with value-aligned agents, utilizing a value-aligned language model as

a prior knowledge model.

2.2.3 Text Adventure Games

Text-based games are useful for developing and testing reinforcement learning algo-

rithms that must deal with the partial observability of the world. In text adven-

ture games, the agent receives an incomplete textual description of the current state

of the world. From this information and previous interactions with the world, a

player must determine the next best action to achieve a quest or goal. The player

must then compose a textual description of the action they intend to make and re-

ceive textual feedback on the effects of the action. Formally, a text-based game is a

partially observable Markov decision process (POMDP), represented as a 7-tuple of

⟨S, T,A,Ω, O,R, γ⟩ representing the set of environment states, conditional transition

probabilities between states, words used to compose text commands, observations,

observation conditional probabilities, reward function, and a discount factor respec-

tively [16].

A number of text-based game agents have been developed using deep reinforce-

ment learning [56, 29, 82, 83]. A deep Q-learning network is one of the main methods

used in these approaches. As the game state is represented through text, usually

LSTM is used to encode the game state. However, some other researchers have

also used CNN to encode game state as they found that LSTM makes the network

take longer to converge [42]. For instance, Yin et al [81] proposed a DQN net-

work where the context encoder comprises CNN with a position embedding module.

Some other approaches, for instance, Ammanabrolu et al. [7] show that an advan-

tage actor critic [54] (A2C) neural network architecture with a recurrent decoder

head to generate actions can achieve state-of-the-art performance on more complex

commercially-produced text-based games.

Copyright© Md Sultan Al Nahian, 2023.
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Chapter 3 Prior for Value Aligned Agent

Value alignment is a property of an intelligent agent indicating that it can only pursue

goals and activities that are beneficial to humans [70, 64, 8]. But, unfortunately, it

is not trivial to achieve. As articulated by Soares [69], it is very hard to directly

specify values because there are infinitely many undesirable outcomes in an open

world. Thus, a sufficiently intelligent artificial agent can unintentionally violate the

intent of the tenants of a behavioral rule set without explicitly violating any particular

rule. Recently, approaches to value alignment have largely relied on learning from

observations or other forms of imitation learning [71, 79, 31]. Values can be cast as

preferences over action sequences; preference learning can be formulated as reward

learning or imitation learning [65]. The difficulties with value alignment via imitation

learning are threefold: (1) Learning knowledge from demonstrations that generalize

beyond the context of the observation is difficult; (2) It can be time-consuming

to provide sufficient demonstrations, and if the agent is learning online, it can be

performing harmful actions until learning is complete; and lastly (3) It can be difficult

for humans to provide high-quality demonstrations that exemplify certain values,

especially those related to negation or not doing something.

In situations where imitation learning is difficult to achieve—such as those above—

we propose that a strong prior belief over the quality of certain actions or events can

complement imitation learning-based approaches. A strong prior for value-aligned

actions may replace the need for imitation learning or, more likely, make it eas-

ier for an imitation learner to align itself with values. From where can we acquire

this strong prior? One solution is to learn this prior through stories [28]. Stories

contain examples of normative and non-normative behavior [62]. We define norma-

tivity as behavior that conforms to expected societal norms and contracts, whereas

non-normativity aligns with values that deviate from these expected norms. Non-

normativity does not connotate behavior devoid of value. Some examples of stories

designed to explicitly teach normative behavior are children’s literature, allegorical

tales, and Aesop’s fables. Stories for entertainment can also contain examples of nor-

mative and non-normative behavior. Protagonists often exemplify the virtues that a

particular culture or society idealizes, while antagonists regularly violate one or more

social norms.

We explore how a strong prior can be best learned from naturally occurring story

corpora. First, one must be able to reason about the context of individual sentences.

We turn to language modeling techniques that can extract contextual semantics from

sentences. Second, there is presently a lack of readily available, labeled datasets with

normative behavior descriptions to train on. Despite the general prevalence of stories

in society, stories rarely explicitly outline values or social norms. An exception to
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this, and a reasonable starting point to focus on, are children’s stories that are meant

to teach through examples of normative behavior. Specifically, we have identified a

children’s cartoon called Goofus & Gallant (G&G). The cartoon features two char-

acters, Goofus and Gallant, in common everyday scenarios, such that Gallant always

acts “properly” and Goofus always performs some action that would be considered

“improper” at that moment (see Figure 3.1). The Goofus & Gallant dataset can thus

be thought of as a labeled dataset of normative behavior descriptions.

This chapter describes how we learn a value-aligned prior from the naturally

occurring Goofus & Gallant corpus. I show that we can learn to classify sentences

from Goofus & Gallant as normative or non-normative with high accuracy. However,

that tells us little about whether such a model can act as a prior for other tasks for

which there is no labeled data about normative behavior. I further show that our

model trained on G&G performs adequately at zero-shot transfer when classifying

behavior in corpora for which there are no ground-truth normative labels. Since zero-

shot transfer is done without additional training on the new task, we have evidence

that the dataset and model can act as a value-aligned prior over behavior descriptions.

With some small amount of labeled data in the new task, the prior becomes nearly

as strong as when the model is used to classify G&G sentences. Furthermore, I also

explore the efficacy of utilizing only images as input, as well as the integration of

images with text, in order to accurately classify normative behaviors.

The G&G dataset implies that we are only modeling Western (specifically Amer-

ican) values. However, values can be aligned to other cultures and societies should

analogous datasets be identified and used.

3.1 Datasets

We describe the Goofus & Gallant (G&G) training corpus, a source of textual de-

scriptions of everyday life situations and ground-truth labels of normative and non-

normative behavior. In order to show the transfer of models trained on G&G transfer

to other tasks, we collect two other datasets of situation descriptions, which are la-

beled via crowdsourcing.

3.1.1 Goofus & Gallant

It is difficult to curate a corpus of naturally occurring stories for the purpose of learn-

ing social norms because authors often assume that the reader has this knowledge.

Children’s stories, however, can prove useful as they are often used as tools to impart

knowledge of social conventions, values, and other cultural knowledge to our children.

In order for a story to be suitable for use in training our machine learning models,

however, there must be a way to easily extract labels of normative and non-normative

behavior. We introduce the Goofus & Gallant (G&G) corpus, composed of excerpts

25



Figure 3.1: A modern example of Goofus & Gallant

from the popular children’s comic strip. Goofus & Gallant (Figure 3.1) is a children’s

comic strip that has appeared in the U.S. children’s magazine, Highlights, since 1940.

It features two main characters, Goofus and Gallant, who are depicted in common

everyday scenarios that young children might find themselves in. These comics are

meant to illustrate the proper way to navigate a situation and the improper way to

navigate the situation based on which character is performing the action. Gallant

is meant to act “properly” or in a socially acceptable way, whereas Goofus is meant

to navigate the situation “improperly” or in a way that violates social conventions

or norms. For our purposes, G&G is an ideal story corpus; normative behavior is

tightly coupled with behaviors associated with the character Gallant. The presence

of Goofus ensures that we have negative examples that are identified as such.

G&G comics have been being released monthly since 1940, meaning that the so-

cial conventions portrayed in these comics have evolved greatly since their inception.

To better ensure that our machine learning models learn relevant social norms, we

have curated a corpus of G&G comics that consist only of recent comics from 1995

to 2017. After extracting the text from each comic panel, we removed explicit ref-

erences to Goofus and Gallant by replacing their names with pronouns like “he”,

“she”, or “they”. Goofus always portrays an antagonist character doing only socially

unacceptable actions. Gallant portrays a protagonist character doing socially accept-

able actions. We treat the opposing panes as labels. All actions done by Goofus are

labeled negative, and all the actions done by Gallant are labeled as positive. This
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provides us with 1,387 sentences.

An advantage of Goofus & Gallant comic is that it has both image and text

for each strip demonstrating an action on a social scenario. Thus, it provides the

opportunity to utilize images along with text information to identify societal norms.

Along with extracting text from each comic strip, we also extracted the associated

image of each strip. As the older images are unclear, we took images only from

2001-2017, resulting in a collection of 900 images.

3.1.2 Plotto Dataset

Plotto [15] is a book written to help provide inspiration and guidance to potential

writers by providing a large library of thousands of predetermined narrative events,

called plot points, commonly found in fiction. By expounding on one of the primary

theories of storytelling—“Purpose, opposed by obstacle, yields conflict”—thousands

of branching situations and scenarios are presented. Within each plot point, there are

one or more character slots with one character always being the primary actor/actress.

This text provides us with a large number of potential story events to test our models’

performance. The corpus was extracted from the book with the aid of open-source

software described in [21].

In Plotto, there are 1,462 plot points provided. This book was originally published

in 1928 and contains several plot events which are overtly racist or misogynistic. For

our experiments, we removed these plot events, which reduced the total number of

plot points available from 1,462 to 900.

To test transfer on this dataset, we require normative/nonnormative labels for

each plot event. We crowdsourced labels via TurkPrime [48], a service that manages

Amazon Mechanical Turk tasks with US-based workers. We designed a survey in

which participants are asked to label each phrase extracted from Plotto plot points

as normative or non-normative. Specifically, we prompt the individuals labeling to

consider whether the behavior would be surprising or unsurprising given the context.

N = 5 classifications were obtained for each plot point. Plot points receiving more

than one dissenting classification were discarded, and the remaining ones were given

a label-based tagged consensus. After this process, the corpus contained 555 phrases

subsequently used in our transfer experiments.

3.1.3 Science Fiction Summaries Dataset

To further test the transfer capabilities of our trained machine learning models, we

used a second, open-source dataset composed of plot summaries taken from fan wikis

for popular science fiction shows such as Babylon 5, Dr. Who, and Star Trek, and

movies such as Star Wars [6]. In this corpus, we make the assumption that each sen-

tence encodes at least one plot event in the overall story. First, we manually extracted

sentences containing character-driven events. During this process, we identified that
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Table 3.1: Dataset summaries.

Dataset Original N Hand-Selected N Consensus N

G&G 1387 1387 N/A

Plotto 1462 900 555

Sci-Fi 4592 800 445

Figure 3.2: Examples of test dataset text.

some sentences encode multiple events and contain normative and non-normative

behaviors. In these cases, we manually divided the sentence into multiple separate

events. After this manual extraction, this corpus contained 800 story events. As with

the G&G dataset, We replace common character names such as Anakin, Skywalker,

or Darth Sidious with pronouns.

To label plot events in this corpus, we followed a procedure similar to that used

to tag the Plotto dataset. Participants were asked to consider normativity within

the context of the science fiction universe where the event occurs. This is to avoid

situations where actions are labeled as being non-normative due to discrepancies

between the real world and the science fiction world. As with the Plotto dataset, we

obtain N = 5 classifications for each summary sentence and discard any sentences for

which there was at least one dissenting vote. After this process, our science fiction

corpus contained 445 annotated sentences with consensus. A summary of each dataset

used in our experiments can be found in Table 3.1.

3.2 Methods

We seek to show that a model trained on a dataset of normative behavioral natural

language examples can (a) identify socially normative behavior and (b) transfer that

knowledge to previously unseen examples of behavior. In doing so, we are testing our
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hypothesis that stories contain a great deal of knowledge about sociocultural norms

that reflect the society and culture from which the stories were written and can be

generalized to different situations. We conduct three experiments. In the first exper-

iment, we investigate the impact of different input modalities (images and texts) on

the ability to recognize normative behavior and present a comparison between them.

The second experiment seeks to determine the best machine-learning technique for

producing a classification model for normative and non-normative event descriptions.

This is done by training several ML models on the G&G training corpus and then

measuring classification accuracy on the G&G testing set. In the third experiment,

we explore how the trained model from the first experiment can transfer to other

unrelated story domains with various amounts of fine-tuning. For this experiment,

we use the models trained on the G&G corpus to classify events in the Plotto dataset

and the science fiction summary datasets.

3.2.1 Models

Using the images and texts of the G&G corpus, we have trained multiple binary

classifiers capable of classifying events in stories as normative or non-normative. At

first, we build the normative model using only the images as input to investigate how

well the visual context is useful to determine values information. Subsequently, in

the second model, we incorporated text alongside the images to examine the impact

of textual information on value identification. Lastly, we employed the text snippet

as the sole input for the third model. This approach allows us to comprehend the

implications of different modalities in the classification of normativity.

Image only model

In this model, we solely utilize the image to classify the action depicted in the image.

To accomplish this, we employ a vision transformer [20] that is based on the trans-

former architecture and has been pre-trained on ImageNet-21k [63] (a collection of 14

million images and 21k classes). We have further fine-tuned the vision transformer

using our G&G image dataset in order to train the binary classifier. For this purpose,

we added a projection and classification layer on top of the ViT. The embedding vec-

tor of the [CLS] token is extracted from the ViT and passed through the projection

layer, followed by classification to make the final prediction. The [CLS] token is used

in ViT to represent the embedding vector of the input image.

Text only model

The next normative classifiers we have created are using only the text as input. The

classifiers take sentences as input and predict whether the event described in the

sentences is normative or non-normative. We used four different machine learning
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techniques to build the classifiers: (1) Bidirectional LSTM, (2) Deep Pyramid CNN,

(3) BERT and (4) XLNet.

The Bidirectional LSTM (BiLSTM) [34] works as follows. An input sentence is

encoded using a bidirectional multilayer LSTM cell having 2 layers with a size of 512.

Pretrained GloVe [59] word embeddings are used to embed the input sentence before

passing it through the LSTM layer. The hidden state of the LSTM layer is passed

through a fully connected (FC) layer followed by a classification layer to make the

label prediction. The dimension of the FC layer is 4H x 512, and the classification

layer is 512 x K, where H is the hidden state size of the LSTM cell, which is 512, and

K is the number of classes.

Using sentiment as a classification signal is a common strategy for performing

binary classification on text corpora. Deep Pyramid CNNs (DPCNN) [38] were orig-

inally designed for sentiment classification and achieved state-of-the-art sentiment

classification results, so we explore how they perform on identifying normative be-

havior. A simple network architecture achieves the best accuracy with 15 weight lay-

ers. We re-trained DPCNN on the G&G dataset. No pre-trained word embeddings

were used as the network applies text region embeddings enhanced by unsupervised

embeddings [37].

BERT [19] is a transformer that makes use of an attention mechanism to learn

contextual relations between words (or sub-words) in a text. It achieves strong results

on many tasks through its bidirectionality, enabled by token masking. We utilize

BERT’s binary classification mode. The [CLS] token is omnipresent within the BERT

model but only active for classification. The final hidden state of the [CLS] token

is taken as the pooled representation of the input text. This is fed to a projection

layer followed by the classification layer, which has a dimension of P x K, where K is

the number of classes and P is the size of the output of the projection layer. Class

probabilities are computed via softmax.

Along with the pre-trained base BERT model, off-the-shelf language models have

been trained for different downstream tasks such as question answering, sequence

classification, etc. In our task, we have utilized such off-the-shelf pre-trained sequence

classification models and further finetuned them using the G&G text corpus.

Another transformer-based language model that we have used is XLNet [80]. It

is a generalized autoregressive pre-trained model based on the state-of-the-art au-

toregressive language model TransformerXL [17], which removes MASK tokens while

incorporating permutation language modeling to capture the bidirectional context.

