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Abstract


	 Acoustic waves, gravity waves, and larger-scale tidal and planetary waves are 

significant drivers of the atmosphere’s dynamics and of the local and global circulation 

that have direct and indirect impacts on our weather and climate. Their measurements 

and characterization are fundamental challenges in Aeronomy that require a wide range 

of instrumentation with distinct operational principles. Most measurements share the 

common features of integrating optical emissions or effects on radio waves through deep 

layers of the atmosphere. The geometry of these integrations create line-of-sight effects 

that must be understood, described, and accounted for to properly present the measured 

data in traditional georeferenced frames or in thin-layer representations. These effects 

include intensity enhancements/cancellations, filtering of scales, and apparent phase 

shifts relative to the underlying wave dynamics. We have designed a simulation 

framework that uses 2D and 3D input model data to perform these line-of-sight 

integrations based on ray tracing and geodesic transformations. The primary objective is 

to characterize these effects, to define quantifiable impacts on measurable parameters, 

and to create a basis for synthetic data for processes to be revealed in current and 

future measurements. 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Chapter 1


Introduction: Aeronomy and Gravity Waves


	 The Earth’s upper atmosphere is host to many dynamical phenomena that are 

responsible for its structure and circulation. Aeronomy is the study of the upper 

atmospheric, of its chemical and physical processes. It is multidisciplinary and it is 

fundamentally based on the observations along the entire atmosphere. The scales of 

atmospheric phenomena vary greatly and they determine the type of interactions with 

the background atmosphere. Figure 1.1 shows the large-scale temperature 

perturbations up to 500 km height that arise from a convective storm.





Figure 1.1. 3D modeling of temperature perturbations due to a thunderstorm. The top 
height is 500 km.
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	 In the mesosphere and lower thermosphere (MLT) region of the atmosphere, at 

80-100 km altitude, we find different layered emission due to photochemical reactions of 

different molecular and atomic species that form the atmosphere; this is the Earth’s 

airglow or nightglow. Studies of atmospheric emissions from ground-based photometry, 

spectroscopy, or imagery, and in-situ measurements by rocketry have been conducted to 

determine the heights and emission of these layers (Roach and Meinel 1955, Sharov and 

Lipaeva 1973, Taylor and Hapgood 1982) that first provided us with clues to the 

dynamical processes that regulate the upper atmosphere. Table 1.1 presents the most 

prominent emissions in the MLT and lower thermosphere region altitude with typical 

mean heights and full-width-half-maximums. A model of the layers is shown in Figure 

1.2, where a photograph from the ISS is included for comparison.


Table 1.1. Some of the most important airglow layer emissions in the MLT region.


	 In this thesis we are interested in determining the characteristics of distinct wave 

phenomena through simulations. While it is possible to measure the airglow intensity 

and the rotational temperature whose relation is a function of wave parameters often 

described by the Krassovsky parameter (Krassovsky and Shagaev 1977), some intrinsic 

wave parameters cannot be determined directly from single integrated airlgow 

measurements, such as vertical wavelength of the wave. These can be described by a 

Emission line Emission Wavelength (Å) Mean Layer Height (km) FWHM (km)

OH(3,1) 1500 – 1570 87 8

Na(2P, 2S) 5890, 5896 90 10

O(1S) 5577 95 8

O2 8655 94 8

O(1D) 6300 230 60

2
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model from distinct airglow layer measurements (i.e. to get phase differences). 

Nevertheless, vertical wavelength and intrinsic wave characteristics can be derived with 

sufficient knowledge of the propagation environment, or with multiple measurements 

sufficient to discern the phase structure of the wave as it evolves over altitude (Swenson, 

Taylor et al. 1995, Fritts and Alexander 2003, Liu and Swenson 2003, Yue, Vadas et al. 

2009, Akiya, Saito et al. 2014, Fritts, Smith et al. 2016, Liu, Xu et al. 2019).





Figure 1.2. (top) Modeled 3D airglow layers. (bottom) Earth’s airglow as seen from the 
ISS at over 250 miles above Australia. Credit: NASA, https://www.nasa.gov/image-
feature/earth-enveloped-in-airglow.


O(1D) 6300 Å

Mean peak height: ∼230 km

FWHM: ∼100 km

O(1S) 5577 Å

Mean height: ∼95 km


FWHM: ∼8 km

Na(2P,2S) 5890, 5896 Å

Mean peak height: ∼93 km

FWHM: ∼30 km

Model image

ISS NASA image
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1.1 Atmospheric Gravity Waves


	 The stable stratification of Earth’s atmosphere allows it to support wave motions 

that play a fundamental role in modulating its composition and regulating the weather 

and climate of the near-Earth space environment. Among the most important 

phenomena are Atmospheric Gravity Waves (AGWs for short) which arise from 

disturbances to the balance of buoyancy and gravity forces within the atmosphere. It 

was the early and illuminating work by Hines (1960) that laid the foundation for AGW 

studies; later works would start developing and testing the theory with observational 

data and models, such as reviewed on the context on Ionospheric traveling disturbances 

(TIDs) by Francis (1975) and, more recently, in an extensive review paper by Fritts & 

Alexander (2003) which outlines the fundamental theory, the description of their sources 

and propagation, observational capabilities, instabilities, parameterization and their 

atmospheric impact. More recent studies have endeavored to understand the coupling of 

all these phenomena throughout the different layers of the atmosphere (Yiğit and 

Medvedev 2015, and references within). This influence on the overall circulation and 

structure of the upper atmosphere occurs at different spatial and temporal scales where 

it is useful to distinguish AGWs based on their frequencies.


	 The solution to the linearized equations of motion for a compressible atmosphere 

and the corresponding dispersion relations yield two distinct regimes of AGWs separated 

by the acoustic cut-off frequency and the Brunt-Väisälä frequency, which define the 

lowest frequencies of acoustic waves and the highest frequencies of gravity waves. 

Internal Gravity Waves (or just GWs) have frequencies lower than the Brunt-Väisälä 

frequency and their horizontal wavelengths extend from a few kilometers to hundreds; 

the latter low-frequency waves are called inertia-gravity waves and are affected by 

Earth's rotation. These long-period GWs with larger spatial coverage may also be 

modulated by the diurnal solar cycle and interact closely with tides and planetary waves 
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that possess very long timescales and wavelengths. On the higher frequency end of the 

spectrum exist acoustic waves (AWs), whose frequency is larger than the acoustic-cutoff 

frequency, and where compressional forces are more significant than the stratification 

effects of gravity. In the vicinity of either the Brunt-Väisälä or acoustic cut-off 

frequencies there are also those waves that have no defined vertical group velocity. These 

waves, also called external gravity waves, are in the evanescent regime which includes 

those frequencies between Brunt-Väisälä and the acoustic cut-off. See Figure 1.3 for an 

overview of all the wave motions supported by the atmosphere including acoustic/

gravity wave phenomena and sound waves.





Figure 1.3. Frequency range of wave phenomena supported by the atmosphere. ωA is 
the acoustic cut-off frequency, ωB is the Brunt Väisälä frequency. Waves with frequencies 
smaller than ωB and larger than ωA are freely propagating. The values of these 
characteristic frequencies depend on atmospheric conditions and fall in a range 
highlighted in the graph by the concentric waves; this range of frequencies also 
represents the possible values for evanescent modes (waves with no vertical group 
velocity) that exist between ωB and ωA and their vicinity. Acoustic-gravity waves may 
also exist in frequencies neighboring ωB and ωA. The Coriolis frequencies have also been 
included for reference, along with the corresponding period for 24 hr and 12 hr waves. 
The period values correspond to 2π / frequency. Based on a concept from Bittner et al. 
[2010].
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	 At a wide range of scales, GWs may have significant impact on all the layers of 

the atmosphere and are key facilitators of upward momentum and energy exchange. Due 

to this wide variety of scales, distributions and altitudes, observational studies of GWs 

and related observables, such as winds and temperatures, require distinct instruments 

with different scopes, capabilities and, thus, limitations; i.e., lower layers of the 

atmosphere are reachable by weather stations, balloons, sounding rockets or aircraft 

equipped with in-situ instruments, while at higher altitudes remote-sensing equipment is 

needed such as incoherent scatter radars (ISRs) and ground-based or airborne LIDARs, 

imagers or more sounding rockets. Currently the science derived from these instruments 

aims to describe and quantify the coupling between the atmospheric layers (Azeem, Yue 

et al. 2015, Perwitasari, Sakanoi et al. 2015, Fritts, Vosper et al. 2018, Heale, Snively et 

al. 2019). It is of primary scientific importance to further understand both the sources of 

GWs and their different atmospheric impacts as they propagate upward. For example, 

tropospheric forcing by storms and mountains generate waves that have dynamical 

effects and observable signatures all throughout the upper atmosphere. Acoustic-gravity 

waves, such as generated by earthquakes, tsunamis and volcanos can also be monitored 

via the same techniques to derive insight into their source processes (Artru, Ducic et al. 

