5 research outputs found

    Estimation of Gravity Wave Momentum Flux with Spectroscopic Imaging

    Get PDF
    Atmospheric gravity waves play a significant role in the dynamics and thermal balance of the upper atmosphere. In this paper, we present a novel technique for automated and robust calculation of momentum flux of high-frequency quasi-monochromatic wave components from spectroscopic imaging and horizontal radar wind measurements. Our approach uses the two-dimensional (2-D) cross periodogram of two consecutive Doppler-shifted time-differenced (TD) images to identify wave components and estimate intrinsic wave parameters. Besides estimating the average perturbation of dominant waves in the whole field of view, this technique applies 2-D short-space Fourier transform to the TD images to identify localized wave events. With the wave parameters acquired, the momentum flux carried by all vertically propagating wave components is calculated using an analytical model relating the measured intensity perturbation to the wave amplitude. This model is tested by comparing wave perturbation amplitudes inferred from spectroscopic images with those from sodium lidar temperature measurements. The proposed technique enables characterization of the variations in the direction and strength of gravity waves with high temporal resolution for each clear data-taking night. The nightly results provide statistical information for investigating seasonal and geographical variations in momentum flux of gravity waves

    Observational Investigations of Gravity Wave Momentum Flux with Spectroscopic Imaging

    Get PDF
    We apply a newly developed gravity wave momentum flux estimation method to the mesospheric measurements obtained with colocated airglow imager and meteor radar at Maui, Hawaii (20.7ºN, 156.3ºW), during the Maui Mesosphere and Lower Thermosphere (Maui MALT) campaign. The method identifies individual quasi-monochromatic gravity waves with periods between 6 and ~40 min, estimates the intrinsic wave parameters, and calculates the momentum fluxes carried by vertically propagating waves. Data taken on 28 October 2003 are analyzed in detail to reveal the relationship between momentum flux and wave parameters. The January, April, July, and October 2003 data are divided into summer and winter categories, and nightly average momentum fluxes are calculated for comparison of the seasonal wave propagation directions. Average wave momentum flux is directed to the northeast during most of the summer nights, while a southwest preference exists for the winter nights. The results extracted from Maui, Hawaii, combined with the earlier results from Starfire Optical Range, New Mexico (35ºN, 107ºW), and other observations, support the notion that the seasonal trend in meridional flux is a global phenomenon

    First OH Airglow Observation of Mesospheric Gravity Waves Over European Russia Region

    Get PDF
    ©2018. American Geophysical Union. All Rights Reserved. For the first time, we perform a study of mesospheric gravity waves (GWs) for four different seasons of 1 year in the latitudinal band from 45°N to 75°N using an OH all-sky airglow imager over Kazan (55.8°N, 49.2°E), Russia, during the period of August 2015 to July 2016. Our observational study fills a huge airglow imaging observation gap in Europe and Russia region. In total, 125 GW events and 28 ripple events were determined by OH airglow images in 98 clear nights. The observed GWs showed a strong preference of propagation toward northeast in all seasons, which was significantly different from airglow imager observations at other latitudes that the propagation directions were seasonal dependent. The middle atmosphere wind field is used to explain the lack of low phase speed GWs since these GWs were falling into the blocking region due to the filtering effects. Deep tropospheric convections derived from the European Centre for Medium-Range Weather Forecasts reanalysis data are determined near Caucasus Mountains region, which suggests that the convections are the dominant source of the GWs in spring, summer, and autumn seasons. This finding extends our knowledge that convection might also be an important source of GWs in the higher latitudes. In winter the generation mechanism of the GWs are considered to be jet stream systems. In addition, the occurrence frequency of ripple is much lower than other stations. This study provides some constraints on the range of GW parameters in GW parameterization in general circulation models in Europe and Russia region

    Acoustic/Gravity Wave Phenomena in Wide-Field Imaging: From Data Analysis to a Modeling Framework for Observability in the Mlt Region and Beyond

    Get PDF
    Acoustic waves, gravity waves, and larger-scale tidal and planetary waves are significant drivers of the atmosphere’s dynamics and of the local and global circulation that have direct and indirect impacts on our weather and climate. Their measurements and characterization are fundamental challenges in Aeronomy that require a wide range of instrumentation with distinct operational principles. Most measurements share the common features of integrating optical emissions or effects on radio waves through deep layers of the atmosphere. The geometry of these integrations create line-of-sight effects that must be understood, described, and accounted for to properly present the measured data in traditional georeferenced frames or in thin-layer representations. These effects include intensity enhancements/cancellations, filtering of scales, and apparent phase shifts relative to the underlying wave dynamics. We have designed a simulation framework that uses 2D and 3D input model data to perform these line-of-sight integrations based on ray tracing and geodesic transformations. The primary objective is to characterize these effects, to define quantifiable impacts on measurable parameters, and to create a basis for synthetic data for processes to be revealed in current and future measurements

    Estimation of Gravity Wave Momentum Flux with Spectroscopic Imaging

    No full text
    Atmospheric gravity waves play a significant role in the dynamics and thermal balance of the upper atmosphere. In this paper, we present a novel technique for automated and robust calculation of momentum flux of high-frequency quasi-monochromatic wave components from spectroscopic imaging and horizontal radar wind measurements. Our approach uses the two-dimensional (2-D) cross periodogram of two consecutive Doppler-shifted time-differenced (TD) images to identify wave components and estimate intrinsic wave parameters. Besides estimating the average perturbation of dominant waves in the whole field of view, this technique applies 2-D short-space Fourier transform to the TD images to identify localized wave events. With the wave parameters acquired, the momentum flux carried by all vertically propagating wave components is calculated using an analytical model relating the measured intensity perturbation to the wave amplitude. This model is tested by comparing wave perturbation amplitudes inferred from spectroscopic images with those from sodium lidar temperature measurements. The proposed technique enables characterization of the variations in the direction and strength of gravity waves with high temporal resolution for each clear data-taking night. The nightly results provide statistical information for investigating seasonal and geographical variations in momentum flux of gravity waves
    corecore