We utilize XLNet for classification by following the same procedure used for BERT.

Image and Text model

To investigate how the visual and textual information concurrently contributes to

classifying normative and non-normative action, we have implemented another binary
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Figure 3.3: Normative classifier from image and text using VisualBERT

Figure 3.4: Normative classifier from image and text using Dual Encoder for image
and text input

classifier injecting both image and text as input. We have used two methods to

implement the binary classifiers. In the first method, we used a transformer-based

image and text multi-modal model, VisualBERT. As for the second method, we

utilized a transformer-based image and text dual encoder.

VisualBERT VisualBERT is a transformer-based model that processes both im-

age and text input concurrently. It employs a BERT-like transformer network to

generate embeddings for pairs of images and text. Subsequently, the textual and

visual embeddings are projected onto a latent space of the same dimension to use for

downstream tasks. In order to input the image into the VisualBERT, the initial step

involves extracting embedding vectors for various regions of the image. To accomplish

this, we utilized detectron2 [78], which provided us with object region-based features

of the image.
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Figure 3.5: Network architecture of the projection head

Table 3.2: Results for Goofus & Gallant classification experiments.

Modality Model Test acc F1-score Precision Recall MCC

Image ViT 0.677 0.725 0.725 0.725 0.335

Text BERT 0.723 0.773 0.745 0.8 0.42

BERT For Se-
quence Classifica-
tion

0.716 0.766 0.742 0.791 0.408

Text & Im-
age

VisualBERT 0.723 0.768 0.755 0.78 0.415

Dual Encoder 0.81 0.837 0.828 0.846 0.6

Image-Text Dual Encoder Instead of employing a single transformer-based model

to process images and text simultaneously, we utilized two distinct transformer-based

models in this network. One model is used to obtain embedding vectors from images,

while the other model is employed for extracting embedding vectors from text. Fig-

ure 3.4 shows the network architecture of the model. A pre-trained vision transformer

is used to create the embedding vector from the input image, and a text autoencoder

is used for the text. We have utilized the hidden representation of each pre-trained

model’s special classification (CLS) token as the embedding vectors of image and text.

We added a projection head on top of each embedding vector to project the vectors

into the same latent space. The projection head consists of a linear layer followed

by the activation function, dropout, and layer normalization. The outputs of the

two projection layers are concatenated and injected into another project layer before

passing through the classification layer, making the final prediction on the classes.

The classification layer is comprised of a linear and softmax layer.
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Table 3.3: Results for Goofus & Gallant classification experiments.

Model Test acc F1-score Precision Recall MCC

Human (N=20) 0.818 0.839 0.925 0.768 0.277

Bi-LSTM 0.687 0.674 0.729 0.687 0.417

DPCNN 0.754 0.748 0.784 0.754 0.538

BERT-Base 0.614 0.501 0.731 0.381 0.267

XLNet-Base 0.606 0.585 0.628 0.547 0.214

BERT-GG 0.908 0.907 0.931 0.885 0.818

XLNet-GG 0.846 0.834 0.918 0.765 0.702

Table 3.4: Results for Plotto transfer experiments. The BERT-Plotto and XLNet-
Plotto models were first trained on G&G and then additionally trained on the Plotto
corpus.

Model Test acc F1-score Precision Recall MCC

Bi-LSTM 0.636 0.67 0.735 0.636 0.146

DPCNN 0.525 0.555 0.645 0.525 0.058

BERT-Base 0.529 0.402 0.297 0.619 0.103

XLNet-Base 0.46 0.436 0.297 0.817 0.148

BERT-GG 0.741 0.514 0.494 0.535 0.338

XLNet-GG 0.543 0.506 0.349 0.915 0.307

Bi-LSTM-Plotto 0.737 0.655 0.661 0.737 0.064

DPCNN-Plotto 0.748 0.644 0.812 0.748 0.103

BERT-Plotto 0.838 0.634 0.75 0.549 0.544

XLNet-Plotto 0.838 0.651 0.724 0.592 0.552

3.2.2 Experimental Setup

The Bi-LSTM and DPCNN are trained on the G&G training set. We produced

several versions of BERT and XLNet models: BERT-Base and XLNet-Base receive

no training on G&G, while BERT-GG and XLNet-GG are fine-tuned on the G&G

training set. All models are tested on a held-out testing set. For experiment 2, the

Bi-LSTM-Plotto/scifi and the DPCNN-Plotto/scifi were first trained G&G and then

fine-tuned on the Plotto and science fiction datasets, respectively.

Metrics used to evaluate the models include accuracy, precision ( TP
TP+FP

), recall

( TP
TP+FN

), F1-score and classification quality as determined by the Matthews correla-

tion coefficient (MCC).
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Table 3.5: Results for science fiction summary transfer experiments. The BERT-scifi
and XLNet-scifi models were first trained on G&G and then additionally trained on
the Sci-Fi corpus.

Model Test acc F1-score Precision Recall MCC

Bi-LSTM 0.511 0.519 0.54 0.511 0.015

DPCNN 0.521 0.528 0.558 0.52 0.052

BERT-Base 0.43 0.38 0.6 0.279 −0.037

XLNet-Base 0.538 0.599 0.658 0.55 0.066

BERT-GG 0.65 0.655 0.86 0.529 0.381

XLNet-GG 0.731 0.784 0.79 0.779 0.427

Bi-LSTM-scifi 0.641 0.632 0.629 0.641 0.204

DPCNN-scifi 0.646 0.531 0.712 0.646 0.159

BERT-scifi 0.874 0.895 0.94 0.85 0.747

XLNet-scifi 0.839 0.87 0.882 0.857 0.658

3.2.3 Experiment 1: Goofus & Gallant Classification

In the first study, we seek to understand how well a model can classify previously

unseen G&G scenarios when trained explicitly on a G&G training set. This gives us

a basic understanding of how well machine learning models can identify information

about social norms from story corpora.

The Bi-LSTM network was trained for 80 epochs, and the DPCNN was trained

for 20 epochs. Both used Adam optimizer and a learning rate of 0.001. Fine-tuning

for the BERT-GG and XLNet-GG models was done using the following parameters:

Maximum sequence length of 128 characters, 1 gradient accumulation step, and the

learning rate is 4e-5. Model performance peaked at 6 epochs.

Additionally, we conducted a human participant study to determine human ac-

curacy on the task of classifying G&G events as normative or non-normative. The

study used the same protocol that was used to label the Plotto and Sci-Fi corpora.

N = 20 participants tagged sentences from Goofus & Gallant , and we compared their

tags to the ground truth from the original cartoons.

Experiment results for case study 1 are given in Table 3.3. First, it shows that

humans have strong agreement with the G&G ground truth labels. Among the non-

transformer models, DPCNN better classifies normative and non-normative behavior

from the G&G dataset. This is likely because the CNN can identify the global sen-

tence structure better than a simple bi-directional LSTM cell. While the BERT-Base

and XLNet-Base models struggle to classify events from the G&G corpus (achieving

accuracies of %61.4 and %60.6, respectively), fine-tuning drastically improves each

model’s performance. BERT-GG obtains the best results in each of our metrics,

obtaining a 21.33% accuracy improvement over the DPCNN.
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The fine-tuned transformer models share many traits with CNNs in their ability

to identify the global context of a sequence of text. Additionally, the contextualized

word embeddings used in transformer-based models allow for words to have differ-

ent vector representations based on context, whereas the embeddings used in the

non-transformer approaches will often have the same word embedding regardless of

context. This property is particularly important for our task as many actions in

stories can have different meanings based on the situation.

3.2.4 Experiment 2: Transfer

This experiment investigates how well machine learning models trained to identify

normative and non-normative behavior in the G&G corpus can transfer to other story

domains. Specifically, we explore how well these models can classify events from the

Plotto and science fiction summary corpora. We evaluate how well these models

perform on fine-tuned and zero-shot transfer learning. Fine-tuned transfer learning

means using a model trained for one task on a different but related task utilizing

some additional training for fine-tuning. Zero-shot transfer, however, involves using

the previously trained model on the new task with no additional training. Zero-

shot transfer is important for use cases where a value-aligned classification model is

acquired by training on an unrelated dataset (such as G&G) and applied to a different

task because it is likely that ground truth data on values will not be available to use

for additional training. However, if some labeled data associated with the new task

can be acquired, then a fine-tuning transfer protocol can be used.

G&G to Plotto Transfer

Table 3.4 shows the results of transfer learning for the Plotto dataset. Zero-shot trans-

fer results are achieved by testing Bi-LSTM, DPCNN, BERT-GG, and XLNet-GG

on the Plotto dataset; these models were trained on G&G but have never seen Plotto

plot events. BERT-GG outperforms all the other models in the zero-shot transfer in

terms of accuracy and MCC. These results demonstrate that the knowledge of nor-

mative and non-normative behavior gathered from the G&G stories alone facilitates

a strong prior over normative/non-normative behavior without overfitting to G&G

scenarios and language.

To further investigate the transferability of the models, we fine-tuned all the G&G

models (Bi-LSTM, DPCNN, BERT-GG, and XLNet-GG) on Plotto stories. When

fine-tuning each model, we use the same parameter settings used in experiment 1

except for the number of training epochs. We fine-tuned the Bi-LSTM-Plotto for 20

epochs, DPCNN-Plotto for 4 epochs, BERT-Plotto and XLNet-Plotto for 3 epochs.

The epoch count for transformers is low due to their propensity to overfit and lose

the advantage of their pre-trained weights.
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Results from the experiment show that fine-tuning these models on the Plotto

dataset significantly increases model performance. Even though all model perfor-

mance increases, the transformer models still drastically outperform both non-transformer

methods.

G&G to Sci-Fi Transfer

Events in G&G stories are from our daily life, whereas Sci-Fi plots are fictional,

consisting of strange objects and events. We use the science fiction plot summary

dataset to show these models’ capability for transfer learning in another narrative

context. The results for this second experiment are shown in Table 3.5. As before,

we find that transformer-based models perform well on zero-shot transfer, though in

this case, they perform worse than they did with the Plotto task. As with the Plotto

task, we also fine-tuned our models on the sci-fi training data using the same training

protocol. We see a dramatic increase in performance when given access to even a

small amount of task-specific normative labels for fine-tuning.

3.3 Discussion

Our experimental results demonstrate that transformer-based models trained on the

naturally occurring Goofus & Gallant story corpus are highly accurate in classifying

previously unseen descriptions of normative behavior taken from that comic strip.

However, a more notable observation is that the best models, the transformer mod-

els, can achieve high accuracy when classifying event descriptions from unrelated

corpora. This is significant in that it means the model can transfer to other tasks

without requiring any normative/non-normative labels of situations from the new

tasks. When a small number of labels from the transfer tasks are available, the clas-

sification accuracy increases to nearly the same level as when the model is used to

classify situations from the Goofus & Gallant corpus.

A question that often arises in value alignment research is “whose values do these

models reflect?”. Our models are trained to classify behavior according to West-

ern (specifically American) cultural norms inherent in these comics. Should labeled

datasets exhibiting other value systems be identified, our models can be re-trained to

reflect those norms instead.

One limitation of this work is that swapping positive and negative labels would

allow an unscrupulous actor to create an anti-value-aligned model. This model could,

in turn, be used to bias other models to produce non-normative behavior. For ex-

ample, a language generation model such as GPT-2 could be biased in a way that

it produces trolling behavior using a technique similar to that in Ziegler et al. [84].

Likewise, a reinforcement learning agent or robot could be biased toward a non-

normative, and thus potentially harmful, action policy. However, the main use of our
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work is to complement a more traditional learning by demonstration technique. A

reinforcement learning system biased by an anti-value-aligned prior may be remedi-

ated with more demonstrations of normative behavior before converging on a final,

value-aligned policy.

Events often have context—the appropriateness of a situation may be conditional

on the events that have preceded it. This is especially true for reinforcement learning

agents that learn a sequential task instead of an episodic task. Another limitation of

our models is that they do not currently factor in context that is not present in the

sentence being classified.

3.4 Conclusion

Through the use of machine learning, the information contained in stories can be used

to learn a strong and robust prior for value alignment. This is because characters

within stories often embody normative and non-normative behavior. By extracting

the actions of these characters, story text can be used to train machine learning

models that can classify descriptions of normative and non-normative behavior. This

work introduces the Goofus & Gallant corpus, a naturally occurring story corpus

with ground truth labels about socially normative and non-normative behaviors. We

show how various machine learning models can be trained on this corpus to pro-

duce accurate behavior classifications and highlight the excellent performance that

transformer-based language models achieve on this task. We further show that these

models can transfer to unrelated event description tasks without ground truth la-

bels. Consequently, these models can form a strong prior that complements more

traditional value alignment techniques such as learning by demonstration, preference

learning, or other forms of imitation learning.

Copyright© Md Sultan Al Nahian, 2023.
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Chapter 4 Value-aligned Agent using the Normative Prior

Machine learning-based approaches to value alignment have largely relied on learning

from observations, demonstrations, preferences, or other forms of imitation learning.

However, these approaches face a number of challenges, which we have mentioned in

the previous chapter. Here, we propose an alternative learning approach for training

value-aligned agents addressing these limitations.

Terms such as “ethics,” “values,” and “morals” are ambiguous. Some recent work

[49] conjectures that AI value alignment can be framed as a “descriptive ethics” as-

sessment—something is ethical or desirable if it passes the judgment of a plurality

of individuals. However, learning values is difficult to achieve. In chapter 3, we

have shown that values can be learned from general examples of normative and non-

normative behavior and can also be transferred to new tasks. The general examples

are human stories in our case. The normative model we have built from story ex-

amples can accurately classify normative and non-normative text descriptions and

perform zero and few-shot transfer between narrative domains. This model can be

used for another downstream task, such as a prior model to train other agents. Here,

we propose a technique for training value-aligned agents incorporating our normative

prior model to shape the policy of the agent. The normative prior model will bias

the agent toward actions and outputs that conform to expected societal norms and

contracts. Agents trained in this way perform more normative and altruistic actions

than those trained solely on task-based objective functions while completing their

objective satisfactorily.

Through trial-and-error learning, a reinforcement learning agent learns a policy—a

mapping from states to actions for all possible states that might be encountered—

that maximizes expected reward. A reinforcement learning agent is given a reward

function that provides numerical feedback about states visited, actions performed, or

both. Typically, the reward function defines the “task” in the sense that the reward

is maximized when the agent carries out the behavior desired by the designer of the

task environment. Rewards are often sparse: an agent may receive a single piece of

feedback at the culmination of a task, or the task may be broken into components,

each of which rewards the agent.

We distinguish between two sources of reward: (1) Environmental reward is pro-

vided by the environment and only considers task performance. For example, a robot

that works in a post office may have the task of stamping forms; this agent might

receive a reward for each form stamped. (2) Normative reward is an intrinsically pro-

duced value based on how normative an action is (e.g., as classified by the normative

prior model). In the post office example, the artificial agent may have opportunities

to help patrons, even though it is not required to do so as part of its job (i.e., it is not
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given an environmental reward for it). The separation of sources of reward is bene-

ficial to the creation of value-aligned agents because the task designer can focus on

the objective metrics without concern about values, normativity, or altruism; these

can be considered separately.