2005, Hickey, Schubert et al. 2009, Makela, Lognonné et al. 2011, Nakashima, Heki et al. 

2016) or thunderstorms (Hoffmann and Alexander 2010, Heale, Snively et al. 2019) that 

generate observable signatures all throughout the atmosphere and up to the 

thermosphere and can even be traced along Earth’s magnetic field lines (Nielsen and 

Schlegel 1985, Chisham, Lester et al. 2007). As sensing technology, as well as our 

understanding, have developed over the years we have come to understand the 

fundamental role of GWs in atmospheric dynamics. Figure 1.4 shows the increasing 

trend over the years in atmospheric GW and AW publications; while GWs publications 

show an increasing steady trend, AWs publications have greatly grown in number since 

2015.
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Figure 1.4. GW and AW publication (records) metric from Web of Science (all 
databases) for years 1993 to 2021 (*up to 07/06/2021) for papers containing the search 
topic “gravity wave* AND atmospher*” and “acoustic wave* AND atmospher*” narrowed 
to the research fields of: Meteorology Atmospheric Sciences, Physical Sciences Other 
Topics, Remote Sensing and Physical Geography. Accessed July 6th, 2021.


1.2 Remote sensing and imaging


	 Remote sensing and specifically imaging discoveries have had profound impacts 

for Aeronomy. Technological advances in instrumentation capabilities have enabled us to 

prove and further develop the underlying theories of the early years. For example, in 

2005 the first detection of ionospheric disturbances due to tsunamis used the ideas 

proposed by Peltier & Hines (1976) to observe small-scale perturbations in GPS data 

(Artru, Ducic et al. 2005); these first observations would pave the way for scientific 

applications of GPS sensing of the ionosphere for tsunami diagnostics that may guide 

future automated detection techniques (Inchin, Snively et al. 2020).


	 Of particular interest is the mesosphere-low-thermosphere (MLT) region: there 

are large temperature and wind gradients and they strongly modulate (by refraction, 

reflection, dissipation, etc.) and generates secondary GWs (Zhou, Holton et al. 2002, 

Vadas, Fritts et al. 2003, Chun and Kim 2008, Vadas and Becker 2018); this has 
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important climatological implications. It is also in this region that the Earth’s airglow 

layers’ responses to GWs allow for comprehensive optical imaging and subsequent 

analyses. These dynamic phenomena in the airglow layers are routinely imaged from 

ground-based and moving platforms such as imagers on aircrafts, including multi-camera 

configurations, and satellites for nadir (downward) and sub-limb views (Russell III, 

Mlynczak et al. 1994, Pautet and Moreels 2002, Sakanoi, Akiya et al. 2011, Fritts, Smith 

et al. 2016); see Figure 1.5 for a sketch.





Figure 1.5. Imagers onboard moving platforms may capture different LOS across the 
airglow layer (viewing wave features from different angles as they pass) that can be 
chosen to better image features that are sensitive to LOS effects.


	 Typically, it is the GWs that are observed and studied via the airglow layers, 

while the AWs have only been predicted to be detectable by OH airglow imagers 
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sensitivities; they have, however, been identified in sensitive spectrometer data (Pilger, 

Schmidt et al. 2013). AWs are of particular interest since, while weak at the mesopause 

region, they can attain large amplitudes in the F region of the atmosphere (150 km and 

above) where they are observed in the form of traveling ionospheric disturbances (TIDs) 

(Garcia and Pécseli 2013) and have localized impacts on the thermosphere and 

ionosphere (Zettergren and Snively 2015 and references therein, Yu and Hickey 2017 and 

references therein). Similarly, detection and quantification of fast GWs, with phase 

speeds over 100 m/s, are also of interest as they may readily propagate to the 

thermosphere and impart significant local body forcing (Vadas and Fritts 2004). 

Traditional imaging of GWs primarily use the near-zenith (or central) imaging elements 

of the sensor (i.e., CCD pixels), which correspond to narrow fields-of-view (FOV), where 

the imaged resolution is highest and LOS enhancement/cancellation effects are minimal; 

see Figure 1.7 for a reference on how resolution changes at larger FOV angles.





Figure 1.6. Real imager data. The image on the left shows the original OH layer as 
seen by a real 512×512 imager. On the right, we can see the unwarped-flattened image. 
A temporal moving average filtering technique is used, which is a process that requires 
many images at previous/subsequent times; it highlights the time invariant features 
imaged throughout the night. If the extra temporal data is not available, flat-fielding 
techniques must be employed.
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Figure 1.7. Resolution contours of FOV zenith of 3 idealized all-sky imagers at 
airglow’s height of 87 km with fixed color scale. (left) Original imager’s coordinates. 
(right) Unwarped image at airglow height. Each line represents an increment of  in 
FOV, innermost is at . Resolution decreases towards larger FOV angles. Wave features 
at scales less than the available resolution cannot be resolved (less than twice the 
available resolution or Nyquist frequency for spectral analyses).
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Zenith imaging provides a high resolution image of the flattened  volumetric wave 1

structure with increased accuracy for the spectral analysis of the horizontal structure of 

the wave relative to oblique viewing. There is, however, potential for analyzing the 

integration through wider FOVs. Airborne and spaceborne imagers have the possibility 

of traversing over sources and also have the ability to measure at oblique angles (i.e., 

limb scans). Since faint acoustic waves signatures can become brighter through LOS 

enhancements when observed obliquely, the capability to image at large FOV angles may 

improve the chance of detecting them (especially when directly above sources, i.e., 

Snively (2013)). Recent imaging systems have sufficient spatial and temporal resolution 

and sensitivity to detect both AWs and fast GWs with short periods (i.e., Pautet, Taylor 

et al. 2014) and, as mentioned, their observability might depend on LOS enhancements 

from oblique-viewing. Therefore wide-field and off-zenith imaging may be useful for the 

study of certain wave phenomena. Successful wide-field imaging depends on the proper 

characterization of the LOS enhancements so that it may be possible to obtain better 

estimates for highly slanted GWs such as ground-air coupled surface Rayleigh waves 

with horizontal slant (Donn and Posmentier 1964) or those observed in the red airglow 

and TIDs at higher altitudes with large and diminishing vertical wavelengths (Shiokawa 

2003, Heale, Snively et al. 2014).


1.2 Off-zenith imaging


	 Airglow observations made at steep viewing angles lead to scale filtering and 

intensity enhancement effects. The integration of the emission rates represents loss of 

information regarding the structure of the airglow layer as it effectively “flattens” it. The 

  This flattening is essentially the 2D horizontal structure of the wave since the airglow layer is vertically thin. See 1

Section 2.8 for an expanded discussion.
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use of simulated airglow structures enables direct comparisons to the structures present 

within the emitting layers. Figures 1.8 & 1.9 show an idealized simulation based on 

Snively (2013) of a nonlinear wave that has been replicated horizontally to better 

demonstrate the line-of-sight effects. These have important implications for data 

interpretation and can effectively blur waves out, reducing their detectability and 

accurate spectral analyses.





Figure 1.8. A simulated 3D gravity wave packet of OH(3,1) VER, extending infinitely 
along the airglow layer. The parallel and perpendicular lines-of-sight are shown.





Figure 1.9. Zenith and off-zenith synthetic CCD images. (top) oblique view of the 
imager where LOS is parallel to the wavefronts and creates intensity enhancements. 
(middle) Zenith imaging contains little to no LOS effects. (bottom) oblique view of the 
imager where LOS is perpendicular to the wavefronts with significant filtering of the 
horizontal wavelength.
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1.3 Current Aeronomy Instrumentation


	 Present research data products from atmospheric optical remote sensing systems 

include those from (passive) ground-based imagers, photometers, spectrometers and 

(active) LIDARs (among others) as well as equivalent instruments from space-based 

platforms. These instruments are commonly used for upper-atmospheric (MLT and 

ionospheric) measurements of dynamics considered here, significant optical data 

products exist for lower regions of the atmosphere that may be used synergistically. 

Particularly, ground-based airglow imagers are found in many research facilities where 

there is an interest in the local atmospheric dynamics such as mountainous regions or 

other gravity wave hotspots. Given their relative portability they can be relocated or 

even be used on airborne missions gaining unique observation geometries and less 

anthropogenic backscatter interference (Swenson, Taylor et al. 1995, Fritts, Smith et al. 

2016). While these kinds of imagers measure brightness from certain wavelengths, it is 

also possible to combine distinct band or line measurements to obtain rotational 

temperature from such emissions, as is done by the Advance Mesospheric Temperature 

Mapper (AMTM) (Pautet, Taylor et al. 2014); see Figure 1.10. Temperature 

measurements are more useful since it factors directly into most of the atmospheric 

dynamics and their parametrization.


	 There is also increasing interest in the broad coverage and overlap of imager data. 