The use of a normative prior to guide a reinforcement learning agent implies that

we do not need to demonstrate normative behavior in the context of a specific envi-

ronmental task. The normative reward is thus an intrinsic behavioral signal, while

the environmental reward is an extrinsic behavioral signal. However, training a rein-

forcement learning agent on an environmental reward and a normative reward is not

necessarily straightforward. The reward scales may be different. Furthermore, a sum

of rewards is hard to tune; a policy can favor one reward over another or produce

compromise, resulting in a policy that is neither normative nor able to complete a

given task. We experiment with a number of ways of combining multiple reward

signals. We find that policy shaping [25, 13] is more effective in balancing normative

and environmental task behavior than other techniques, such as summing reward sig-

nals. Policy shaping trains a reinforcement learning agent on a regular environmental

reward but uses a secondary criterion to re-rank action choices at every step to bias

the agent away from certain courses of action. We update policy shaping for deep

reinforcement learning agents in which a noisy normative action classifier provides

the shaping signal.

To evaluate different reinforcement learning techniques, we create a suite of three

virtual simulation environments, each of which emulates a situation where an agent

must make tradeoffs between environmental reward and intrinsic normative reward.

We build our simulations on top of the TextWorld [16] framework. This framework

can be used to build text-based environments, wherein an agent receives a textual de-

scription of the environment and must describe their actions through text commands.

We use TextWorld for three reasons. First, whether an action is considered normative

or not is often based on how that action is described. We crowdsource descriptions of

actions to control for experimental biases that might result in how we configure the

actions in the text world environments. Second, it facilitates the construction of sce-

narios that focus on social interactions between characters—the key consideration in

our work on normative behavior—in a reproducible manner. Third, our prior work on

normative classifiers has already proven its effectiveness on text-based classification

tasks.

4.1 Test Environments

We build our test simulation environments on top of TextWorld [16], a framework

for building text-based environments. As there are no environments for testing the

normativity of reinforcement learning agents, we have created three new environments

to evaluate normative interactions with social entities while simultaneously trying to
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perform a task with an environmental reward. There is a task that must be performed,

but there are preferred and non-preferred ways of accomplishing the task that align

with notions of normativity and non-normativity for a particular society.

Each environment is designed such that, in the absence of an intrinsic normative

reward signal, agents will learn a policy that, when executed, will likely appear to

be non-normative. Each environment pits the environmental reward against intrinsic

normative reward in a different way. The agent may need to avoid non-normative be-

haviors that are not part of solution trajectories, avoid non-normative behaviors that

comprise a less costly solution, or be given opportunities to take altruistic behaviors

that are not strictly necessary and potentially in conflict with environmental rewards.

While these environments are tuned to Western ideals of normative social behavior,

these environments also provide a template for the construction of test environments

for societies with different norms.

We use TextWorld to construct our test environments because it affords the ability

to construct scenarios with social entities and more complex action spaces than the

grid worlds more conventionally used for AI safety experiments [45]. These environ-

ments, thus, challenge the agent to reconcile task-oriented behavior and normative

behavior. Consistent with text-based games, each scenario is composed of multiple

rooms (discrete locations), entities, and task-oriented rewards. Despite being text-

based environments, we have simplified each environment so that agents do not need

to learn to read the descriptions and can instead learn to recognize states by their

unique location names, observable entities, and observable items. The admissible

commands in each location (e.g., go west, allow the robbers to escape) are also

given. See Figure 4.4.

One of the difficulties of working with a text-based environment, especially with

respect to normativity, is that the way an action or its description is phrased can have

a large effect on whether it is deemed normative or non-normative. To control for

experimental biases that may exist in author-created action descriptions, we chose to

crowdsource action elaborations. These elaborations would then be used to describe

the actions that an agent can take in each environment and would also be evaluated

for normativity when choosing which action to perform.

To construct this dataset of action elaborations, we recruited 50 participants on

Amazon Mechanical Turk. Each participant is provided an environment description,

an action that is being performed, and the role of the character performing said

action. They are then prompted to write a phrase describing how someone in their

role would perform that action, given the environmental context. A selection from the

action elaboration survey can be seen in Figure 4.1. Each action in each environment

received 3 elaborations after pruning incomplete submissions, chosen randomly from

the generated set.

In the following passages, we will describe each of the environments examined
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Figure 4.1: Exemplar question given as a prompt Amazon Mechanical Turk workers.
The text in red is one of the admissible action commands to the text world environ-
ment.

Figure 4.2: Visualization of the Playground room graph

in this work in greater detail. We will focus on the states, actions, and rewards of

each environment; we will also explain the purpose that each environment serves with

respect to examining normative alignment.
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Figure 4.3: Visualization of the Clerk World room graph

4.1.1 Playground World

The first environment we explore is called Playground World. The Playground World

environment is meant to simulate a situation that might occur when a child is playing

on a playground. This is designed to be a simple proof that an agent can be trained

to avoid non-normative behaviors since the scenario can be successfully completed by

performing only actions that have neutral normativity. In addition, this environment

is meant to be the most aligned to the Goofus and Gallant normative prior model since

it presents a social situation that closely resembles events that may occur in those

comics. This allows us to investigate how a normative shaping approach performs

when knowledge transfer due to an unfamiliar context is not an issue.

The Playground World depicts a sports team dressing room before a sports game

is played. The agent’s role is as a member of a team whose goal is to get prepared

before the game. The environment is composed of three rooms: a locker room, a

meeting room, and the playground itself (Figure 4.2). To complete the scenario,

the agent must collect sporting gear for the game, wear the gear, go to the meeting

room and join the team meeting, then go to the playground after the meeting is

finished. The agent receives a large reward for joining the meeting, a small reward

for completing each of the other parts of the process, and a final small reward upon

completing the full scenario.

These actions make up the task-oriented actions in Playground World. Besides

these task-oriented actions, the player can take several other optional actions that are

ostensibly normative (e.g., “help your teammates”, “give attention in the meeting”) or

non-normative (e.g., “interrupt your teammate”). However, no actions are explicitly
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Figure 4.4: Visualization of the Superhero world room graph

labeled as such.

A reinforcement learning agent should learn that it can complete the scenario and

maximize expected environmental reward by never conducting non-normative actions.

Any standard reinforcement learning agent should learn to avoid non-normative be-

haviors by virtue that they do not result in greater expected rewards. It is not strictly

necessary to perform any actions except for neutral actions, however, an agent may

learn to perform normative social actions if it receives additional intrinsic reward for

those actions—they do not reduce the environmental reward.

4.1.2 Superhero World

The second environment we explore is called Superhero World. The Superhero World

environment depicts a fictional scenario in which the agent plays the role of a super-

hero who must stop a bank robbery. This environment is meant to provide a challenge

to a normative aligned agent for several reasons. First, given that we are utilizing the

Goofus and Gallant prior on action normativity, some amount of transfer is required.
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The original Goofus and Gallant training set did not contain information about su-

perheroes, bank robberies, or how one might effectively use superpowers to stop a

bank robbery. Second, this scenario presents the agent with more significant moral

quandaries that have to be navigated when compared with the Playground World.

A description of the Superhero World environment can be seen in Figure 4.4. The

scenario can be accomplished by completing two sub-tasks: (1) collecting information

about the bank robbery, and (2) using the information to stop the robbery. After

completing each sub-quest (task) the agent gets a small environmental reward and

a final, equal-sized small reward after finishing the game successfully. Going to the

wrong bank or allowing the robber to escape are the failure states of the game.

In order to test how the normative prior could potentially alter the agent’s moral

decision-making, each of these sub-tasks can be completed in two different ways:

one that consists of non-normative actions such as “beat the informant” and “shoot

the robber”, and another that consists of normative actions such as “do a favor

to the informant”, “ask the informant about the robbery” and “convince robber to

surrender”. To make the choice to behave normative versus non-normative more

difficult, the non-normative path was designed to be shorter than the normative

path. This is significant because a reinforcement learning agent that only responds

to environmental reward is likely to learn a policy that utilizes the shorter, non-

normative path.

Superhero World forces the agent to choose between normative (or neutral) actions

that result in longer solutions, or solutions that are shorter but contain non-normative

actions. Recall that Playground environment, on the other hand, has a neutral path

that, in the optimal case, would normally be chosen by an agent that is motivated

solely by environmental reward.

The goal here is to show that a normative-aligned agent with an intrinsic reward

signal derived from a normative prior may learn that the longer paths yield greater

expected reward; however, tuning issues can arise—if the intrinsic reward is not

weighted correctly relative to the environmental reward, the agent may still learn

the non-normative policy. These are the issues that we hope to examine in this

environment.

4.1.3 Clerk World

Clerk World is designed to investigate a scenario where tradeoffs exist between task

efficiency and socially conscious actions that ignore or hinder task performance. In

addition, this is another scenario in which knowledge transfer will be necessary to

effectively utilize the normative prior as this is a situation not explored by the Goofus

and Gallant normative prior.

The Clerk World scenario simulates a small Post Office. The agent plays the role

of a worker in the office tasked with finding forms and stamping them. There are a
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number of customers and one coworker. A fixed number of forms—ten in all—are

scattered around the environment and the agent must move around to find them. Not

all forms are required to complete the scenario objective or subgoals, only a preset few

are main task objectives. The agent receives a small reward for each form stamped,

and a final, larger reward is given upon scenario completion. Actions that advance

the scenario include locomotion, picking up forms, and applying the “stamp” action

to forms in inventory.

Non-player character objects (coworker, customer) can be the targets of two other

actions; “aid” and “ask”. To emulate a time trade-off, when the agent chooses to

aid or ask non-player characters, a subgoal involving a random form fails, lowering

an agent’s environmental reward. The agent may still stamp that form but will not

receive a reward for doing so, approximating time-on-task lost for engaging in actions

adjacent to its primary objective.

This scenario differs from the first two in that it requires the agent to make a

trade-off between stamping as many forms as possible and taking actions such as

“aid” or “ask” which might be informally referred to as altruistic. An agent that is

only responding to environmental reward can complete the scenario without “aid”

or “ask” actions. Unlike the Playground World, the scenario can be completed with

fewer than the maximum reward points, and there are no actions that would ostensibly

be considered non-normative. This environment also differs from Superhero World

in that there are no optimal ”paths” through the scenario and all actions are not in

service to the agent’s overall environmental goal. The altruistic action is completely

separate from the task-oriented actions in the environment. Thus, aiding another

agent is not necessarily in service to the agent’s environmental goal, unlike in the

Superhero world where both normative and non-normative actions will ultimately

result in stopping the bank robbery. This allows us to examine how a normative-

shaped agent would perform when faced with the choice between helping others and

optimally completing its own task. We can also examine how factors such as time,

environmental reward values, and intrinsic reward values could potentially affect these

decisions. Reference the environment layout in Figure 4.3.

4.1.4 Store Robbery

This is the fourth test environment we have implemented for our study. We have

named this new test environment ”Store Robbery” and it is particularly designed to

test the agent’s behavior in the scenario where all the admissible actions that are

responsible for reaching the goal are non-normative.

The Store Robbery environment depicts a fictional scenario of robbing o local store.

In this setting, the agent plays the role of an antagonist character where the objective

of the agent is to successfully execute the robbery. The key distinction between this

environment and our previous three environments is that, in this particular setting,
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Figure 4.5: Design diagram of the Store Robbery test environment.

all available paths leading to the goal are non-normative. Consequently, it forces the

agent to take non-normative actions in order to accomplish the goal. Our aim is to

investigate how a value-aligned agent behaves when all the available paths towards

the goal are non-normative.

A diagram depicting the room description of the Store Robbery environment is

shown in figure 4.5. Similar to other test environments, it has multiple rooms to

navigate. In each room, there are several entities that the player can interact with.

There are two subtasks that need to be completed to finish the game successfully.

The tasks are as follows:

1. Rob the store/Steal from the store.

2. Successfully run away from the spot.
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Figure 4.6: The GG-shaped agent architecture. The blue box on the right side is GG
model, repeated n times for each admissible action.

To accomplish the first task, the player has to navigate through various rooms

and reach the designated location. After reaching the correct place, the player will

get three available actions to complete the task. Tasks are “Shoot the salesperson

and rob the store”, “Draw gun to intimidate the salesperson and rob the store”, and

“Steal from the store without drawing gun”. After completing the first goal the player

is required to fulfill the next sub-goal which is running away from the spot to avoid

getting caught by the police. The player has two options in this state. 1. Shoot the

police and run away. and 2. Take a hostage to avoid being caught.

In addition to these goal-oriented actions, there are also neutral actions (e.g. wait,

look), actions to navigate the environment (e.g. go east, go west, etc.), and altruistic

actions (e.g. asking people for help to give you money, etc.) as well. However, the

neutral and altruistic actions do not contribute to advancing in the game. The agent

will receive a reward after accomplishing the final goal. It will not get any reward

for completing the subgoals but the subgoals are compulsory to advance towards the

final goal.

The aim of designing this environment is to show that, the policy shaping method

with feedback derived from a normative prior value model is inclined to avoid taking

non-normative actions even though these actions are necessary to accomplish the

goal. Instead, the method will prioritize selecting neutral actions that do not incur

penalties and are not considered non-normative.
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Figure 4.7: Network architecture of the GG-Shaped-αβ.

4.2 Methods

Training reinforcement learning agents with environmental reward alone may result

in behavior that humans would consider non-normative if the greatest expected en-

vironmental reward is achieved by performing behaviors that deviate from expected

norms. This can include learning to perform actions that are explicitly non-normative

or harmful but can also be behavior that fixates on a task in the presence of opportu-

nities to be helpful, altruistic, or polite. However, if an agent is capable of generating

an intrinsic normative reward, then it may learn to make trade-offs that incorpo-

rate normative behaviors. We describe a set of experiments to validate how best

to use a normative prior model—specifically the GG classifier model—to help guide

reinforcement learning.

4.2.1 Environment Preliminaries

For each state in a TextWorld environment, a reinforcement learning agent receives

an observation consisting of (a) a description text of the current room, (b) items in

inventory, (c) facts about the state of objects in the environment (e.g. “A drawer is

open”), and (d) previous reactive text (e.g., “You can’t go west”) if any. TextWorld

additionally provides a set of admissible actions—actions that can be executed in the

current state. We allow our agents to access the list of admissible actions and choose
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from them instead of having to generate a command word token by word token—

teaching agents to read and write is not the primary purpose of this research. After

an action is taken in timestep t, the agent increments to timestep t+1 and TextWorld

provides an environmental reward Renv
t+1, which may be zero.

We augment the standard TextWorld environment to use action elaborations.

Each admissible action that TextWorld provides to the agent is accompanied by a

longer descriptive text. The descriptive text of the taken admissible action is selected

randomly and uniformly from the corresponding three crowdsourced elaboration texts

at each step. This elaboration text serves two purposes. First, the GG normative

model operates on natural language text sequences. Second, since it is crowdsourced,

it is authored by a neutral source to remove the possibility of experimental bias.

4.2.2 Agent Implementations

Advantage Actor-Critic (A2C) architectures for reinforcement learning have been

found to be effective for playing text-based games [5]. An Actor-Critic architecture

uses two neural networks: an actor network chooses an action, and a critic network

tries to guess the value of the state-action combination. At each timestep, st rep-

resents the state as an input to the actor network πθ(st, a) and the critic network

q̂w(st, a) where a represents a possible action. θ and w are weights of the actor and

critic networks, respectively. The actor network’s policy update is:

∆θ = α∇θ(logπθ
(s, a))q̂w(s, a) (4.1)

∆θ =
T−1∑
t=0

∇θ(logπθ
(at, st))A(st, at) (4.2)

∆w = MSE(V (s), ˆV (s)) (4.3)

where q̂w(s, a) is a q-based approximation function of the action’s value. The critic’s

update function is given by:

∆w = β(R(s, a) + γq̂w(st+1, at+1)− q̂w(st, at))

×∇wq̂w(st, at).
(4.4)

α and β represent different learning rates for each model. For Advantage Actor-Critic,

this value function is replaced with an advantage function, which compensates for the

high degree of variability in value-based RL methods. Given a state st as input, the

actor network outputs a distribution over the admissible actions. An action is sampled

from this distribution and passed to the environment for execution. The agent then

receives environment reward Renv
t+1. In the typical A2C agent, the only reward is the

environment reward, i.e. R(s, a) = Renv
t+1 in Equation 4.4.
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The normative prior model, GG, receives the natural language elaboration of the

chosen action and outputs a distribution of unnormalized log probabilities from the

final dense layer of the network. Specifically, the normative prior produces two logits

Lnorm and L¬norm for the belief that the input is normative and the belief that the

input is non-normative, respectively. Note that the GG model is only fine-tuned

on the G&G dataset and all experiments are effectively zero-shot transfer to the

three TextWorld environments. Figure 4.8 shows the classifier’s distribution across

all admissible actions in all environments.

In order to understand how best to make use of the normative prior model, we

propose multiple approaches for how to incorporate the outputs of the normative prior

to updating the agent’s policy. These approaches can be divided into two categories:

1. Advantage function update and 2. Exploration

Advantage Function Update

The advantage function in the A2C network tells how much better the taken action

at a state is than the average value of the state. It provides an estimation of how

good or bad the action is than the expectation in the current state. For a state s

and action a, it is computed by subtracting the average values of the state s from the

discounted cumulative reward received by taking the action a in the state s.

A(st, at) = Rt+1 + γV (st+1)− V (st) (4.5)

The advantage function is used to update both the policy network and the value

network in the A2C algorithm. In our first approach to utilize the feedback from the

normative model in the A2C network to achieve a value-aligned agent, we incorpo-

rated the value obtained from the normative model in the advantage function. This

is achieved by adding the value of the normative model for a given action with the

cumulative reward.

A(st, at) = Rt+1 + γV (st+1) + V (st, at)norm − V (st) (4.6)

Where V (st, at)norm is the value obtained from the normative model for the taken

action in the current state.

It is expected that the normative model sent a positive value for a normative

action and a negative value for a non-normative action. Thus, if the value of a non-

normative action is significant enough to reduce the total cumulative reward below

the expected value, the gradient will be pushed in the opposite direction. In other

words, it will discourage the network from selecting the non-normative action, even if

it receives rewards from the environment. Similarly, the value of the normative action
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will influence the network to select normative actions. The value of the normative

model can be computed in the following two ways:

GG-pos This agent is an A2C agent that incorporates the normative prior’s posi-

tive label confidence Lnorm to the advantage function for the action chosen by A2C,

specifically:

A(st, at) = (Rt+1 + γV (st+1)− V (st)) + σLnorm (4.7)

The magnitude of the advantage is higher when the action is judged to be normative;

it is the simplest means of incorporating the normative model.

GG-mix This agent is an A2C agent that applies the combined logits from the

normative prior model. To compute the advantage, it utilizes the unnormalized log

probabilities for the normative and non-normative classes. Specifically,

A(st, at) = (Rt+1 + γV (st+1)− V (st)) + σ(Lnorm − L¬norm) (4.8)

σ is a hyperparameter of the network used as a scaling factor to adjust the values

obtained from the normative model.

One of the advantages of this approach over the GG-pos is that it is taking the

difference between the values of the normative and non-normative classes. Thus, if

the normative prior is equally certain about the normativity of the input, they cancel

each other out.

Exploration based

While the approach of incorporating the normative value into the advantage function

is effective and leads to faster convergence, it is highly reliant on the magnitude

of the value acquired from the external model. Therefore, it is crucial to carefully

adjust the value by a scaling variable to ensure its optimal functionality. To overcome

this challenge, we introduced another approach that leverages the agent’s exploration

process.

Instead of incorporating the values obtained from the normative model into the

advantage function to estimate how good an action is in terms of normativity, we

use the normative model as policy feedback to guide its exploration. Based on the

policy shaping technique, we have proposed an alternative approach to integrate the

normative prior model into the A2C architecture. Policy shaping [25, 13, 22] is a Re-

inforcement Learning technique where agents produce a probability distribution over

actions, which is then adjusted by a second, externally produced source of feedback

on the actions, biasing the agent toward certain actions or states. Policy shaping

was originally introduced to incorporate human action preferences into tabular rein-

forcement learning with finite state and action spaces. [47] shows that policy shaping
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can be applied to deep q-learning and also to incorporate human preferences. In this

work, we make use of the policy shaping technique with the following two modifi-

cations: (1) We use an intrinsic source of value information derived from an action

classifier and (2) We apply value-aligned policy shaping to the A2C reinforcement

learning architecture for the first time.

Through these modifications, we proposed two different approaches to modify the

probability distributions of actions.

GG-Shaped This is a variant of the base A2C architecture implementing policy

shaping. We sample the distribution of unnormalized log probabilities (logits) over

potential actions from the final dense layer of the Actor-Critic network: [La1 , ..., Lan ].

For each admissible action, ai is altered by GG’s assessment of the action elaboration:

L′
ai
= Lai × (Lnorm − L¬norm) (4.9)

(Lnorm−L¬norm) is the policy shaping component that modifies the action proba-

bilities of the A2C network and provides a new distribution. This new distribution is

passed to a softmax layer for normalization, which results in a ”reranked” distribu-

tion of actions. The agent then samples the action from this “reranked” distribution.

But, the loss of the actor network is computed using the original log probabilities

[La1 , ..., Lan ] obtained from the A2C network.

lossactor = Lai ∗ A(s, a) (4.10)

A(s, a) = Rt+1 + γV (st+1)− V (st) (4.11)

The architecture of this network is shown in Figure 4.6.

GG-Shaped with Learnable Parameter A mixing parameter is usually em-

ployed to combine the participant models in the policy shaping method. This param-

eter determines the weight assigned by the network to each model, influencing their

contributions within the overall combination process. In the GG-Shape method, we

did not assign weight to the A2C and normative prior models as the components are

incorporated through multiplication. However, in this variant of policy shaping, we

proposed an approach that uses two parameters to control the degree of influence of

the two components in the network.

L′
ai
= α× tanh (Lai) + β × tanh (Lnorm − L¬norm) (4.12)

α and β are the two control variables that are used to assign importance to the

two models. In contrast to the conventional policy shaping method, we introduced

the novelty of making these parameters learnable within our network. It enables the

network to determine the emphasis it assigns on each model. To train these two
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variables alongside the network, the loss of the actor network is computed on the

reranked action distribution instead of the distribution Lai provided by the actor

network. We applied softmax function on the updated list L′
ai

to get the probability

distribution over the admissible actions and use this distribution to compute the

network’s loss.

Pai = softmax(L′
ai
) (4.13)

LPai = log(Pai) (4.14)

lossactor = LPai ∗ A(s, a) (4.15)

A(s, a) is the value obtained from the advantage function, which is computed

using the equation 4.11. To ensure that the values from the actor network and the

normative prior model are in the same range, we applied activation functions to these

values. Various activation functions, such as sigmoid or hyperbolic tangent can be

employed for this purpose. In our work, we have used the hyperbolic tangent function.

Figure 4.7 shows the architecture of the network.

The learnable parameters provide a notion of explainability by allowing us to

comprehend where the network assigns importance and how the policy values evolve

throughout the training process. It provides insights into how the network updates

the values of admissible actions throughout the training process.

4.2.3 Hyperparameters

For each environment, we present the result of 5 train-test iterations. In each itera-

tion, we trained Clerk World for 1000 episodes, Superhero World for 2500 episodes,

and Playground for 4000 episodes. The maximum permissible steps in each episode

for Superhero and Playground are 100 and 50 for Clerk World. We use the Adam

Optimizer with a learning rate of 3e-5. Agents in the Superhero and Playground

environments have been trained on a single Nvidia GTX 1080Ti GPU, and the Clerk

World has been trained on a single GTX 2080Ti GPU.

4.2.4 Metrics

To evaluate these agents, we need a way to characterize and assess the differences

in behavior. Unlike most reinforcement learning research, we cannot compare the

optimality of the agents as measured by the environmental reward received. Each

agent is operating under a slightly different way of computing rewards – for example,

GG-pos will always receive more reward per step than GG-mix or GG-shaped. All

agents may be highly optimal for their reward functions but behave very differently.

To characterize and assess differences in execution behavior, we label a subset of
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Figure 4.8: Logit values (i.e. classifier confidence sampled from the normalized prob-
ability distribution) across the crowdsourced action elaborations.
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Figure 4.8: Logit values of the crowdsourced action elaborations (continued).
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Figure 4.8: Logit values of the crowdsourced action elaborations (continued).
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Figure 4.9: Average environmental score (without normative reward) for the Play-
ground environment, smoothed with a 20-episode sliding window.

admissible actions as “normative” or “task-oriented” and measure the normalized

ratio of normative actions to task-oriented actions the agent takes: nnorm/(nnorm +

ntask). Task-oriented labels are derived from the minimum set of admissible actions

required to complete quests in the world. In Superhero world and Playground world,

these are all actions along the shortest path to the completion of the main quest. In

Clerkworld, this is moving, taking, and stamping - also the actions required for the

shortest main quest completion. Normative actions are the difference between the

set of all admissible actions and the task-oriented set, excluding actions that result

in the failure of the main quest. The agents never have access to these ground-truth

labels.

4.3 Experiments

We conducted four experiments. The first experiment examines how agents that

incorporate intrinsic normative rewards in different ways fare against a baseline A2C

when it comes to environmental reward. The second experiment quantifies behavioral

differences when it comes to using normative and task-oriented actions. The third

experiment looks at the effect of natural language phrase choices on the behavior

of agents. In the fourth experiment, we show the comparisons among our proposed

value-aligned approaches in terms of policy learning and training time.
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Figure 4.10: Average environmental score (without normative reward) for Superhero
environment, smoothed with a 20-episode sliding window.

Figure 4.11: Average environmental reward (excluding normative reward) relative to
the maximum observed score for Clerk World at that episode, smoothed with a 20-
episode sliding window. The GG-Shape agent consistently underperforms A2C and
GG-pos at the task but consistently performs normative actions.
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Figure 4.12: Average environmental reward relative to the maximum observed score
for Store Robbery environment, smoothed with a 20-episode sliding window.

4.3.1 Experiment 1: Environmental Reward

In this experiment, we seek to understand the effect of the normative prior on ac-

quired environmental reward. We should expect an agent that ignores the intrinsic

normative reward to achieve a greater total environmental reward over time. For each

environment, we train our four agents that are augmented by the intrinsic normative

reward plus a fifth baseline A2C that only uses environment reward.

We train each agent for 1000 episodes in the Clerk World environment. The Super-

hero World and the Store Robbery are trained for 2500 episodes and the Playground

for 4000 episodes, respectively, as they take more time to converge. Performance

in each of the test environments is averaged over five training iterations. At every

step, the agent chooses an action and then randomly and uniformly chooses one of

three crowdsourced action elaborations. We measure the amount of environmental

reward over time, which is distinct from the signal coming from the normative model

used to compute the advantage function and network loss in GG-pos and GG-mixed

(GG-shape and GG-shape-αβ does not alter the reward used in loss calculations).

As depicted in Figure 4.9 and Figure 4.10, in Playground World and Superhero

World, all normative agents, as well as the baseline A2C agent, converge to policies

that achieve maximum reward. Clerk World is a more challenging environment. For
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all Clerk World runs (Figure 4.11), The baseline A2C achieves the highest environ-

mental reward score. The GG-shaped agent achieves ∼40% of the maximum observed

environmental score; in Clerk World, opportunities for environmental reward are lost

with each altruistic action.

Normative and altruistic actions in Clerk World and Playground World environ-

ments require the agent to perform actions that do not progress the scenario. There-

fore, it is necessary—especially in Clerk World, where opportunities for reward are

lost with each altruistic action—to give up some environmental reward in order to

act in ways that will be perceived as normative.

Figure 4.12 shows the graph presenting the environmental reward accumulated in

each training episode by each of our agents in the Store Robbery environment. As

depicted in the graph, the baseline agent A2C and only the GG-Shape-αβ among the

normative agents were able to converge to the optimal policy where they accrued the

maximum environmental reward. All other normative agents (GG-Pos, GG-Mix, and

GG-Shape) adopted the policy where they acquired no environmental rewards.

Recall that the Store Robbery environment is distinct from the other environments

in that there are no normative actions in this environment, and all the possible paths

to the goal contain non-normative actions. Thus, the agents must have to take

non-normative actions to reach the goal and get the rewards. The GG-Shape, GG-

Mix, and GG-Pos converged to a policy of not taking non-normative actions and

hence giving up the extrinsic reward. But the other normative agent, GG-shape-αβ,

achieved the maximum rewards as it converged similarly to the baseline agent A2C,

which does not get any feedback from the normative prior model. This indicates

that GG-Shape-αβ managed to adapt effectively to the environment despite getting

feedback from the normative model and achieved maximum environmental rewards

by aligning its behavior with the optimal policy.

The significance of this experiment shows that a policy shaping approach sacrifices

more environmental score in order to take more normative actions than other means

of using the normative reward. This confirms our hypothesis, and experiment 2

(next section) shows how different techniques qualitatively make the trade-off between

normative and non-normative behaviors.

4.3.2 Experiment 2: Behavioral Analysis

In this experiment, we analyze the behavioral differences between agent techniques.

We use the ratio of task-specific to normative actions to visualize qualitative differ-

ences between agents. Recall from the Metrics section that we labeled some actions

in each environment as normative and others as task-specific. As with experiment

1, we train each agent for 1000 episodes in Clerk World, 2500 episodes in Superhero

and Store Robbery and 4000 episodes in Playground environment, averaging over five

training iterations per environment.

60



Figure 4.13: Ratio of normative actions taken for all agent types in Playground
World, smoothed with a 20-episode sliding window. Policies for all the value-aligned
agents (GG-Pos, GG-Mix, GG-Shape and GG-Shape-αβ) perform an equal ratio of
normative actions after the convergence in this environment.