Thus networks such as the Midlatitude Allsky-imaging Network for GeoSpace 

Observations (MANGO) are beneficial to characterize medium and large-scale wave 

processes in the upper atmosphere. MANGO consists of a network of nine all-sky 

imagers spread across the United States (some still to be deployed) imaging the atomic 

oxygen 630.3 nm airglow; they are able to capture some auroral features and TIDs 

(Kendall and Bhatt 2017); see Figure 1.11.
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Figure 1.10. (left) OH airglow intensity from AMTM and wing cameras onboard a 
research aircraft over New Zealand during the DEEPWAVE campaign displaying 
prominent orographic-generated gravity waves. Taken from [Fritts et al., 2016]. (right) 
VISI observations of the O2 762 nm airglow over Oklahoma at a mean layer height of 95 
km. Infrared cloud temperature from AIRS is presented to show the location of a super 
cell that would eventually become a tornado. Taken from [Akiya et al., 2014].





Figure 1.11. MANGO Network coverage of 630 nm airglow imagers over the 
continental US. The circle represents the extent of the FOV at the mean peak layer 
height of the 630 nm airglow, around ∼230 km. Credit: [MANGOs website at: https://
mangonetwork.org].
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	 In addition to being captured by extended ground-based networks, the larger-

scale wave phenomena are also covered by imagers on satellites that scan cross-track and 

are able to image spatially-extended features during their flyovers. One of those 

instruments is the Visible and near-Infrared Spectral Imager (VISI) onboard the ISS 

that scans the atomic oxygen emissions at 630 nm, OH at 650 nm and the O2 at 762 nm 

(Sakanoi, Akiya et al. 2011); the airglow’s mean peak height associated with these 

emissions are 230 km, 87 km and 95 km, respectively, and the synchronous 

measurements provide some vertical information of upward-propagating phenomena. 

Other instruments such as the Atmospheric InfraRed Sounder (AIRS) on the NASA’s 

EOS-Aqua satellite image different wavelengths such IR and CO2 radiance to provide 

information about cloud coverage, anthropogenic light and even tropospheric-generated 

gravity waves (Aumann, Chahine et al. 2003) (see Figure 1.12); AIRS has been in 

operation since 2002 and its mission ends in 2022. While both VISI and AIRS are nadir-

facing instruments, limb and sub-limb imaging is also typically performed.





Figure 1.12. AIRS 4.3 µm derived brightness weighted temperature or CO2 radiance 
with mean peak height of ∼37 km for several orbital tracks above the continental US. A 
super cell convective storm generates gravity waves with large horizontal wavelengths 
modulated by the westerly winds. Source: [Heale et al., 2019].
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	 The Sounding of the Atmosphere using Broadband Emission Radiometry 

(SABER) instrument onboard NASA’s TIMED satellite provides vertical profiles of 

volume emission rates for O2 (1 µm emission line peaking at ∼95 km) and two OH bands 

(1.6 µm and 2.0 µm emission lines peaking at ∼87 km) (Russell III, Mlynczak et al. 

1994); SABER started operations in 2002 and is still ongoing. Another limb-scanning 

instrument is the High Resolution Dynamics Limb Sounder onboard NASA’s Aura 

satellite (Gille, Barnett et al. 2003) that uses infrared radiometry to measure radiances 

with 1 km vertical resolution.


	 Another method for obtaining vertical profiles and characterize GWs is using 

GPS occultation to obtain total-electron-content (TEC) profiles. This technique requires 

a receiver station and satellite to measure the phase delay of the radio waves. There are 

several positioning and navigation satellite networks in use such as the Global 

Navigation Satellite System (GNSS) which includes USA’s NAVSTAR Global 

Positioning System (GPS), the GLObal NAvigation Satellite System (GLONASS), 

ground-based GPS networks as well as satellite radio occultation receivers such as the 

Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC/

COSMIC-2) and the Spire commercial satellite constellation. Figure 1.13 shows a great 

example of GPS measurements after a tornado for GWs and AWs studies where both 

GWs and AWs can be clearly seen in the data; from these spatial and temporal plots we 

can obtain drifts, periods, wavelengths and relative amplitudes . Such observations help 2

us understand the impact of convective sources as the resulting waves propagate up to 

the thermosphere.


 It is worth noting that wind data is usually necessary to obtain the intrinsic wave parameters given that strong winds can 2

filter the GWs as it is the most likely case in Figure #10 with the southward GWs disappearing from the data.
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Figure 1.13. GPS measurements of vertical total-electron-content (vTEC) at IPP 
positions (average height of ∼450 km) show both GWs and AWs due to a tornado in 
Moore, OK. (left) Spatial distribution shows the concentric GWs where the southward 
wavefronts are filtered most likely due to strong winds. (right) The temporal evolution 
across a fixed longitude at the location of Moore clearly shows the shorter period AWs 
with a southward motion following the plasma drift along the magnetic lines. Source: 
[Inchin, 2020].


	 Two recently-launched remote sensing missions have started to provide high 

resolution datasets, including imaging, in the ionosphere: GOLD and ICON. The 

Ionospheric Connection Explorer, ICON, is a NASA and UC Berkeley mission that 

targets different airglow layers with three different instruments, providing limb, sub-limb 

and in-situ measurements. For example, The Michelson Interferometer for Global High-

resolution Thermospheric Imaging (MIGHTI) instrument observes vertical winds at 5 

km resolution (90-170 km) or 30 km resolution (170-300 km) and temperature at 5 km 

vertical resolution (90-105 km) (Englert, Harlander et al. 2017). The far-ultraviolet 

(FUV) looks at the 135.6 nm and 157.0 nm atomic oxygen emission during the night 

while the 135.6 nm at night (Mende, Frey et al. 2017) while the extreme-ultraviolet 

(EUV) observes the 61.6 nm and 83.4 nm atomic oxygen emissions (Sirk, Korpela et al. 

2017). The NASA Global-scale Observations of Limb and Disk (GOLD) onboard the 
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communications satellite SES-14 is designed to work in tandem with ICON’s FUV 

instrument since the observed wavelengths overlap (Eastes, McClintock et al. 2017). 

GOLD measures the entire Earth’s disk from a geostationary orbit (∼35,000 km 

altitude) while ICON will orbit through the thermosphere (∼500 km altitude) .


	 The Atmospheric Waves Experiment (AWE) is a pending mission that will 

situate an instrument on the International Space Station focusing on the MLT-region. It 

includes a 4-channel infrared imager based on the USU Advance Mesospheric 

Temperature Mapper (AMTM) that measures the rotational temperature and intensity 

from the OH(3,1) emission band that has a peak at ∼87 km. Being on the ISS places 

AWE at advantageous position to characterize GWs across a global scale to provide 

comprehensive insight into the GW spectra, sources, propagation conditions and energy 

fluxes into upper layers of the atmosphere. It is scheduled to launch in Summer 2023 

(Taylor, Eckermann et al. 2018, Taylor, Forbes et al. 2019).


	 These missions inform the objectives that we hope to achieve with the present 

research. Our modeling work aims to work with our current observational capabilities, 

whether we use simulations to explain certain aspects of the data or to understand how 

and where we should be pointing our instruments in future experiments. Additionally, 

the conceptualization of new missions always requires modeling capabilities to lay out 

the expectations for the data products and also develop the necessary tools to analyze 

such data. Thus, synthetic data from numerical models can play a key role in guiding 

new observational and data analysis strategies. 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Chapter 2


Methods: airglow-imager geometry, line-of-sight-
ellipsoid intersection and synthetic imagers


	 The airglow layer and Earth comprise a system that can be geometrically 

described in different ways. Whether we want to map the airglow layer on a surface, 

describe it volumetrically or project it according to an instrument’s arbitrary point of 

view, the airglow layer is usually referenced relative to the Earth. The airglow layers can 

span depths with full-width half maximums (FWHMs) as little as several kilometers to 

dozens of kilometers and have emission distributions that peak around their mean 

airglow layer height; some of the first airglow studies were in fact trying to determine 

these heights with the available instrumentation of their time (Roach and Meinel 1955). 

We now have a good understanding of the density and emission distributions, peak 

height and variability of the layer, thanks both to modern measurements and simulation 

studies. However most of our instruments measure the airglow layer as a flat image that 

results from integrating the emissions through the instruments’ lines-of-sight. This 

combined with the fact that relative depths of the emissions in the layer are small allows 

us to describe the airglow layer as thin spherical shell at the mean peak height and 

largely preserve horizontal features. Additionally, the thin-shell representation makes for 

a simplified geometric description of the airglow layer in reference to the Earth and is 

commonly used for airglow imaging analyses (Taylor and Hapgood 1982, Coble, Papen 

et al. 1998). This doesn't mean that this geometry is unable to characterize volumetric 

representations of the layer given we can consider the thick layer to be represented by a 
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collection of infinitesimal increments of thin-shells. In fact, for the purpose of simulating 

integrations along the layer we will do precisely this, where the line-of-sight that cuts 

through the layer will be divided into differential elements, each intersecting with a thin-

shell at the corresponding infinitesimal height increment.