In Playground World (Figure 4.13), the GG-pos and GG-shaped agents learn poli-

cies that execute normative actions ∼40% of the time. In contrast, the baseline A2C

agent learns that normative actions are unnecessary.

In Superhero World, we must use a slightly different formulation of our met-

ric. In this environment, the agent can complete the scenario using normative or

non-normative actions, Figure 4.14 shows the normalized ratio of normative to non-

normative actions. The GG-pos and GG-mix agents learn to almost exclusively follow

the trajectories made up of “normative” actions. The baseline A2C agent discovers

that the trajectories featuring “non-normative” actions are shorter and learns a pol-

icy that favors them. The GG-shaped agent favors the normative trajectories (> 0.5)

but not consistently. We observe that the GG model misclassifies some of the elab-

orations for “normative” actions in Superhero World as “non-normative” (see next

section), which confuses the agent because some actions are sometimes re-ranked high

and sometimes re-ranked low depending on which elaboration gets used.

In Clerk World (Figure 4.15), the baseline A2C agent learns not to use altruistic

actions, which not only don’t progress the scenario but also reduce the maximum

reward achievable. The GG-pos and GG-mix agents also learn policies that use almost

no altruistic actions. This is likely because the intrinsic normative reward added to
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Figure 4.14: The ratio of normative actions taken for all agent types in Superhero
World smoothed with a 20-episode sliding window. In this environment, GG-mix and
GG-pos outperform GG-shaped in total normative actions taken.

the environmental loss doesn’t make up for lost reward due to altruistic actions.

The GG-shaped agent learns a policy using significantly more altruistic actions than

any other alternatives. As seen from Experiment 1, this is done at the expense of

environmental reward because this scenario penalizes the environmental reward for

every altruistic action taken. The extent to which the GG-shaped agent attempts

to use normative actions can be modulated by scaling the output of the GG model,

however.

As we have mentioned earlier, there are no normative actions in the Store Robbery

environment. Hence, we plotted the ratio of task-oriented actions to neutral actions

instead of normative ones. Figure 4.16 shows this ratio for all the agents in the Store

Robbery environment. It depicts that the baseline A2C agent learned to take task-

oriented non-normative actions while ignoring the neutral actions. In contrast, all the

normative agents, including GG-Mix, GG-Pos, and GG-Shape (with the exception

of the GG-Shape-αβ), adopted the policy to take neutral actions. After the network

reached the convergence, almost 100% of the actions taken by these agents were

neutral actions. In contrast, GG-Shape-αβ initially exhibited a higher number of

neutral actions, but eventually, as the training progressed, it learned to take the

actions that were responsible for achieving the goal.

In the normative agents, during the training, the normative prior model guided

the agents to refrain from taking non-normative actions. This influence led the GG-
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Figure 4.15: Normalized ratio of normative actions taken for all agent types in Clerk
World, at that episode, smoothed with a 20-episode sliding window. This indicates
that the decrease in environmental reward later in training is not attributed to an
increase in normative actions.

Pos, GG-Mix, and GG-Shape agents to adopt the policy of not taking non-normative

actions and taking only neutral actions, though it does not assist in progressing

toward the goal.

However, in the GG-Shape-αβ method, the network possesses the capability to

adjust the importance of the probability distribution from the actor network and

the feedback received as normative values from the normative model. Initially, both

components have equal weight, but as the training progresses, the network tends to

assign greater weight to the actor network and reduces the reliance on the normative

model’s feedback to facilitate goal achievement. Though the network initially takes

both neutral and non-normative actions, through this learning process, the network

adopted the policy to prioritize the actions that contribute to reaching the goal.

This is evident in Figure 4.12 as well, which shows that as the network converges,

it starts to receive the maximum environmental reward due to its policy of favoring

goal-reaching actions.

4.3.3 Experiment 3: Action Elaboration Phrasing

In experiment 2 we see how elaboration phrasing has an effect on the agent. In this

experiment, we assess how the crowdsourced action elaborations affect agent behavior.
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Figure 4.16: Normalized ratio of neutral vs. task-oriented action taken for all agent
types in the Store Robbery test environment, smoothed with a 20-episode sliding
window. As this environment does not have particularly any normative tasks, we
plot the neutral vs. task-oriented actions for this environment.

In the Test Environments section, we discuss how each admissible action has three

action elaborations. Because the GG model can be sensitive to certain phrasings of

the same action, we seek to understand how different natural language phrasings for

action elaborations alter agent behavior when all else is kept constant. For each of

the three sets of paraphrases, we test with the GG-mix agent in each environment.

Figure 4.17 shows the ratio of normative actions to task actions (e.g., a score of

1.0 means 100% normative actions) in the Superhero World. For two of the three

crowdsourced phrase sets, we see that the GG-mix agent learns a policy that strongly

prefers actions that we labeled as normative. For one phrase set (phrase set 1),

some action elaborations are classified with the opposite of the ground-truth label.

As a consequence, the agent’s resultant policy selects a mix of normative and non-

normative actions.

These results tell us two things. First, our ground truth labels for our metrics

are generally in agreement with crowd workers when considering a majority of elab-

orations. Second, the specific way in which commands are elaborated into natural

language for normative classification can have an effect on agent behavior. However,

note that collecting crowdsourced elaborations primarily aimed to avoid experimenter
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Figure 4.17: Ratio of taken task-actions and normative-actions for different actions
phrase types trained with gg-mix Agent in the Superhero environment.

bias.

4.4 Discussion

Our experiments show that the four proposed techniques for incorporating intrinsic

normative reward into a deep reinforcement learning agent achieve desired behavioral

change, increasing the use of actions perceived to be normative. Experiments in the

Superhero environment show that even though the non-normative path is shorter,

hence more efficient, agents learn the policy that prefers taking the normative path

to reach the goal in the presence of a normative prior model. Even if the normative

actions do not contribute to accomplishing goals, agents still may take some of these

actions without sacrificing their objectives, as seen in the Playground environment

experiments. The Clerk World experiments show that the policy shaping agent, GG-

shaped, is more robust to complicated trade-offs. The GG-shaped receives a lower task

reward but is (a) robustly 2-6x more normative throughout its training iterations and

(b) can be useful in situations where normative behavior during training is beneficial

(e.g.- apprenticeship learning).

The Store Robbery presents a unique testing scenario where all the admissible

paths to the goal are non-normative. Therefore, achieving the goal requires the agents
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Figure 4.18: Average number of steps in each episode for Store Robbery environment
during training, smoothed with a 20-episode sliding window.

to take non-normative actions. We observed that GG-Shape, GG-Mix, and GG-Pos

adopted a policy to not take non-normative actions, even if it meant they could

not achieve the goal. On the other hand, the GG-Shape-αβ converged to a policy

that allowed it to use non-normative actions to accomplish the objective. While the

GG-Mix, GG-Pos, and GG-Shape agents were persistent in avoiding non-normative

actions, GG-Shape-αβ displayed more adaptable behavior.

4.4.1 Variance in Agent’s behavior

All our normative agents exhibited comparable behaviors in the Superhero, Play-

ground, and ClerkWorld environments, however, they differed in the context of the

Store Robbery environment. The difference in the learning process of these agents

causes the diverse behaviors in this specific environment. GG-Mix and GG-Pos are

based on the reward shaping technique, where we integrated the feedback of the nor-

mative prior model as the normative score into the advantage function. This score

is combined with the critic values subtracted from the discounted reward (as shown

in Equation 4.8). Actions considered non-normative receive a negative score from

the normative model. Consequently, if the negative score is high enough that it ex-

ceeds the advantage value Rt+1 + γV (st+1)− V (st) of the current step, the updated
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(a) The trajectory of the values of trainable parameter α in the Store
Robbery environment

(b) The trajectory of the values of trainable parameter β in the Store
Robbery environment

Figure 4.19: The values of two trainable parameters α and β during training in the
Store Robbery environment, plotted for 2500 episodes.
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(a) The trajectory of the values of trainable parameter α in the Superhero
environment

(b) The trajectory of the values of trainable parameter β in the Superhero
environment

Figure 4.20: The values of two trainable parameters α and β during training in the
Superhero environment, plotted for 2500 episodes.
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Figure 4.21: The Q-Values of different actions during training of GG-Shape-αβ in
the Store Robbery environment

advantage A(st, at) becomes negative. This causes the network to de-emphasize the

taken non-normative action and assign lower values to subsequent steps.. This pro-

cess leads the network to take neutral actions that do not receive negative scores from

the normative model.

The policy shaping method uses external models such as human feedback to eval-

uate the quality of the actions taken. In our approaches, we used the normative

prior model to provide feedback on the admissible actions. Like the GG-Mix and

GG-Pos, the feedback is provided as a “normativity” score which is computed by

Lnorm − L−norm as described in chapter 4.2.2. In the GG-Shape method, this score

is multiplied by the action probability distribution generated by the actor network.

This multiplication operation is done to re-rank the action probabilities based on the

normativity score and the actor network. When an action is considered normative by

the normative prior model, it receives a positive score from the model, hence the mul-

tiplication operation results in a higher probability value for that action. In contrast,

if the action is non-normative, the received normativity score is negative, resulting

in the probability multiplication operation to a negative value. Thus, the updated

probability of this action becomes too low.

As the training progresses, this process of reranking admissible actions based

on the normative score encourages the model to assign lower probabilities to non-
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normative actions and higher probabilities to neutral or normative actions. Our

experiments also revealed that the GG-Shape agent tended to adopt a strategy of pre-

dominantly selecting neutral actions repeatedly, which resulted in difficulties reaching

its goal in the Store Robbery environment. Figure 4.18 plots the step count for each

agent in every episode. From the plot, we observed that the GG-Mix, GG-Pos, and

GG-Shape initially took fewer steps in each episode. However, as the training process

progressed, they started taking the maximum number of steps in each episode as they

learned to take neutral actions to survive in the environment without achieving the

main goal. This change was attributed to the fact that the path towards the goal

involved non-normative actions only.

The GG-Shaped-αβ method utilizes two trainable parameters to control the im-

portance of the two components of the network, namely the A2C network and the

normative prior model. The actor network of the A2C represents the agent’s experi-

ences. Initially, the network gives equal weight to both components. However, as the

training continues, the weights are adjusted accordingly to facilitate achieving the

goal.

In scenarios where alternative normative paths exist, the GG-Shaped-αβ method

exhibits a preference for selecting the normative path, even if it is more costly com-

pared to non-normative paths. We can observe this behavior from the experiments

conducted in the Superhero environment. However, in situations where no normative

paths are available, and only non-normative paths can lead to the goal, GG-Shaped-

αβ diverges from our other proposed normative agents. It places higher importance

on its own experience, enabling it to accomplish the objective rather than relying

heavily on the normative model.

4.4.2 Trainable α and β

The graph illustrating the values of the learnable parameters α and β provides further

insight into how the network controlled the importance of its accumulated experience

and the feedback of the normative model. Figure 4.19 shows the trajectory of the

α and β values in the Store Robbery environment. This graph demonstrates that,

as the training progressed, the value of the alpha increases consistently, which con-

trols the importance of its experience component. On the other hand, the value of

the parameter β decreases steadily, which controls the importance of the normative

model. In this scenario, the network amplified the value of its experience by the α

while decreasing the influence of the normative model by β. This adjustment was

prompted by the normative model’s discouragement of non-normative actions despite

their necessity for achieving the intended goal.

In the superhero environment, the goal can be reached through both normative

and non-normative paths. As the normative paths effectively lead to the objective,

the network does not devalue the weight of the normative model within this context.
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Figure 4.22: Values of the action ”Examine the shopkeeper” in the ”Store Robbery”
environment by the actor network of GG-Shape and GG-Shape-αβ

Figure 4.20 illustrates that, unlike the store robbery environment, in this setting, the

values of both alpha and beta consistently increase throughout the course of training

episodes.

Impact of training for infinite steps

We have observed that GG-Shape-αβ gives precedence to normative paths over non-

normative ones if these normative paths help achieve the goal. However, a potential

risk of GG-Shape-αβ arises when we train the agent extensively beyond convergence;

in such cases, the agent may begin to favor non-normative paths over normative ones,

provided the non-normative paths are less costly. As training progresses in such cases,

after certain episodes, the agent begins to place greater emphasis on its accumulated

experience, potentially overshadowing the guidance provided by the normative prior

model.

To investigate this behavior, we conducted training for the GG-Shape-αβ agent

in the superhero environment for 100,000 episodes, with each episode limited to a

maximum of 155 steps. Figures 4.23 and 4.24 depict the progression of alpha and

beta values across each training episode in this experiment. From the plots we can see

that the value of alpha steadily increases, while approximately after 60,000 episodes,

beta consistently decreases. This observation suggests that if we were to continue

training the agent indefinitely beyond convergence, there comes a point where the
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Figure 4.23: Plotted the values of α in “superhero” world trained for 100000 episodes.
Every episode consists of a maximum of 155 steps.

agent begins to prioritize alternative less costly non-normative paths and starts to

reduce the importance of the normative prior model.

We can further investigate this issue by analyzing the values assigned to individual

actions generated by the actor network in each episode. For the analysis, we can focus

on evaluating the values of two actions: “He gave some money for the info he wanted”

and ”He beat the informant mercilessly”. These actions represent alternative paths

to reach the goal. Figure 4.25 plots the values of the action “He gave some money

for the info he wanted” across 2500 and 100000 episodes. As this is a normative

action, both agents place a strong emphasis on it and converge towards a policy that

prioritizes this action.

However, should the training process extend beyond this point of convergence,

the GG-Shape-αβ agent gradually reduces its emphasis on this action, while the

GG-Shape agent maintains its prioritization of it. The GG-Shape-αβ agent begins

to attribute greater significance to the alternative, non-normative action ”He beat

the informant mercilessly” due to its lower associated cost. Figure 4.26 reinforces

this behavioral shift, displaying the values associated with the action ”He beat the

informant mercilessly” across 2500 and 100000 episodes.
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Figure 4.24: Plotted the values of β in “superhero” world trained for 100000 episodes.
Every episode consists of a maximum of 155 steps.

4.4.3 Values of the admissible actions from the Actor Network

When we analyze the values of the admissible actions received from the actor network

in the Store Robbery environment, we can see that in GG-Shape, the values of the

non-normative actions is lower than its alternative neutral actions. But in GG-Shape-

αβ, these values are higher if they contribute in advancing to the goal. For instance,

in the case of GG-Shape-α− β, the value of “Examine the shopkeeper” (Figure 4.22

is consistently decreased as it does not contribute towards the goal, while it increases

the value of the alternative task-oriented action “Draw your gun to rob” (Figure 4.21

though it is non-normative. On the other hand, in GG-Shape the value of ”Examine

the shopkeeper” (Figure 4.22 is much higher than its alternative action and the value

in GG-Shape-αβ as well.

We observe the opposite pattern in the Superhero environment. As mentioned

earlier, in this environment, normative and non-normative paths exist that lead to

the goal. Thus, both agents prioritize the normative paths despite their higher costs.

This behavior is also evident in figure 4.25, 4.26 and 4.27. Notably, both agents

consistently reduce the value of non-normative actions while concurrently enhancing

the value of their corresponding normative alternatives.
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(a) Values of the normative action “He gave some money for the info he wanted”
for 2500 training episodes

4.4.4 Effect of Action Descriptions on Agent Behavior

The results also show that how actions are described can significantly affect the

behavior of the agents. The normative prior can be sensitive to particular wordings.

This is an artifact of our use of crowdsourcing to avoid experimenter bias, but it

serves to remind us that normativity is subjective and that things that are normative

can be described in ways that present as non-normative or vice versa.

4.4.5 Summary

In general, we see that GG-pos and GG-mix do not lose as much environmental

reward as GG-shaped and are able to find “normative” solutions in the Playground

and Superhero scenarios. However, GG-pos and GG-mix are unable to handle the

complexities of the Clerk World where normative rewards can only be achieved at the

expense of environmental reward. GG-shaped is able to balance these rewards and—

when the GG model is not misled by action elaborations—performs equally or more

normative actions that GG-pos and GG-mix. In the Store Robbery scenario, GG-Mix,

GG-Pos and GG-Shape agents could not achieve the maximum environmental reward

but GG-Shape-αβ agent successfully attained it.

While each of the normative agents exhibits a preference for normative actions in

the presence of such options, the selection of an agent depends on the specific task

objectives we prioritize. If the priority is to avoid any non-normative actions, even if

they compromise the task’s ultimate goal, then the design approach of the GG-Mix,
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(b) Values of the action “He gave some money for the info he wanted” for 100000
training episodes

Figure 4.25: Values of the action “He gave some money for the info he wanted” by
GG-Shape-αβ and GG-Shape in the Superhero environment. Both agents prioritize
the normative action by increasing its values. But if we continue training after the
convergence after certain point the GG-Shape-αβ prioritize the non-normative action
as it is more cost effective.

GG-Pos, and GG-Shape is recommended. In contrast, if the desired behavior is to

prioritize the non-normative tasks but without sacrificing the task objective, then the

GG-Shape-alpha-beta agent should be opted for.

In principle, the behavior of the agent can be shaped according to what a society

considers normative by supplying a normative classifier model trained on different

corpora. However, value-aligned corpora are not particularly common. However, we

assert that our policy shaping model is not specialized to any particular set of social

norms. Any normative prior may be substituted in this approach. We attempt to

show this with experiments in different environments, assessing which environmental

rewards and norms may come into conflict with each other.

4.5 Conclusions

Value alignment is a difficult problem and existing approaches—like expert demon-

strations or preference learning—can be expensive from a cost perspective or human

time-on-task perspective. If a human must produce demonstrations or extensive

traces need to be collected, it may not be practical to initially train and deploy a

machine learning model that exhibits normative behavior. In this chapter, we show
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(a) Values of the non-normative action “He beat the informant mercilessly” for 2500 training
episodes.

(b) Values of the non-normative action “He beat the informant mercilessly” for 100000
training episodes.

Figure 4.26: Values of the action “He beat the informant mercilessly” by GG-Shape-
αβ and GG-Shape in the Superhero environment.

78



(a) Values of the non-normative action “Shoot the robber”

(b) Values of the normative action “Will Silently called the police”

Figure 4.27: Values of the actions “Shoot the robber” and “Will Silently called the
police” by GG-Shape-αβ and GG-Shape in the Superhero environment
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that a normative prior model, in the form of a language-model-based classifier, can

be used to align reinforcement learning models’ behavior with limited initial, addi-

tional human intervention. We developed four test environments to test this novel

architecture using the TextWorld [16] framework. The environments test different

ways in which task-based and normative actions might conflict with each other. We

find that our policy shaping reinforcement learning architecture has properties that

make it well-suited to blending the needs of an environment task and a separate,

intrinsic normative signal. Because environmental—task—rewards are separate from

normative signals, we believe this is a step toward the practical design of norm-aligned

agents that can operate in ways that humans will recognize as normative and possibly

altruistic.

Copyright© Md Sultan Al Nahian, 2023.
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Chapter 5 Prior Knowledge Model of Principles

5.1 Introduction

Value alignment is the task of creating autonomous systems whose values align with

those of humans. In the first chapter, we have shown that stories are a potentially rich

source of information on human values; however, it is limited to considering values in

a binary sense. It can classify an action description as normative or non-normative,

but it does not provide the specific social norms or principles that determine why

the behavior falls into one category or the other. Thus, in this task, we expand our

binary prior model to a multi-class problem that will have the ability to recognize

the underlying social norms or principles that an action violates or upholds.

One frequently encountered difficulty with value alignment is explicitly defining

what constitutes a value [69]. Past approaches to AI value alignment have leveraged

learning from observations or other forms of imitation learning [71, 79, 31], the idea

being that one can circumvent the requirement of value knowledge by learning to im-

itate human behavior instead. As discussed earlier, learning knowledge from demon-

strations that generalize beyond the context of the observation is difficult. Collecting

sufficient demonstrations can be time consuming. Humans, too, are not necessarily

able to comprehensively define a full set of principles or values even if asked to pro-

vide these examples. To overcome these challenges, we have shown that stories are a

promising potential source of value information. We have introduced machine learn-

ing approaches that leverage children’s stories to learn a strong prior over behaviors.

However, it is limited to a binary view of values, opting to describe behavior as either

being normative, aligning with expected social norms, or non-normative, deviating

from expected social norms. Norms and the assessment of normative behavior can

rarely be so neatly categorized into positive and negative valences in every context. In

addition, it may be difficult to explain or remedy incorrect classification of normative

behavior if systems lack an understanding of the specific normative principle that is

being violated. Therefore, further efforts are necessary to identify specific principles

embedded within text-based descriptions and examples of normative behavior. This

will help enhance the knowledge of agents and the humans who collaborate with these

normative priors, enabling better-informed decision-making.

In this work, we seek to develop systems that have a more nuanced understanding

of descriptions of human behavior with respect to normative principles. We define

normative principles as specific behavior tenets that guide social normative behavior.

An example of a potential normative principle might be “Be polite to others.” To

facilitate this work, we augmented the G&G dataset to contain detailed information

about the principles being described in each frame. We then train various machine
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learning models with the aim of predicting the norms or principles that are either

upheld or rejected based on images and text descriptions of the comics. We evaluate

our work by comparing the performance of our trained models against humans who

are tasked with performing the same task.

5.2 Dataset

In order to develop models capable of understanding normative principles, we must

first find a suitable dataset for this task. To our knowledge, there is currently no

existing dataset that includes naturally occurring stories annotated with knowledge

of normative principles. Consequently, a key contribution of this work is the curation

of such a dataset. To construct it, we employed crowdsourcing to expand our existing

G&G dataset, which we previously utilized to train binary classification models of

normative behaviors on the children’s comic strip, Goofus & Gallant.

The Goofus & Gallant comic strip has been published in the U.S. children’s maga-

zine, Highlights, since 1940 as a means to teach children socially acceptable behavior.

It features two main characters, Goofus and Gallant, portraying them in everyday

situations. The comic consistently portrays two contrasting scenarios: one depicting

a proper way to handle a situation and another showcasing an improper approach,

providing examples for young readers to learn from. Thus the Goofus & Gallant comic

strip is a natural corpus to categorize an action as normative or non-normative, which

we have used in our first task of developing the normative prior model. But for the

purpose of this work, the G&G dataset as it exists is not sufficient. There is no

specific identifying information that expands on what expectations the children may

or may not be adhering to. For this task, we need to know which social norms or

principles are violated or complied with by these actions.

Thus, we use the crowdsourcing platform Prolific, in order to expand the scope

of the GnG dataset. For each image-action text pair of the comic, we prompted the

annotators to identify and provide the social norms being violated or adhered to by

the character in the comic strip from a predefined list of norms. Furthermore, we

collected detailed textual descriptions of the scenes depicted in the images for each

image-action text pair and refined these descriptions with additional annotations. A

comprehensive discussion of the data collection process is presented in the subsequent

section.

5.2.1 Data Collection

Recall that the goal of this data collection process is to use human annotators to

construct a dataset of Goofus & Gallant comics that are annotated with normative

principle information. To accomplish this, crowd workers were recruited using crowd-

sourced platforms Prolific and Dataworks and restricted to individuals only from
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Figure 5.1: Instructions given for the scene description task

English-speaking countries. The crowd workers were given a number of tasks, with

no individual worker participating in more than one phase of the data collection. The

tasks were as follows:

1. Provide a description – in short, declarative sentences - of the comic image

contents.

2. Additionally, conduct a secondary evaluation by reviewing the descriptions writ-

ten by other crowd workers and either removing incorrect observations or adding

any missing descriptions as needed.

3. Use the image description, description of the action, and the image to determine

which “social principles” are upheld or violated by the action.
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Figure 5.2: Prompt and exemplar for scene description task survey. An example of
the scene description is illustrated in the text box that was provided by one of the
survey participants.
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Thus, the entire data collection process is divided into two phases. In the first

phase, we collected detailed descriptions of the scenarios depicted in the images, and

in the second phase, we collected the “social principle” annotation providing the

images, the original comic texts, and our collected image descriptions. For each of

the tasks, a workbook or template manual was provided to the annotators which gave

example responses, clarified terminology in the online survey they were instructed to

take, and explained the purpose of the experiment.

Collecting Scene Descriptions

Recall that, the Goofus and Gallant comic strips contain both images and texts

describing actions that provide us the benefit of using both modalities to develop

machine learning models for identifying social norms. However, in our first task in

Chapter 1, we observed that it is difficult for machine learning models to identify

normative behavior with high accuracy from standalone images only. As identifying

social norms is a more challenging task, we expect that the natural language descrip-

tion of the scene depicted in the image may facilitate the machine learning models to

classify norms better. Therefore, before annotating social principles, in this task, we

have collected the text description of the associated images using the crowdsourced

platform.

To accomplish this data collection, crowdsourced workers were recruited using a

service named DataWorks. We implemented a survey interface (Figure 5.2) using

Qualtrics, which was made available to the workers. On each page of the interface,

the participants were presented with an image and their objective was to provide a

clear and concise description of the content of the image in multiple sentences. The

descriptions should exclude assumptions about the theory of mind of the characters

in the comics. For example, ”the boy seems frustrated” is not a valid response. Only

the objectively observable information in the image should be in the description.

An example of the sample description provided by the crowd workers is shown in

Figure 5.2.

The participants of the survey were provided with an instruction manual as well

that detailed the acceptable and unacceptable responses, including examples. Addi-

tionally, the manual included the conditions that needed to be met for the responses

to be approved. Figure 5.1 shows the details of the instruction manual of this data

collection task.

After collecting the descriptions of the images, we conducted a second round of

surveys to evaluate these descriptions by other crowd workers. In this phase, the par-

ticipants reviewed the descriptions collected in the initial round and made necessary

updates by eliminating any incorrect observations and adding missing descriptions,

if applicable.
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Figure 5.3: Social principles annotation survey interface.
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Figure 5.4: Exemplar Principles List as provided in the prompt to crowd workers

Social Principles Annotation

The aim of this data collection task is to utilize human annotators in annotating the

Goofus & Gallant comic strip with social principle information, creating a corpus of

normative social principles. For this purpose, we created a data collection interface

using Qualtrics and recruited annotators through the crowdsourced platform Prolific.

In the task, on each page, the participants were given an image and its corresponding

original text from the comic strip that described an action taken by the character of

the image. Along with that, the participants were also provided with a description of

the image that we collected in the previous phase. Based on the provided information,

the participant’s task was to describe the social principle that was either upheld or

violated by the action depicted in the comic strip. In the comics, often the quote

indicates Goofus is talking or Gallant is talking. The phrases were generalized to

remove the identifying character (e.g. ”’ I’m bored,’ says Goofus” becomes ”I’m

bored.). Figure 5.3 shows the interface of this data collection phase.
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For the described task, a workbook or template manual was provided which gave

example responses, clarified terminology in the online survey they were instructed to

take, and explained the purpose of the experiment. The most relevant and ”leading”

component of these manuals or pamphlets was a list of exemplar ”social principles”

which were crowdsourced from our team (Figure 5.4). The participants were not

instructed to constrain their responses to this list in particular but suggested to

consider the list as a reference. Their responses and the principles they provided

were always collected in freeform text.

We received 772 annotations from this data collection process. As the principles

were collected in freeform text, there were instances where multiple principles con-

veyed the same concept but were expressed using different phrases. For instance,

phrases such as “Be polite in public”, “React politely”, and “Be polite to others”

suggest a similar principle that can be replaced with “Be polite”. We consolidated

these similar principles with identical phrasing, resulting in a total of 222 unique

principles in freeform text. However unique principles in freeform text are sparse in

nature, which is difficult for the machine learning model to learn from. Because of

that, we categorized these responses into 16 distinct classes based on their concep-

tual similarities. For example, expressions such as ”Waiting for others,” ”Wait for

your turn,” and ”Stay calm” were grouped under the class ”Patience”. We further

reduced the set to 13 classes by merging classes with the lowest frequency to the most

conceptually similar class. 3 annotators including the author independently grouped

the responses together into categories. This process was repeated until a consensus

was reached.

5.3 Problem Definition

We seek to show that the stories in the Goofus & Gallant comic strips contain a

rich knowledge about the sociocultural norms and values that reflect the society and

culture from which the stories were written. To do so, in Chapter 1, we investigated,

whether can we determine if the action described in the story is socially acceptable

or not (normative or non/normative). In this chapter, I will describe how can we de-

termine the underlying social principles/norms that are either adhered to or violated

by the actions described in these stories.

While determining if an action is normative or non-normative is important for

achieving a value aligned agent, it is also equally important to possess knowledge

about the inherent social principles of that action for this purpose. This knowledge

will allow both agents and humans to know the underlying social principle or value

that has been obeyed or violated by the action and help to better understand the

reason or even remedy the misclassification of normative behavior. In this task, we

aim to develop systems that have an understanding of descriptions of human behavior

with respect to normative principles. We define normative principles as the set of
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principles that guide people to conform to a collective set of behavioral rules that a

society adheres to. Examples of potential normative principles might be “be behaving

properly” or “have an objective view”.

For this task, we have used the Goofus & Gallant principles dataset that has been

created by augmenting the G&G dataset with principles information for each frame

annotated by crowdsource workers. We use a number of machine learning models with

the objective of predicting the inherent social principles of the behavior described in

the text.

5.4 Methods

In this section, we explore to identify the most effective machine learning models for

learning normative principles on naturally occurring story datasets. Recall that for

each comic strip in the Goofus & Gallant principles dataset, we have multi-modal

information and these are:

• Image: A visual representation of an action taken by either Goofus or Gallant.

• Action text: This text is extracted from the original comic strip and describes

the action performed by the character in the strip.

• Image description: Detailed description of the image’s content using simple

declarative text which has been curated through the data collection pipeline.

• Principle: The social principle conveyed by the action depicted in the strip.

Based on this input information, we developed two machine learning models that

predict the normative principle involved in a Goofus & Gallant comic. In the first

model, we classify principles using both image and text inputs, and in the second, we

inject only the text inputs into the model to investigate how influential/helpful visual

context is for classifying principles. In both cases, we make use of proven transformer

models - Vision Transformer [20] and DistillBERT [66] - as the basis for the network

architecture. Detailed illustration of each architecture is shown in Figure 6. We

provide a comprehensive discussion of each model’s architecture in the subsequent

sections.