	 In this chapter we will introduce simple geometric relations that relate a thin-

shell representation of the airglow layer to an observer, first on the surface of the Earth, 

then at any given height and then finally describe an alternative method to map a free-

viewing observer. We will next introduce the concept of imaging sensors and expand 

upon the coordinate systems and transformations described previously to obtain 

mappings to imaging units on a sensor panel. Finally, we will describe how to 

incorporate all of these mappings to create synthetic images. Several tables will be 

included to summarize the formulations for each pair of forward and inverse 

transformation as well as a full step-by-step chart for using some of these 

transformations.


2.1. The airglow-Earth geometry


	 The most basic description of the airglow layer referenced to the Earth is the 

airglow-Earth geometry. This is simply the spherical coordinate system where a 

Cartesian  and a spherical (radius, polar angle, azimuth angle)  coordinate 

systems share their origin at the center of the Earth. When the  axis is aligned with the 

North Pole and the  axes with the prime meridian, then the Cartesian system is also 

known as the Earth-centered-Earth-fixed or ECEF coordinates. Conversely when the 

azimuth angle is zero at the prime meridian, then the spherical coordinate system can 

be recast as the geocentric coordinates . When we use an elevation angle that is 

zero at the equator for geocentric latitude: , azimuth becomes longitude 

(x, y, z) (ρ, θ ϕ)

z

x

(ϕ′￼, λ, R)

ϕ′￼= 90∘ − θ
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 and the radius becomes the geocentric distance . For simplicity we will use 

the spherical coordinate system for this description. The airglow layer is represented by 

a spherical thin shell at a height  from the surface of the Earth; the surface is at the 

radius  also called geocentric radius. The arc length of the zenith (polar) angle  is , 

whose projections on the  and  planes (also the  plane) are  and  respectively so 

that . A point  on the airglow may then be described by the set of 

airglow coordinates , the Cartesian coordinates  or the spherical 

coordinates ; note that . The mapping or 

transformation equations are done from either of the other two coordinates systems 

representing the point  to/from the spherical coordinate system. Thus the specific 

transformations are  and ; we call left-

to-right the forward mapping and right-to-left the inverse mapping. It follows that the 

appropriate mapping equations are the standard spherical coordinate transformations; 

see Table 2.1 for reference.


Table 2.1. The airglow-Earth geometry. Note . 


λ = ϕ R = ρ

h0

RE θ
⌢
A

x y ϕ ⌢x ⌢y
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A = ⌢x 2 + ⌢y 2 = ρθ P

P( ⌢x , ⌢y , h0) P(x, y, z)

P(ρ, θ, ϕ) ρ = RE + h0 = x2 + y2 + z2

P

P(x, y, z) ⟷ P(ρ, θ, ϕ) P( ⌢x , ⌢y , h0) ⟷ P(ρ, θ, ϕ)

forward mapping given x, y, z inverse mapping to x, y, z

forward mapping given x̑ y̑  inverse mapping to x̑y̑
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x = ρ sinθ cosφ
y = ρ sinθ sinφ
z = ρ cosθ
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A

⌢
A = ρθ
x = Acosφ
⌢y = Asinφ
z0 = ρ − RE

Spherical-coordinate transformation: P x, y, z( )← →⎯ P ρ,θ ,φ( )

   ρ ∈ RE ,∞[ )km
θ ∈ 0,π[ ]rad
φ ∈ 0,2π[ ]rad

x, y, z∈ RE ,∞[ )km
z0 ∈ 0,∞[ )km

⌢
A, ⌢x, ⌢y ∈ 0,2π RE + z0( )⎡⎣ ⎤⎦km

z0 = h0
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2.2. The airglow-observer geometry


	 This geometry shares some nomenclature with the spherical system described 

above; however, the transformations differ and should not be confused. The  

Cartesian system is set with its origin at the position of the observer, , on the 

surface of the Earth. The airglow is a spherical thin shell at a height  from the surface 

of the Earth; the surface is at radius . The point  is located within the airglow layer 

at the Cartesian coordinates  and can be alternatively be described by either of 

the following coordinate-pairs: , ,  or the coordinate-triplets: 

, , . Refer to Table 2.2 at the end of this section for a 

sketch of this geometry. , ,  are arc quantities where  is the projection 

of  on the -plane or -plane and are related to the Earth-centered spherical polar 

angle  so that ; , ,  are the observer’s zenith (polar) angles and are 

defined in the domains  and ;  is the distance from  to  (the 

line-of-sight distance) and . The angles  and  are projections of the zenith 

angle  that represent zenith angles in the  and  planes respectively; each can form 

their own 2D airglow-observer coordinate system if, for example,  lies on the  plane 

then  and , and vice versa for the  plane. Note that this  is not an 

azimuth angle as in the spherical system. These angles are independently determined 

and correlate to unique fields-of-view,  and , which are parameters that 

determine resolution and maximum angles in an imaging sensor and will be important in 

following sections. The mapping equations are first determined in 2D for the zenith 

angle  and then expanded to 3D by means of their projections.


	 Now let us obtain the airglow-observer transformations by using the spherical 

angle  to state both the law of cosines or the law of sines to obtain:


	 	 (2.1)


(x, y, z)

I(O)

h0

RE P

P(x, y, z)

P(
⌢
A , h0) P(ζ, h0) P(ζ, ρ)

P( ⌢x , ⌢y , h0) P(θ, ϕ, h0) P(θ, ϕ, ρ)
⌢
A ⌢x ⌢y A = x2 + y2

⌢
A x − y ϕ

α
⌢
A = (RE + h0) α ζ θ ϕ

ζ ∈ [0,π] θ, ϕ ∈ [−π, π] ρ I(O) P

ρ ∈ [0,∞) θ ϕ

ζ z-x z-y

ζ z-x

θ = ζ ϕ = 0 z-y ϕ

FOVθ FOVϕ

ζ

α

ρ2 = 2RE (RE + h0) (1 − cos α) + h 2
0
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	 	 (2.2)


	 By solving first for  and then obtaining the roots we obtain an expression for 

the magnitude of the line-of-sight or the zenith angle:


	 	 (2.3)


	 	 (2.4)


	 An alternative method to find an expression for the layer height is by using the 

Cartesian coordinates that have origin at the center of the Earth: for added clarity, let 

 and  represent the Cartesian coordinates of the point in the airglow 

 that lies on the -plane, then  where 

 and , so we have


	 	 (2.5)


We can solve for  in this expression for  and get the same result for  as above. Note 

that in both results we have kept the positive solutions since the distance  is defined to 

be always positive. Finally by the definition of the radian we can get the arc length 

quantity as 


	 	 (2.6)


sin α =
ρ

RE + h0
sin ζ

α

ρ = R2
E cos2 ζ + 2REh0 + h 2

0 − RE cos ζ

ζ = cos−1 (
h0 (2RE + h0) − ρ2

2RE ρ )

xcart zcart

P(xcart, 0, zcart) y − z h0 = x2
cart + y2

cart − RE

xcart = ρ sin ζ zcart = ρ cos ζ + RE

h0 = ρ2 + 2RE ρ cos ζ + R2
E − RE

ρ h0 ρ

ρ

⌢
A = (RE + h0) α
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The angle  can be calculated from (2.1) or (2.2) as


	 , or	 (2.7a)


	                    	 (2.7b)


	 The 3D coordinate mapping links the  and  horizontal dimensions by means of 

their pythagorean magnitudes:  and . Please note that in this 

description the zenith angle represent linear distances, in a similar manner to , but are 

specified in terms of angles. This is why we can use the pythagorean theorem to recover 

the azimuth angle between these two specifications. These relations represent two right 

triangles, one for the arc quantities and one for the zenith angles, where  and 

. The important realization is that  so that we can write arc quantities in 

terms of the zenith angles and vice versa:


	  	 (2.8)


	 	 (2.9)


Notice that the cosine and sine quantities will give the necessary sign of either ,  or , 

, so that  (note that  and  will always be positive quantities). The arc 

quantities can be bound by the assumption that our observer cannot look at zenith 

angles beyond 90º (over the horizon) so .


α

α = cos−1 (1 +
h 2

0 − ρ2

2RE (RE + h0) )
α = sin−1 ( ρ sin ζ

RE + h0 )
x y

A = x2 + y2 ζ = θ2 + ϕ2

A

γ = ∠A x

γ′￼= ∠ζθ γ = γ′￼

x = A cos γ = Aθ/ζ

y = A sin γ = Aϕ/ζ

θ = ζ cos γ′￼= ζx/A

ϕ = ζ sin γ′￼= ζy/A

x y θ

ϕ θ, ϕ ∈ [−π, π] ζ A

A, x, y ∈ [−π (RE + h0), π (RE + h0)]
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Table 2.2. Airglow-imager geometry sketch and transformations. Note .


	 If one considers the problem of finding the geometric relations for an observer 

that’s not on the surface of the Earth, such as an airplane or a satellite, similar relations 

as those described above can be found. If the observer is at a height  above the surface 

of the Earth then the law of cosines of Equation 2.1 becomes:


if the system is in (x,̑ y,̑ z0) then use:

forward mapping with inputs: (θ, φ, 

z0)

if the system is in (θ, φ, z0) then use:

inverse mapping with inputs: (x,̑ y,̑ z0)

if the system is in (x,̑ y,̑ z0) then use:

forward mapping with inputs: (θ, φ, ρ)

if the system is in (θ, φ, ρ) then use:

inverse mapping with inputs: (x,̑ y,̑ z0)

Domains and units

Airglow-imager 3D coordinate transformation:

P ⌢x, ⌢y, z0( )← →⎯ P θ ,φ,ρ( )

Airglow-imager 3D coordinate transformation:

P ⌢x, ⌢y, z0( )← →⎯ P θ ,φ, z0( )
3D airglow-imager coordinates


side view

α

x

z0

RE

O

P

z

RE

Ȃ
z0

ζ ρI(O)

y

z x

y

y̑

x̑  P

Ȃ

γ̑

I(O)

top-down view

 †Alternatively use law of sines:



‡Note that an airglow imager can't observe angles 
larger than ± π/2.

α = sgn ζ( )sin−1 ρ sinζ RE + z0( )( )      ρ ∈ RE ,∞[ )km
ζ ,α ∈ 0,π[ ] rad‡

θ ,φ ∈ −π ,π[ ] rad‡

z0 ∈ 0,∞[ )km
⌢
A, ⌢x, ⌢y ∈ −π RE + z0( ),π RE + z0( )⎡⎣ ⎤⎦km







ζ = θ 2 +φ 2

ρ = RE
2 cos2ζ + z0

2 +2REz0 − RE cosζ

α = cos−1 1+ z0
2 − ρ2

2RE RE + z0( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

†

⌢
A = RE + z0( )α

⌢x =
⌢
Aθ ζ

⌢y =
⌢
Aφ ζ







⌢
A = ⌢x 2 + ⌢y2

α =
⌢
A RE + z0( )

ρ = 2RE RE + z0( ) 1− cosα( )+ z02

ζ = cos−1
z0 2RE + z0( )− ρ2

2REρ

⎛

⎝
⎜

⎞

⎠
⎟

θ =ζ
⌢x
⌢
A

φ =ζ
⌢y
⌢
A







ζ = θ 2 +φ 2

z0 = ρ2 +2REρ cosζ + RE
2 − RE

α = cos−1 1+ z0
2 − ρ2

2RE RE + z0( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

†

⌢
A = RE + z0( )α

⌢x =
⌢
Aθ ζ

⌢y =
⌢
Aφ ζ







⌢
A = ⌢x 2 + ⌢y2

α =
⌢
A RE + z0( )

ρ = 2RE RE + z0( ) 1− cosα( )+ z02

ζ = cos−1
z0 2RE + z0( )− ρ2

2REρ

⎛

⎝
⎜

⎞

⎠
⎟

θ =ζ
⌢x
⌢
A

φ =ζ
⌢y
⌢
A

z0 = h0

hs
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	 	 (2.10)


 and


	 	 (2.11)


Furthermore, by following a similar reasoning as above we find the remaining equations:


	 	 (2.12)


	 	 (2.13)


	 	 (2.14)


This expression for  reduces to Equation 2.3 when . This is a more general 

airglow-observer transformation, suited for an observer at a certain height above the 

surface of the Earth but whose zenith is still straight up; see Table 2.3 for reference. If 

we want to align such zenith to an arbitrary angle, or furthermore, specify the viewing 

direction by specifying an elevation and azimuth angle, as is often the case in satellite 

communications, then this geometry fails to do so and the required mappings will 

invariably require more complex vector transformations.


ρ2 = h2
s + (RE + h0)2 − 2hs (RE + h0) cos α

α = cos−1
h2

s − ρ2 + (RE + h0)2

2hs (RE + h0)

h0 = ρ2 − 2hsρ cos ζ + h2
s − RE

ζ = cos−1
ρ2 + h2

s − (RE + h0)2

2hsρ

ρ = (h + RE)2 − h2
s sin2 ζ + hs cos ζ

ρ hs ⟶ RE
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Table 2.2. General airglow-observer coordinates. This geometry also accounts for the 
observer height , which can be beneath or above the airglow layer. Note .


2.3. Limitations of the geometric transformations and the ray-

tracing solution


	 


if the system is in (x,̑ y,̑ z0) then use:

forward mapping with inputs: (θ, φ, 

z0)

if the system is in (θ, φ, z0) then use:

inverse mapping with inputs: (x,̑ y,̑ z0)

if the system is in (x,̑ y,̑ z0) then use:

forward mapping with inputs: (θ, φ, ρ)

if the system is in (θ, φ, ρ) then use:

inverse mapping with inputs: (x,̑ y,̑ z0)

Domains and units







ζ = θ 2 +φ 2

ρ = RE
2 cos2ζ + z0

2 +2REz0 − RE cosζ

α = cos−1 1+ z0
2 − ρ2

2RE RE + z0( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

†

⌢
A = RE + z0( )α

⌢x =
⌢
Aθ ζ

⌢y =
⌢
Aφ ζ







⌢
A = ⌢x 2 + ⌢y2

α =
⌢
A RE + z0( )

ρ = 2RE RE + z0( ) 1− cosα( )+ z02

ζ = cos−1
z0 2RE + z0( )− ρ2

2REρ

⎛

⎝
⎜

⎞

⎠
⎟

θ =ζ
⌢x
⌢
A

φ =ζ
⌢y
⌢
A

Airglow-imager 3D coordinate transformation:

P ⌢x, ⌢y, z0( )← →⎯ P θ ,φ,ρ( )







⌢
A = ⌢x 2 + ⌢y2

α =
⌢
A RE + z0( )

ρ = 2RE RE + z0( ) 1− cosα( )+ z02

ζ = cos−1
z0 2RE + z0( )− ρ2

2REρ

⎛

⎝
⎜

⎞

⎠
⎟

θ =ζ
⌢x
⌢
A

φ =ζ
⌢y
⌢
A

 †Alternatively use law of sines:



‡Note that an airglow imager can't observe angles 
larger than ± π/2.

α = sgn ζ( )sin−1 ρ sinζ RE + z0( )( )      ρ ∈ RE ,∞[ )km
ζ ,α ∈ 0,π[ ] rad‡

θ ,φ ∈ −π ,π[ ] rad‡

z0 ∈ 0,∞[ )km
⌢
A, ⌢x, ⌢y ∈ −π RE + z0( ),π RE + z0( )⎡⎣ ⎤⎦km

Airglow-imager 3D coordinate transformation:

P ⌢x, ⌢y, z0( )← →⎯ P θ ,φ, z0( )







ζ = θ 2 +φ 2

z0 = ρ2 +2REρ cosζ + RE
2 − RE

α = cos−1 1+ z0
2 − ρ2

2RE RE + z0( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

†

⌢
A = RE + z0( )α

⌢x =
⌢
Aθ ζ

⌢y =
⌢
Aφ ζ

3D airglow-imager coordinates


hs z0 = h0
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	 In the last section we mentioned how the airglow-observer geometry can’t 

describe arbitrary points-of-view for an observer at any point in space. The geometry 

actually works for its 2D configuration, but problems arise when trying to describe the 

components of the rotated zenith angles in 3D. In other words, we cannot readily use 

the component approach to separate the dimensions, and instead need to rotate the 

coordinate system appropriately. Here we will introduce a simplified approach for 

obtaining a free-viewing observer and, while coordinate rotations will still be necessary 

when considering a sensor panel later on, for now this approach requires no 

transformations and thus overcoming the limitations stated above. Additionally, we will 

find the added benefit of using standard geographic coordinate systems to describe 

positions and pointing vectors and even represent the Earth as a standard ellipsoid 

instead of a sphere. These geographic coordinates are in standard use for georeferenced 

(mapped) data such as geophysical data, areas, positions, satellite tracks, etc., so will 

also gain the ability to interface naturally with datasets such as the EPSG registry (see 

Section 5.2 for more information on this dataset).


	 Consider now a coordinate system in which we define our geometry as Earth-

Centered-Earth-Fixed (ECEF) which in turn is defined as the Cartesian coordinate 

system where the origin is the center of the Earth, the positive ,  and  axes are 

towards the Prime Meridian, 90° East and North Pole respectively. The Earth is 

modeled as an oblate ellipsoid defined by its principal semi-major axis  (equator) and 

its flattening , which is a measure of its compression from a sphere into an ellipse; the 

polar semi-axes  is then obtained from the flattening given its definition . 