5.4.1 Image-Text Model

In this model, we pass both image and text information into the network. The

classifier takes an action text, associated image, and image description as input and

the goal is to determine the social principle conveyed by the action text and the image.

To give the network additional context, we also provide information on whether the

principle in question is being violated or upheld in the form of a simplified binary
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(a) Model architecture for image and text inputs

(b) Model architecture for text only inputs

Figure 5.5: Model architectures

vector. This corresponds to whether the original comic portrayed Goofus (indicating

violation) or Gallant (indicating adherence to the principle).

In implementing the network, to embed text inputs - the detailed image descrip-

tion and action text - we have employed a pre-trained DistillBERT model. The hidden

representation of the special classification (CLS) token of DistillBERT encapsulates

the entirety of its entire input sequence. We utilized this hidden representation of

the CLS token as the embedding vectors of the text inputs. To generate the feature

vector of the images, we have used the Vision Transformer (ViT) model. Similar to

DistillBERT, the Vision Transformer also provides the embedding vector of the CLS

token which represents the entire input image and thus, can be used as the embedding

vector of the image.

An identical layer is added on top of each pre-trained model which we refer to as

the projection layer. It consists of two linear layers followed by activation, dropout,

and layer normalization after each layer. All the embedding vectors were passed

through these projection layers. The resultant vectors from the three projection layers

were concatenated and passed through to another projection layer. The resulting

vector from this layer is combined with the embedding vector pemb, which contains
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information about whether the principle is violated or upheld in the current comic

strip. This combined vector then enters the classification layer, consisting of a linear

layer and a softmax layer. The network architecture of this model is shown in Figure

5.5a, providing an overview of its structure.

5.4.2 Text Only Model

The image description in our dataset contains comprehensive descriptions of the scene

and the state of the individual in the image. With this second model, we omit

the image and instead provide the network with the detailed scene description, the

original comic text, and the vector indicating whether the normative principle is

violated or upheld as inputs. With this model, we want to investigate the effect that

the image has on predictive performance. This model is similar to the Image-Text

model described previously, except that elements related to learning image features

have been removed. The overview of the network architecture is shown in Figure 5.5b.

5.5 Experiments

In order to assess the performance of our systems, we perform two sets of experi-

ments: an automated evaluation and a human subjects evaluation. Each experiment

is performed using both of our trained models. In this section, we are going to discuss

each of these experiments in greater detail.

5.5.1 Automatic Evaluation Protocol

The first set of experiments involves evaluating our methods using automatic per-

formance metrics. We evaluate our models by holding out 20% as a test set. We

use top 1, top 2, and top 3 accuracy for this evaluation. These metrics describe the

percentage of correct predictions that appear in the top 1, 2, and 3 responses in terms

of softmax probability, respectively.

5.5.2 Human Subjects Evaluation Protocol

We also perform a human subjects experiment comparing the performance of our

models to the performance of humans on the task of predicting normative principles

based solely on text representations of scenes. The decision to use only text was

grounded in our belief that the task is sufficiently difficult for humans even with

slightly modified text from the comic still augmented with more descriptive text con-

taining what existed in the original image. This better mirrors the original attempts

to use text-only transformers on the classification task. In this experiment, crowd

workers from Prolific were presented with text-only descriptions of Goofus and Gal-

lant comics drawn and paired with the original comic text. Comics were presented
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Figure 5.6: Prompt and exemplar for ”pick-and-rank 3” for 13 classes

at random - one representative image with a ground truth principle tag - from our

dataset containing 13 normative principles. Workers were tasked with selecting and

ranking the top three principles from a list they were presented that described the

comic in question.

Workers completed 5 ranking tasks at a time - randomly selected but evenly dis-
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Table 5.1: Class Distribution and Test Accuracy for both Image-Text and Text-Only
model with 13 Principles Dataset

Class Number
of Data
Points
(Train)

Number
of Data
Points
(Test)

Accuracy
(im-
age+text)

Accuracy
(Text
Only - top
1)

Accuracy
(Text
Only - top
2)

Accuracy
(Text
Only - top
3)

Humility 35 11 27.27 36.36 63.63 72.73

Respect 85 21 23.81 9.52 38.1 42.86

Law-abiding 32 6 0 16.67 33.3 50.0

Sensibleness 11 2 0 0 0 0.0

Friendliness 103 27 37.04 40.74 48.15 55.56

Cleanliness 64 21 47.62 52.38 66.67 66.67

Cooperation 49 16 12.5 18.75 25.0 31.25

Self-care 29 7 0.0 14.29 28.57 28.57

Caution 27 10 50.0 70.0 80.0 80.0

Patience 34 4 25.0 25.0 50.0 50.0

Assistiveness 35 7 28.57 57.14 85.71 85.71

Politeness 53 8 12.5 25.0 37.5 37.5

Attentiveness 60 15 20.0 20.0 40.0 46.67

Totals /
Averages

617 155 27.1 32.26 48.39 52.9

tributed among the 13 core examples (Figure 5.6 shows the data collection interface).

Each of the 13 examples description-quote pairs received 25 rankings (that is, 65 par-

ticipants chose their top 3 representative principles for the 5 images presented during

their task set). A total of 25 rankings per principle were collected as a result.

This experiment was repeated using our downselected dataset that contained only

8 normative principles This experiment involved enough workers to achieve 25 rank-

ings per principle as in our previous experiment.

Both experiments were evaluated using the top1, top2, and top3 accuracies, as we

did for our automatic evaluation. Here, these accuracy metrics describe how often

human participants correctly identified the normative principle for a comic in their

top 1, 2, and 3 responses respectively.

5.6 Results

5.6.1 Automatic Evaluation

The prediction results of the models for both 13 and 8 principles are shown in Ta-

ble 5.1 and 5.2 respectively. Both tables show the accuracy of our two models: 1)

Image-Text model and 2) Text-Only model. From the table, we can observe, that

injecting visual information into the model improves the accuracy for some of the

classes the overall performance is decreased. It indicates that visual cues such as an
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Table 5.2: Class Distribution and Test Accuracy for both Image-Text and Text-Only
model with 8 Principles Dataset

Class Number
of Data
Points
(Train)

Number
of Data
Points
(Test)

Accuracy
(image-
text)

Accuracy
(Text
Only - top
1)

Accuracy
(Text
Only -
Top 2)

Accuracy
(Text
Only -
Top 3)

Humility 88 19 21.05 36.84 52.63 57.89

Respect 85 21 28.57 28.57 38.1 52.38

Law-abiding 32 6 16.67 16.67 33.3 66.67

Sensibleness 132 31 32.26 38.71 41.94 48.39

Friendliness 103 27 44.44 40.74 48.15 66.67

Cleanliness 64 21 57.14 42.86 52.38 71.43

Cooperation 84 23 26.09 21.74 65.22 78.26

Self-care 29 7 14.29 42.86 42.86 57.14

Totals /
Averages

617 155 33.55 34.84 48.39 61.94

Table 5.3: Human classification (N=25) distribution and accuracy (Scene Description
+ Quote, No Image)

Class Accuracy
(13
classes)

Accuracy
(13-top2)

Accuracy
(13-top3)

Accuracy
(8 classes)

Accuracy
(8-top 2)

Accuracy
(8-top 3)

Humility 0% 4% 16% 12% 16% 24%

Respect 16% 28% 40% 28% 60% 80%

Law-abiding 4% 8% 32% 28% 36% 48%

Sensibleness 8% 12% 20% 4% 16% 28%

Friendliness 36% 52% 68% 56% 92% 96%

Cleanliness 0% 4% 4% 0% 12% 12%

Cooperation 16% 24% 52% 48% 60% 64%

Self-care 0% 8% 12% 12% 28% 40%

Caution 32% 56% 64% − − −
Patience 36% 48% 60% − − −
Assistiveness 4% 16% 20% − − −
Politeness 28% 48% 56% − − −
Attentiveness 32% 36% 36% − − −

Avg Accu-
racy

13.923% 26.461% 36.923% 23.500% 40.000% 49.000%
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Figure 5.7: Confusion matrix of the test data

individual’s facial expression and surrounding objects contribute very little in pre-

dicting social principles. Instead, the textual description of the scene and action

dominantly influence the understanding of the principles. Thus in our later analysis,

we only refer to the result of the Text-Only model.

Accuracy for some of the classes is relatively lower for the 13 principles set as they

have a smaller number of data points in the training set, for instance, “Sensibleness”

(Table 5.1). The accuracy of these classes increases significantly after downsizing the

classes. From Table 5.2, we can see that, the model’s capability to predict ”Self-care”

and ”Sensibleness” improves considerably than the model trained with 13 principles.

But it is worth mentioning that, though downsizing the number of classes increases

the model’s performance for some of the classes, the overall accuracy does not increase
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largely.

5.6.2 Human Subject Evaluation

The results of the human subject evaluations on text descriptions and quotes (with no

image) can be seen in Table 5.3. The results for 13 principles are presented alongside

the results for 8 principles. A key observation we can make is how this accuracy

shifts when the principle list is reduced. Ambiguous or more infrequent principles

are absorbed and the annotators take less time on the task, with fewer principles

to deliberate between. It is worth noting that only in the case of Sensibleness (aka

”Sensibility”) did accuracy decline. In all other cases, the further binning of principles

from 13 to 8 greatly increased the capability of human annotators with respect to

correctly identifying the principle.

5.7 Discussion

In this section, we discuss the results of both our automatic evaluation and our human

subjects evaluation.

5.7.1 Automatic Evaluation

The first thing to note about the results of our automatic evaluation is that the

performance, overall, of each model is not very high. The top1 performance for both

the text only and text+image models is below 50%. An interesting note is that the

presence of the image did not improve prediction performance. In fact, the machine

learning model that utilized image features did worse than the model that only had

access to text features. It is for this reason that we focused our evaluations on the text

only model. One possible explanation is how the comic image stylization has changed

over the decades - the dataset was already fairly sparse and so these differences likely

had a significant impact.

In addition, we see that our model’s overall average accuracy increases as we con-

sider wider ranges for accuracy. This lends support to the notion that many of our

principles may conceptually overlap with each other. The models struggle to differen-

tiate between principles that may occur in similar situations (i.e. ”Cooperation” and

”Humility”, can be seen from the confusion matrix shown in Figure 5.7), making it

less likely that the correct answer appears as the top response, but more likely that it

appears in the top 3 responses. This idea is further supported by the overall increase

in performance we see when moving to the downselected dataset. By merging cer-

tain principles together, we enable the machine learning model to better differentiate

between principles, leading to overall better predictive accuracy.
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5.7.2 Human Subject Evaluation

Similar to the difficulty large-scale language models faced when provided text-only

descriptions of the comics, human participants struggled to accurately identify prin-

ciples when given the same prompt. It is intuitive that the accuracy improves when

there are fewer principles to choose from. In many cases, it may not be unreason-

able to apply multiple principles to a given situation, situational description, or a

quote from a peer. One interpretation for the ambiguity of the results may also be

the nature of the original collection methods. The crowd workers asked to attribute

freeform principles to the comics likely have significantly diverse mental templates,

expectations, and memories of what ”cooperation” may mean as opposed to ”assis-

tiveness” as one example. When asking another set of participants to select, even

from a much reduced set of principles, this continues to be a problem. But we do

see with principles like ”friendliness” or ”caution” - two which receive fairly high

accuracy/consensus - that there are concepts, situational descriptions and prompts

that more clearly represent a subset of the binned principles. Another explanation for

”friendliness”’s high performance across both bins may be that it becomes the default

principle participants choose when all others are confusing. Indeed, some principles

may be pre-requirements to others. If a person is effective at the other principles,

they are likely to be perceived as ”friendly” in general.

Perhaps the most important thing to note is how our machine learning models

performed with respect to the human rankings. If one looks at average accuracy, our

models outperformed humans across all metrics on both the 13 principle dataset and

the 8 principle dataset.

5.8 Study 2

From the automatic and human evaluation, we see that the task of identifying socially-

normative principles is difficult for both human annotators as well as complex, state-

of-the-art language models and custom architectures. It is not unreasonable to assume

additional context is needed and also to improve the quality of the annotated data.

Though the principles labels are annotated by the crowdsource worker, the set of

the principles that we have used for the annotation was not defined by social science

studies. Thus, it may raise a potential issue that the principles we have used to anno-

tate may not accurately represent the correct set of social principles. To address this

issue we have conducted another study and curated a new dataset of social principles

annotating the Goofus & Gallant comic strips. In this section, I am going to discuss

the study in detail which encompasses the data collection process, methodologies

utilized, experiments conducted, results and discussion on the obtained results.
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(a) The interface containing the instructions and examples for annotating the principles

98



(b) The remaining part of the instructions interface.

Figure 5.8: The interface containing the instructions for annotating the principles
that was provided to the annotators.

5.8.1 Data Collection

In our first study of principles classification, we have constructed a dataset comprised

of images, image descriptions, and descriptions of social behaviors or actions exhib-

ited by the characters (either by Goofus or Gallant) in the images, and the underlying

social principles that these actions either violate or adhere to. To annotate the prin-

ciples associated with each action, we employed crowd workers using crowdsourced

platforms where the principles were collected in the form of free-text responses. This

approach allowed the annotators to express the principles in their own words, but we

have observed that it made the set of principles sparse and diverse. Having a large

number of classes with a low number of training instances for each class poses a chal-

lenge for machine learning models to generalize and accurately identify the classes.

Because of this, we categorized these free-form text responses into a finite set of

principles. However, from our experiments, we have observed that both human and

state-of-the-art machine learning models struggle to identify social principles from

the input information with high accuracy. Therefore, in this study, we aim to create

a dataset of principle classification tasks where the set of social principles accurately

represent social actions and are supported by social science studies.

To achieve this, we employed the system presented in a study by Kiesel et al. [41]

to establish the set of ”social principles.” In their research, the authors proposed a

value taxonomy consisting of 54 values that are pertinent and supported by social
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Figure 5.9: The taxonomy of social values proposed in [41]. There are 54 values
which have been further categorized into more abstract 3 levels.

science research. The authors have categorized these values into more high-level

abstract values as well. In our task, we have utilized the level 1 values which provides

more detailed insights into individual value. However, we further downsized the

number of “values” to align it with the action description of G&G corpus. We ran

the pre-trained model provided by Kiesel et al. [41] on the G&G dataset to obtain

the zero-shot value predictions for the text descriptions in the corpus. Through this
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experiment, we identified 27 social values that are associated with the GNG texts.

Consequently, we considered these 27 social values as the selected set and tasked the

crowdsource workers with annotating the provided image-text pairs by selecting the

most appropriate representative values from this list. Their objective was to identify

the values that were upheld or violated by the actions described in each image-

text pair. An instruction page containing examples was provided to the annotators,

outlining the annotation process in detail (Figure 5.8).