The satellite position is denoted by the ECEF Cartesian coordinates ,  and . The 

satellite’s orientation is defined by the unitary pointing vector whose directions are given 

in its local tangent plane system namely North-East-Down (NED) or East-North-Up 

(ENU). These local Cartesian coordinates are relative to the location of the satellite to 

the surface of an ellipsoid, therefore their origin is determined by their geodetic latitude 

x y z

a

f

b f = (a − b)/a

xs ys zs
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, geodetic longitude  and ellipsoidal height ; this is the geodetic coordinate system. 

Alternatively, the satellite’s orientation may be given in local azimuth-tilt or azimuth-

elevation coordinates where azimuth is the angle on the plane tangent to the ellipsoid 

and is clockwise from North and tilt/elevation is the angle from the local vertical or 

from the tangent plane respectively; the local vertical is the line that intersects the 

satellite’s position with the center of the Earth and it can be defined positive when it’s 

radially outward (satellite’s zenith) or defined positive when it’s radially inward 

(satellite’s nadir). The azimuth-tilt and azimuth-elevation systems are in fact a local 

spherical coordinate system with unitary spherical radius. The transformation equations 

we will derive require coordinate mappings between several geographic coordinate 

systems. The forward mappings we will use are: geodetic to ECEF, ENU/NED to ECEF, 

and local spherical to ENU/NED. The inverse mappings are ECEF to geodetic, ECEF to 

ENU/NED, and ENU/NED to local spherical. The particulates such as definitions and 

equations can be found in Appendix B.


	 Now we will derive the line-of-sight-ellipsoid intersection equations, which are 

effectively a ray-tracing solution to the free-viewing airglow-observer problem. For a 

more focused approach the observer will be called the satellite from now on. We define 

the line-of-sight as the line segment with magnitude  with origin at the satellite’s 

ECEF position  and direction given by its Cartesian pointing vector 

 where ; the endpoint of the line is given by . The 

implicit equation of the oblate ellipsoid that represents the Earth and atmospheric layers 

is . The point where the resulting  is at the surface of the 

ellipsoid is the intersection point and we can substitute its corresponding components in 

the ellipsoid equation:


	 	 (2.15)


ϕ λ h

d

⃗s = xsx̂ + ysŷ + zs ̂z

p̂ = u x̂ + v ŷ + w ̂z ∥u , v, w∥ = 1 ⃗s + d p̂

(x2 + y2) a−2 + z2b−2 = 1 ⃗s + d p̂

(xs + du)2 + (ys + dv)2

a2
+ (zs + dw)2

b2
= 1
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This is a quadratic equation for the unknown scaling parameter . To cast this into the 

standard quadratic form  we can expand the squares and group factors 

to obtain:


	 	 (2.16)


The solution to the quadratic equation is


	 	 (2.17)


where


	 	 (2.18)


The discriminant of the quadratic polynomial, , determines the type of 

solution: if the discriminant is positive there are two real solutions which represent 2 

intersection points. If the discriminant is negative the solutions are imaginary and there 

are no intersections. If the discriminant is 0 then the line-of-sight is tangent to the 

surface of the ellipsoid. Additionally, when the first determinant condition is met, the 

smaller absolute value solution will be the first intersection. If the satellite is within the 

ellipsoid (when the geodetic height  is negative) one of the solutions will be positive, 

that is, aligned with the direction vector, and the other will be opposite. The larger 

solution is the second intersection and usually means the line-of-sight is going through 

the Earth and thus should be discarded. However, for limb views both intersections are 

allowed and careful consideration is required for this case; one possible way to account 

d

Ad2 + Bd + C = 0

d2 ( u2 + v2

a2
+

w2

b2 ) + 2d ( xsu + ysv
a2

+
zsw
b2 ) +

x2
s + y2

s

a2
+

z2
s

b2
− 1 = 0

d =
−B ± B2 − 4AC

2A
=

−B /2 ± (B /2)2 − AC

A

A =
u2 + v2

a2
+

w2

b2
, B /2 =

u xs + v ys
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+

wzs

b2
, C =

x2
s + y2

s

a2
+

z2
s

b2
− 1

B2 − 4AC
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for it is to determine allowed elevation angles in the local spherical coordinate system of 

the satellite; we ignore second intersections in our methods. Refer to Figure 2.1 for 3D 

graphs that represent the solution to the line-of-sight-ellipsoid equations.








Figure 2.1. Line-of-sight-airglow intersections for imaging elements that are mapped to 
tilt and azimuth angles. (top) airglow layer in yellow with intersections where the imager 
is looking straight up; the colors represent tilt angles (zenith is ). (bottom) 
Intersections with imager’s zenith aligned at an angle where the imaging elements are 
represented by a checkerboard pattern.


0∘
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2.4. Full algorithm for line-of-sight-ellipsoid intersection


	 The satellite’s inputs are its position  and its line-of-sight direction determined 

by local azimuth  and elevation  angles. The oblate ellipsoid’s parameters are its 

semi-major axis  and its semi-minor axis  (obtained from  if the 

flattening  is given instead). The satellite-ellipsoid intersection can then be obtained by 

the following steps:


1. Satellite position in ECEF; if satellite position is in geodetic coordinates convert 

to ECEF.


	 	 (2.19)


	 	 (2.20)


2. Local spherical system determines the line-of-sight direction; convert from local 

spherical to local tangent coordinates. Assume local spherical system is on the 

unitary sphere since only azimuth and elevation are needed to determine 

direction.


	 	 (2.21)


3. Rotate local tangent coordinates (ENU or NED represented by ,  and ) to 

ECEF and obtain the unitary pointing vector. There is no translation operation 

in this mapping since only the direction vector  

is needed. Primes are used to discern between the components of  and its 

⃗s

az el

a b b = a (1 − f )
f

(ϕs, λs, hs) geodetic to ECEF (xs, ys, zs)
⃗s = xsx̂ + ysŷ + zs ̂z

(az, el,1) local spherical to local tangent (x ′￼, y′￼, z′￼)

x ′￼ y′￼ z′￼

⃗p = R ⃗rENU/NED = u′￼x̂ + v′￼ŷ + w′￼ ̂z

⃗p
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corresponding unitary vector defined as  and calculated as 

.


	 	 (2.22)


	 	 (2.23)


4. Solve ellipsoid equation with satellite position and unitary pointing vector using 

Equations 2.17 & 2.18.


5. Obtain intersection coordinates  in ECEF using solution to the ellipsoid 

equation; convert to geodetic coordinates if necessary.


	 	 (2.24)


	 	 (2.25)


The final results yield the location of the intersection point on the airglow in global 

coordinates. This differs from the airglow-observer geometry approach where previously 

the final coordinates were relative to the location of the observer itself and expressed in 

terms of arc quantities or zenith angles. Yet when using an ellipsoid to represent the 

Earth the location of said observer along the surface is relevant. If, however, local 

coordinates are required then it fails to perform the appropriate transformations from 

either ECEF or geodetic coordinates. This is in fact the case for the mapping of the 

intersection point on an imaging instrument, as we will see in the next section.


p̂ = u x̂ + v ŷ + w ̂z

p̂ = ⃗p /∥ ⃗p ∥ = (u′￼x̂ + v′￼ŷ + w′￼ ̂z)/ u′￼2 + v′￼2 + w′￼2

(x ′￼, y′￼, z′￼) local tangent to ECEF direction vector
(u′￼, v′￼, w′￼)

(u′￼, v′￼, w′￼) to unitary vector
(u , v, w)

(xi, yi, zi)

xi = xs + du , yi = ys + dv, zi = zs + dw

(xi, yi, zi) ECEF to geodetic (ϕi, λi, hi)
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2.5. Arc distances and mapping using rhumb lines


	 We previously defined the forward mapping from zenith angles  to arc 

lengths and heights  for airglow-observer coordinates. This transformation is of 

particular interest because it allows the mapping between two uniform linear orthogonal 

coordinates, one of zenith angles , and those in terms of the corresponding arc 

distances . By obtaining this latter grid, one can map data on the airglow 3

from its representation in geodetic coordinates to a linear uniformly-spaced orthogonal 

grid and therefore perform further linear analyses; more on this in Section 2.7. The 

equations of Section 2.2 give us this forward mapping for the airglow-observer 

geometry, which entails using the spherical representation of Earth and the 

consideration of its limitations detailed in Section 2.3. Let us now describe a more 

general geometric derivation to obtain arc lengths on the surface of any ellipsoid, thus 

obtaining complimentary transformations to the line-of-sight-ellipsoid intersection 

equations.


	 The arc distances of Section 2.2, that is the displacements away from the 

observer on the surface of the sphere, are defined in terms of a constant azimuth or 

bearing and are in fact distances over rhumb lines on the sphere (also called loxodromes) 

that represents the airglow layer. Whereas great circles are the shortest distances 

between two points on a sphere, a rhumb line maintains the same intersection angle 

between meridians. By the definition of geodetic coordinates, and as it applies to the 

transformations mentioned in Section 2.3 and described in detail in the Appendix, 

the rhumb line is the distance on the surface of the ellipsoid that maintains a constant 

azimuth angle. It follows that our airglow-observer coordinates are expressed in terms of 

a constant azimuth angle so that we must interpret arc distances as rhumb lines as 

opposed to geodesics, which are the equivalent of the sphere's great circles but on an 

(θ, ρ)

(
⌢
A , h)

(Δθ, Δϕ)

(Δ ⌢x , Δ ⌢y )

 This orthogonality is not preserved in 3D for the coordinates .3 ( ⌢x , ⌢y , h)
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ellipsoid. By using rhumb lines we can then create an airglow-observer forward mapping 

for use with our geographical coordinate systems. The rhumb line equations and their 

numerical solution have been thoroughly studied in literature and we will only state the 

general problem here, referring the reader to the formulation of Karney (2021) and 

references within.


	 The derivation of the rhumb line equations makes use of auxiliary latitudes, 

namely the isometric latitude , the rectifying latitude  and the parametric latitude . 

The isometric latitude represents the quantity for which at any point on the surface of 

an ellipsoid equal increments of  and longitude  represent equal distances , along 

meridians and parallels respectively thus shapes are preserved. We can readily 

understand this concept by drawing deformation indicatrices on a Mercator map (see 

Figure 2.2), which is the map projection that preserves angles (conformal map 

projection) and where straight lines are precisely rhumb lines. The indicatrices are 

always circles, and thus shapes are preserved everywhere; on the other hand, scale ratios 

are not preserved, and the circles get larger at distances further away from the Equator; 

see Section 3.1 for more information. While the other auxiliary latitudes are measured 

in degrees or radians,  is not; it is a dimensionless parameter that is valued 0 at the 

equator and infinity at the poles. It is only useful in the derivation of the rhumb line 

equation.


	 The axes on a Mercator map are the isometric latitude  on the vertical and the 

longitude  on the horizontal; the azimuth angle  is measured clockwise from North. 4

This makes a set of orthogonal coordinates and we can write the azimuth of a rhumb 

line as:


	 	 (2.26)


ψ μ β

ψ λ d

ψ

ψ

λ α

tan α =
Δλ
Δψ

 Not to be confused with the spherical polar angle introduced in Section 2.2 that shares the same notation.4
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Figure 2.2. The Mercator map projection and its Tissot’s indicatrix of deformation 
(orange circles). This is a conformal map projection that preserves shapes and angles or 
bearings where straight lines are rhumb lines. This is not an equal-area map therefore 
landmasses appear distorted far from the Equator.
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where the tangent function maps to each quadrant per the definition of atan2(). The 

isometric latitude is related to the geographic (geodetic) latitude  by:


	 	 (2.27)


where  is the meridional radius of curvature,  is the semi-major axis and the 

parametric latitude  is defined as:


	 	 (2.28)


where  is the flattening. The distance is obtained by integrating the line segment for the 

curvilinear coordinates that represent an oblate ellipsoid; this yields


	 	 (2.29)


where  is the length of a quarter meridian (from the equator to the pole) and the 

rectifying latitude  is defined as:


	 	 (2.30)


The rectifying latitude is the meridian distance scaled so that the value at the poles is 

exactly 90°. It allows for simpler elliptic integrals to solve numerically specifically for 

distances along parallels. Using the definition of Equation 2.27 in 2.29 it becomes


ϕ

d ψ
dϕ

=
ρ

a cos β

ρ a

β

tan β = (1 − f )tan ϕ

f

Δdrhumb =
2M
π

Δμ sec Δα

M

μ

dμ
dϕG

=
π

2M
ρ
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	 	 (2.31)


which is indeterminate when  (distances along the meridian). By taking the 

limits of  for  and  and then using the definition of both  and  we 

finally find:


	 	 (2.32)


This equation, along with the definition of , provides a solution in terms of the geodetic 

latitude . However, as mentioned before, when solving for distances along the same 

latitude an iterative method is used to express  in terms of  and solving the elliptical 

integrals that arise, which in turn are a faster and more accurate numerical problem.


	 Beyond the numerical considerations for dealing with elliptic integrals, we have 

found the equations for distances over rhumb lines. The forward mapping then consists 

of transforming from  or  to  where . We have described 

how the line-of-sight  intersects with the ellipsoid in the previous section to give the 

location of the intersection on the surface of the ellipsoid representing the atmospheric 

layer. These locations are described by any geographic coordinate system. In order to 

obtain arc distances (distances over rhumb lines) we need to do the appropriate 

transformations to obtain the intersection point in geodetic coordinates  to make 

use of Equation 2.32. Additionally, since the ellipsoidal height , which is part of the 

geodetic coordinate system, does not appear in the equations for the rhumb lines, (these 

are always distances over the surface of the ellipsoid) a new ellipsoid with “expanded” 

semi-major and semi-minor axes by such height is required. This approach allows for the 

Δdrhumb =
2M
π

Δμ
Δψ

Δλ2 + Δψ 2

Δϕ = 0

Δd Δψ → 0 Δμ → 0 ψ μ

Δdrhumb = a cos β |Δλ |

β

ϕ

β μ

(θ, ρ) (θ, h) (
⌢
A , h)

⌢
A = Δdrhumb

ρ

(ϕ, λ)

h
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use of the well-developed methods for solving for the rhumb lines, as opposed to deriving 

new equations where the ellipsoidal height in the curvilinear coordinates is not zero.


	 The inverse mapping problem for rhumb lines requires the inversion of the 

equations above to obtain the auxiliary latitudes in terms of the distance. This requires 

the integration of Equation 2.27 to obtain  in terms of . We state the inversion 

equations here and refer to Karney (2021) for the derivation:


	   	 (2.33)


	 	 (2.34)


where  and  where  is the 

eccentricity (first eccentricity) of the ellipsoid.


An example of computed values of rhumb line parameters are listed in Table 2.3.


Table 2.3. Rhumb line distances over 1° differences along parallels ( ) and meridians 
( ) at different latitudes . These are accurate up to 0.01 meters. The auxiliary 
latitudes for each geodetic latitude are shown for reference.


ϕ ψ

ϕ = tan−1 τ

ψ = sinh−1 τ′￼

τ′￼= τ 1 + σ2 − σ 1 + τ2 σ = sinh (e tanh−1 (eτ/ 1 + τ2)) e

0° 110,574.3 m 111,319.49 m 0 0 0

15° 110,648.72 m 107,550.49 m 0.2631 14.928° 14.952°

30° 110,852.46 m 96,486.28 m 0.546 29.875° 29.917°

45° 111,131.78 m 78,846.84 m 0.8766 44.856° 44.904°

60° 111,412.27 m 55,800 m 1.3112 59.875° 59.917°

75° 111,618.36 m 28,902.01 m 2.0211 74.928° 74.952°

90° 111,693.95 m 0 m ∞ 90.000° 90.000°

ψϕ  (1°)Δλ βμ (1°)Δϕ

Δϕ
Δλ ϕ
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2.6. Imager coordinates and the lens function


	 While the previous relations describe the position of a point on the airglow to a 

singular observer on the surface of the Earth, we can instead consider an imaging 

instrument where we correlate different line-of-sight vectors to single imaging units (i.e. 

pixels). We may then ignore the particulars of the sensor itself, such as physical spacing 

between imaging units, and simplify the optics system to a single lens function. Let us 

consider now the airglow-imager geometry using an imaging sensor consisting of a 

rectangular panel of imaging units, henceforth pixels; we use a rectangular mapping for 

the location of these pixels in the sensor panel and then use the airglow-observer 

mapping equations to find the points on the thin airglow layer representation at every 

height through which each pixel is imaging. We define the span of the panel domain in 

number of pixels across the - and -dimensions (i.e. 512×512 pixels). We assume the 

spacing between pixels (  and ) is uniform across the panel. Additionally, each pixel 

across each dimension has a correspondence to a particular zenith angle,  for the 

-dimension and  for the -dimension. We assume the center of the sensor panel to be 

the exact location of the zenith and its edges to be the maximum FOV possible to 

image. If the all-sky optics system is approximated to be linear, then the distance 

between each pixel would correspond to uniform  and . In reality, the system does 

not have a linear profile and ,  have a smooth, radially symmetric variation. 

Therefore a radially symmetric lens function  is used to determine the deviation 

from linearity.