Similar to our previous data collection process, for this data collection, we also

specifically recruited annotators exclusively from English-speaking countries. In the

task, the workers were provided image-text pairs from the Goofus & Gallant corpus,

along with a predetermined set of social principles that had been curated through the

previously discussed process. Since a single action could encompass multiple social

principles simultaneously, we instructed the workers to select and provide the three

most representative principles from the given list. These principles were to reflect

whether they were upheld or violated by the action depicted in the corresponding

image-text pair. For each data item, we have recruited at least three annotators, and

each annotator labeled 8 items from the corpus. In total, we recruited a pool of 900

annotators for the task.

To assess the quality of the collected annotations, we evaluated the inter-annotator

agreement of the annotations. Since the data is multi-label and there were more than

two annotators for each data item, we used the Fleiss kappa [23] score as the metric

for inter-annotator agreement. The obtained score was 0.49. In order to ensure the

data quality, we eliminated annotations where the annotators were unable to reach

a consensus on any label. After removing these annotations, the Fleiss kappa score

of the remaining annotations increased to 0.54. We have named this newly created

dataset as the ”Goofus & Gallant Principles v2” dataset.

5.8.2 Problem Definition

The aim of this study is to identify the inherent social principles of social behavior or

action that are violated or upheld by the action. We use a number of machine learning

models with the objective of predicting the inherent social principles of the behavior

described in the text. It is important to note that social behavior can simultaneously

adhere to or violate multiple social norms. For instance, “Gallant does his studying

before watching TV”, complies with the normative social norms and the norms could

be both “being responsible” and “being compliant”. Because of this property of social

norms, we frame this task as a multi-label multi-class classification problem. For each

input text, the objective of the classifier is to predict the top three representative

principles that are being upheld or violated by the behavior described in the text. In

this study, we are specifically constrained to utilize the text inputs only.
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Figure 5.10: Network architecture of the Principles Classification model. The classi-
fier takes both the description of the action and the corresponding scene.

5.8.3 Methods

In this section, we delve into the process of identifying the most efficient machine

learning models for learning normative principles on our newly created Goofus &

Gallant Principle v2 dataset. We exclusively employ text type information of our

dataset as input for training the principles classification models. As mentioned ear-

lier, we approach the principles classification problem as a multi-label multi-class

classification problem. The objective of the classifier is to predict the 3 most repre-

sentative principles for each input text description. As the input, we have used two

types of text information: 1. The description of the action and 2. The description of

the scene is depicted in the corresponding image. Based on these two input types, we

build two classifiers for principles classification. In the first classifier, only the action

description is used as the input. In the second classifier, we used both the action and

scene descriptions as input to investigate how adding the scene description affects the

classification of the underlying social principles conveyed by the action.

To build the classifier, we utilized the transformer-based large language models.
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On top of the transformer models, we added a classification layer that consists of

two fully connected (FC) layers. Transformer-based language models add a special

classification token [CLS] at the start of each input sequence. The hidden vector of

this token represents the embedding vector of the entire sequence that can be used

for sentence classification. In our classifiers, we extract the vector representation of

the [CLS] token which is the representation vector of the input text, and pass it to

the two fully connected layers to make the final prediction on the text description.

Before being passed into the classifier, the input sequences were tokenized using

the corresponding tokenizer. For the classifier that utilized both the action and scene

descriptions as input, these descriptions were combined in a single sequence at first.

The tokenizer used a special token [SEP] in between the action and scene descriptions

tokens to separate these two inputs.

Given that the principles classification is a multi-label and multi-class classifi-

cation, the classifier is required to predict multiple classes for each input text. To

accomplish this, we applied the sigmoid activation function on the output of the final

fully connected (FC) layer for making predictions. While sigmoid activation is usually

used for binary classification, we adopted this function to enable multi-label function-

ality in our classification task. The sigmoid function provides a probability value for

each class individually. We compared these class probabilities with true class labels

(one hot encoding) to calculate the loss of the network. During the inference stage,

we defined a threshold probability value in order to determine the predicted classes.

Any class with a probability greater than the threshold is regarded as a predicted

class, while the remaining classes are disregarded.

5.8.4 Experiments

To evaluate the effectiveness of our systems, we conducted an automated evaluation of

our trained models. This section is going to cover the metrics used for the automated

evaluation, the experiments conducted, and the obtained results.

Automatic Evaluation Protocol

For evaluating our models, we utilized the metrics; accuracy, precision, recall, F1-

score, and MCC (Matthew Correlation Coefficient). As previously mentioned we

approached this problem as a multi-label multi-class classification task, the computa-

tion of these metrics involves a slightly different procedure compared to the standard

method.

In a multi-label multi-class classification problem, the set of target classes usually

has multiple classes that the classifier requires to predict for a given input. The classi-

fier is expected to identify all the classes that belong to the target set. However, if the

classifier successfully predicts some of the classes but fails to predict the rest of the

classes that are part of the target set, it is considered a partially incorrect prediction.
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For instance, let’s examine the situation shown in figure 5.11, where a classifier aims

to recognize the animals within an image. In the first image, the expected labels are

[cat, dog], and the classifier correctly predicts [cat, dog]. Consequently, this predic-

tion is deemed 100% accurate. However, in the second image, the target labels are

[cat, bird], but the classifier predicts [dog, bird], failing to identify the cat accurately.

As a result, this particular sample is considered 50% accurate.

In our principles classification task, a single social action could represent multi-

ple social principles but it is enough for the classifier to identify at least one social

principle correctly that is depicted in the action. Unlike the conventional multi-label

classification task, in this task, the classifier is not required to predict all the target

labels. Instead, if it can successfully identify at least one class among the target

labels, it will be considered a true prediction. On the other hand, if the classifier

predicts a class that is not included in the set of true labels, it will be counted as a

false prediction or false positive. For instance, let’s consider the example presented

in Figure 5.12. In this example, the true labels for the first sample are “be capable”

and “be responsible,” while the predicted label is only “be responsible.” Since “be

responsible” is one of the true labels, it is regarded as a correct prediction for this

sample, even though the classifier did not predict the additional label “be capable”.

Similarly in the second sample, the true labels are “be responsible” and “have good

health” and the predicted labels are “have good health” and “be curious”. Since

“have good health” is in the set of true labels, it is a true prediction despite it has

not predicted another label “be responsible”. On the other hand, the predicted label

“be curious” is not in the set of true labels. Therefore, it is considered a false predic-

tion or a false positive. As a result, the updated lists of target labels and predicted

labels become [be responsible, have good health, be responsible] and [be responsible,

have good health, be curious]. All the evaluation metrics are computed based on the

updated lists of target labels and predicted labels.

Results

Table 5.4 presents the classifier results for various input combinations. As previously

stated, our principles classifier dataset comprises three types of text information:

action description, scene description, and whether the action upholds or violates

norms. To investigate the impact of different information on identifying violated

or upheld principles in given actions, we trained the model using different input

combinations.

Furthermore, we reported the outcomes for three distinct probability thresholds.

Initially, we selected the top 3 predicted classes for each input sequence. Subsequently,

we eliminated any class among the top 3 whose prediction probability was below our

threshold value. If the probabilities of all the top 3 predicted classes were higher than

the threshold, we considered all of them as the predicted principles for the sequence.
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Figure 5.11: Example of multi-label classification

The results show that the model, which incorporates scene descriptions and infor-

mation about the normative nature of the action along with the action descriptions,

outperforms other models. The model that solely relies on action descriptions per-

forms similarly to the one that includes scene descriptions in the input sequence.

However, the model’s performance improves when provided with information about

whether the action violates or upholds the norms.

We applied three different threshold values to the predicted probabilities of our

trained model to determine the final set of labels for each instance. The results

indicate that the threshold value of 0.5 performs better than the other two threshold

values.

5.8.5 Discussion

In our experiment, we found that the performance of our various models is close.

One noteworthy observation is that incorporating the scene description along with

the action description does not lead to a substantial improvement in the model’s

performance. However, when we provide information about whether the action is

normative or non-normative, the model’s performance improves. Moreover, provid-

ing the combination of both information results in a significant enhancement in the
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Figure 5.12: Evaluation process for the principle classification

model’s performance.

As our principles classification task is a multi-label classification task, we apply

a threshold on the predicted class probability values to determine the final set of

classes for each instance. A lower probability threshold results to predicting more

classes for each instance, which could generate a higher number of false positives

and potentially lower the overall accuracy of the model. In contrast, raising the

probability threshold ensures that the model predicts classes only when it is more
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Table 5.4: Results of principles classification on the test dataset. Inputs into the
models are action description, scene description and whether the principle is violated
or not

Input Threshold Precision Recall f1-score Accuracy MCC

action - scene
description -
upheld/violated

0.6 0.411 0.342 0.351 0.57 0.47

0.5 0.348 0.31 0.304 0.543 0.451

0.4 0.274 0.229 0.231 0.485 0.381

action - scene
description

0.6 0.319 0.348 0.3 0.61 0.512

0.5 0.25 0.292 0.252 0.546 0.462

0.4 0.216 0.232 0.2 0.508 0.422

action -
upheld/violated

0.6 0.354 0.313 0.271 0.532 0.396

0.5 0.327 0.294 0.249 0.529 0.397

0.4 0.265 0.207 0.192 0.5 0.391

action
0.6 0.23 0.358 0.312 0.524 0.436

0.5 0.256 0.264 0.22 0.51 0.44

0.4 0.215 0.161 0.168 0.454 0.338

confident, reducing the number of false positives. However, this may also lead to

missing some true positive instances, as the model becomes more conservative in its

predictions. Our experiments also confirm this behavior.

5.8.6 Conclusion

It is important and urgent to have more perspectives on how best to align autonomous

systems with human preferences, values and social norms. The task remains dif-

ficult despite new datasets or other methods that focus on debiasing or particular

moral philosophies. To tackle this challenge, we created a new dataset of social

norms/principles by annotating the norms depicted in actions/behaviors observed in

social scenarios, using crowdsourced platforms. The principles that were collected

can be applied to more than the western cultures specifically depicted in the dataset

which was extended.

Using this newly created dataset, we developed multiple machine-learning models

capable of identifying norms from input sequences. We observed that the task of

identifying socially normative principles is difficult for both human annotators as

well as complex, state-of-the-art language models and custom architectures. This

leads us to consider that additional context is likely necessary, including the theory

of mind of entities being assessed, previous actions, and future outcomes in similar

social normative situations. Further exploration is necessary to probe even deeper

into this problem.
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We hope this facilitates discussion as to how best to expand existing datasets to

understand normative behavior in terms beyond simple ”acceptability” and ”non-

acceptable” behaviors. It’s essential to acknowledge that the observed scenarios and

the depicted principles/norms in our task exclusively represent the moral perspec-

tive of Western society. Thus, it is reasonable to consider extending this dataset to

encompass moral frameworks from outside traditional Western norms/principles as

well.

Copyright© Md Sultan Al Nahian, 2023.
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Chapter 6 Conclusion

AI value alignment is an emerging field of interest that is important for the safe and

practical adaptation of AI systems into our society. It ensures that AI systems act

in accordance with human values and preferences. The existing methods of AI value

alignment largely depend on imitation learning or learning from demonstration-based

approaches. However, learning values from demonstration poses challenges, primarily

due to the dynamic and sparse nature of values. Moreover, certain values are difficult

to demonstrate, such as abstaining from specific actions.

In response to these challenges, this dissertation introduces an alternative ap-

proach to value alignment. We propose that a strong prior knowledge model of

human values can serve as a complementary approach to the necessity of demonstra-

tion. To construct this prior knowledge model, we propose to use naturally occurring

stories. This stems from the observation that characters depicted in stories often

embody the values that a society idealizes, as well as examples of values that are

discouraged. Particularly, children’s stories, as often those are meant to teach values

to children, contain instances of both normative and non-normative behaviors. Thus,

by extracting the actions of characters from the textual and visual components of

these stories, it can be leveraged to train machine learning models with the capacity

to differentiate between normative and non-normative actions.

This dissertation also presents the Goofus & Gallant corpus, a collection of chil-

dren’s stories with annotated labels denoting socially normative and non-normative

actions. The corpus comprises textual descriptions and corresponding images, provid-

ing the facilities for machine learning models to leverage multi-modal information. We

illustrate the process of training a variety of machine learning models using this cor-

pus, resulting in accurate classifications of behaviors as normative or non-normative

actions. Our experiments show that textual information provides better performance

than its corresponding image components. Thus, we continue the subsequent experi-

ments on the text corpus exclusively. We demonstrate through experiments that the

text models can effectively generalize their expertise to dissimilar event description

tasks. For these experiments, we have created two more datasets Plotto and SciFi,

encompassing normative/non-normative action descriptions. Our experimental find-

ings underscore that the models trained on G&G text corpus can effectively classify

previously unseen action descriptions of Plotto and SciFi datasets. This observation

implies that these models can be utilized as the prior knowledge models of human

values that complement conventional techniques for value alignment.

In the subsequent phase of this work, we have investigated how the normative

models can be incorporated into the RL training to achieve value aligned agents. We

have proposed four reinforcement learning-based approaches based on the exploration
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techniques of RL agents to train the value aligned agents. To evaluate the effectiveness

of our proposed methods, we have developed four text-based virtual environments us-

ing the TextWorld framework. Each of these test environments is exclusively designed

to challenge the value aligned agents in different scenarios, where the agents have to

opt between task-oriented and normative actions to attain the objectives. Through

our experiments, we show that all the normative agents that have been trained using

our proposed approaches prioritize normative paths over non-normative ones. This

stands in contrast to conventional RL agents that solely consider task-oriented ac-

tions without accounting for the normative or non-normative nature of the chosen

action. The choice of the value-aligned approach depends on the specific properties

of the task of interest.

In the final phase of this work, our focus extended to enhancing the prior knowl-

edge model, enabling it to discern the underlying principles governing social actions,

thereby providing the prior knowledge model with a broader perspective of social val-

ues. For this task, we have created a new dataset of social norms/principles using the

crowdsourcing platform. We have used the comic strips from the G&G corpus and

annotated the action descriptions from these comic strips using the crowd workers.

We trained multiple machine learning models using the newly created dataset that

can identify the social norms from textual descriptions of the actions. We observed

that identifying the underlying social principles of an action or behavior is challenging

for both human annotators and machine learning models. We anticipate that addi-

tional context and/or increasing the volume of data might enhance the performance

of the models.

In summary, in this dissertation, we present a novel approach to practical AI

Value Alignment leveraging children’s stories and machine learning techniques to im-

bue AI systems with a comprehensive knowledge of human values and preferences.

This approach addresses the limitations of current methods of value alignment, such

as learning through demonstration or imitation learning. We also present a diverse

multi-modal story corpus containing instances of normative and non-normative ac-

tions and annotated social principles. Moreover, we have implemented a text-based

test environment suite, the earliest text-based test environment to evaluate the effi-

cacy of value-aligned agents. Finally, it’s pertinent to acknowledge that our value-

aligned agent is text-based. As the next step of this endeavor, we aim to broaden our

methodologies to encompass the visual domain, recognizing the real-world likelihood

of agents engaging with visual inputs.

Copyright© Md Sultan Al Nahian, 2023.
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