	 The lens function is obtained from the lens manufacturer’s calibration profile and 

is usually given as a function of either the zenith angle or the elevation angle and has 

values within the interval , so it is normalized. Let’s assume we know the exact 

shape of the calibration profile and let us write it in terms of the zenith angle , this will 

be our normalized lens function . We can now relate the distorted angles to the 

x y

Δx Δy

θ x

ϕ y

Δθ Δϕ

Δθ Δϕ

L (ζ )

[0,1]

ζ

Lnorm(ζ )
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ones given by a linear lens by applying the lens function transformations: let  be 

the angle that corresponds to a linear lens function and has values in the interval 

, and let  be the manufacturer’s (non-linear) lens function that is 

normalized to 90° and has values in the interval , then the transformations 

are


	 	 (2.35)


The normalized inverse lens function  transforms back directly to the original 

zenith angle . The normalized lens function  is defined for arguments with 

angle units (degrees or radians depending on the normalization factor’s unit) and 

returns values between ; conversely the normalized inverse lens function  takes 

normalized values as inputs, in the interval , and returns values with angle units. 

Since the lens function is not defined for angles less than  or larger than , we can 

write a practical lens function that transforms the values in the  interval and 

assumes that any value outside this range follows a linear relationship and consequently 

outputs the same input angle. We can state this as piecewise functions:


	 	(2.36)


where we have used the signum function to recover the input angles’ signs. We can now 

conveniently define the lens function to include the  normalization operations, the 

signum function and the piecewise definition. This allows for a simple description of the 

lens function transformations as:


ζlinear

ζlinear ∈ [0∘,90∘] Lnorm

ζnorm ∈ [0,1]

ζwarped = Lnorm (ζlinear) ⋅ 90∘ ⟷ ζlinear = L−1
norm (ζwarped/90∘)

L−1
norm

ζlinear Lnorm

[0,1] L−1
norm

[0,1]

0∘ 90∘

[−90∘,90∘]

ζwarped = {−90∘ ≤ ζlinear ≤ 90 sgn (ζlinear) Lnorm ( |ζlinear |) ⋅ 90∘

otherwise ζlinear

ζlinear =
−90∘ ≤ ζlinear ≤ 90 sgn (ζwarped) L−1

norm ( |ζwarped | /90∘)
otherwise ζwarped

90∘
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	 	 (2.37)


where we have included all of the expanded definitions and operations from above. The 

manufacturer’s lens function usually takes the shape of a third degree polynomial. If we 

define (or fit)  as such polynomial, then   should be one of the roots; this is 

exemplified in Figure 2.3. Such a description ensures the reversibility of the 

transformations (i.e. non-analytical descriptions such as linear fitting or table look up in 

general would not be reversible); if using numerical polynomial fitting and/or numerical 

root solving, then the transformations are reversible up to the fit and roundoff error.


  


Figure 2.3. (left) Example of a normalized lens function given a linear zenith angle, 
; the blue line represents the third-degree polynomial fit. (right) Profile of the 

corresponding inverse lens function given the warped zenith angle, ; the 
inverse lens function is a root of the third-degree polynomial fit and the green line only 
represents the connection between points. The red line represents a linear lens function.


	 The zenith angles from the linear lens function  and  can be determined from 

the Cartesian mesh of the location of pixels within the sensor panel with coordinates 

ζwarped = L (ζlinear) ⟷ ζlinear = L−1 (ζwarped)

Lnorm L−1
norm

L  
/ 9
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; as mentioned before, we consider the pixels to be uniformly spaced and the 

zenith location to be at the exact center of the panel being the Cartesian mesh in this 

description. If  is the number of pixels in the -dimension (columns of the mesh) and 

 is the number of pixels in the -dimension (rows of the mesh) we have:


	 	 (2.38)


	 	 (2.39)


where ,  and ,  are the angular spacings or angular 

resolution in each dimension; we have used tildes (∼) to denote discrete arrays. The 

angular resolutions, along with the respective FOVs, are determined by the optics 

system. These systems are in practice radially symmetric and thus . However 

different sensor sizes are common and as such the FOV will differ for different numbers 

of imaging elements. When  or  are even numbers then  and  will be 

 and when they are odd numbers they will be 

; these are always antisymmetric around zero. Note that the 

resulting angle arrays from Equation 2.40,  and , are always uniform and are 

antisymmetric around the zenith or 0th angle. By equations (2.40) a sensor panel can be 

represented by a matrix of column vectors  and row vectors . The pythagorean 

magnitude obtained with these angles is the angle  and will be radially symmetric 

around the center of the panel, so ; this is the angle that should be warped 

with the lens function. A sketch of the sensor panel coordinates can be found in Figure 

2.4 and the effect of lens function warping on the pixel locations is visually shown in 

(xpix, ypix)

Nx x

Ny y

x̃pix = { −Nx + 1 − nx

2
; nx = 0, 1, 2, 3, …, 2Nx − 1}

ỹpix = {
−Ny + 1 − ny

2
; ny = 0, 1, 2, 3, …, 2Ny − 1}

θ̃ = x̃pixΔθ

ϕ̃ = ỹpixΔϕ

Δθ = FOVθ/Nx Δϕ = FOVϕ/Ny Δθ Δϕ

Δθ = Δϕ

Nx Ny x̃pix ỹpix

{…, − 2.5, − 1.5, − 0.5, 0.5, 1.5, 2.5, …}

{…, − 2, − 1, 0, 1, 2, …}

θ̃ ϕ̃

θ̃ ϕ̃

ζ̃

ζ̃ = θ̃2 + ϕ̃2
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Figure 2.5. Collectively these transformations make the imager or sensor coordinates, 

which account for the optics system in a simplified manner and relate points in the 

atmosphere to pixels or imaging units. The summary of these is presented in Table 2.4.





Figure 2.4. Sensor panel coordinates. These are defined for  and  but are related 
to the zenith angles by  and .





Figure 2.5. (left) Grid representing the location of the pixels (at vertices) in the sensor 
panel array. (center) Grid representing the warping due to the lens function; the spaces 
between vertices are not constant within the FOV circle. (right) Overlay of the warped 
grid and the linear grid; this shows the deviation from linearity more clearly. The panel 
coordinates are  and .


ϕ̃ | ỹpix

θ | x̃pix−θ | x̃pix

−ϕ̃ | ỹpix

γ

θ̃
2 +

ϕ̃
2 =

ζ̃

x̃pix ỹpix

θ̃ = x̃pixΔθ ϕ̃ = ỹpixΔϕ

ỹpi x

−x̃pi x

− ỹpi x

x̃pi x

φ

θ– θ

– φ

x̃pix ỹpix

44



Chapter 2 – Methods I                                                                                                                                           

Table 2.4. 3D airglow-imager-sensor transformations.


45

forward mapping:

outputs: (x̑, y̑, z0)


inputs: (θlinear | xCCD, φlinear | y CCD, z0)

inverse mapping:

outputs: (θlinear, φlinear, z0) or (xCCD, yCCD, z0)


inputs: (x̑, y̑, z0)

forward mapping:

outputs: (x̑, y̑, z0)


inputs: (θlinear | xCCD, φlinear | y CCD, ρ)

inverse mapping:

outputs: (θlinear, φlinear, ρ) or (xCCD, yCCD, ρ)


inputs: (x̑, y̑, z0)

Domains and units

 







θ linear = xCCD FOVθ Nx( )
φlinear = yCCD FOVφ Ny( )
ζ linear = θ linear

2 +φlinear
2

ζwarped = L ζ linear( )

z0 = ρ2 + 2REρ cosζwarped + RE
2 − RE

α = cos−1 1+ z0
2 − ρ2

2RE RE + z0( )
⎛

⎝⎜
⎞

⎠⎟

†

⌢
A = RE + z0( )α


⌢
A = ⌢x 2 + ⌢y2

α =
⌢
A RE + z0( )

ρ = 2RE RE + z0( ) 1− cosα( )+ z02

ζwarped = cos
−1 z0 2RE + z0( )− ρ2

2REρ
⎛
⎝⎜

⎞
⎠⎟

ζ linear = L
−1 ζwarped( )

θ linear = ζ linear
⌢x
⌢
A xCCD = θ linear Nx FOVθ( )⎡⎣ ⎤⎦

*
*

φlinear = ζ linear
⌢y
⌢
A yCCD = φlinear Ny FOVφ( )⎡⎣ ⎤⎦

*
*


⌢
A = ⌢x 2 + ⌢y2

α =
⌢
A RE + z0( )

ρ = 2RE RE + z0( ) 1− cosα( )+ z02

ζwarped = cos
−1 z0 2RE + z0( )− ρ2

2REρ
⎛
⎝⎜

⎞
⎠⎟

ζ linear = L
−1 ζwarped( )

θ linear = ζ linear
⌢x
⌢
A xCCD = θ linear Nx FOVθ( )⎡⎣ ⎤⎦

*
*

φlinear = ζ linear
⌢y
⌢
A yCCD = φlinear Ny FOVφ( )⎡⎣ ⎤⎦

*
*

 †Alternatively use law of sines:



‡Note that an airglow imager can't observe 
angles 


larger than ± π/2.
⁑The values produced for xCCD, yCCD will in 

general not fall within the allowed values of 
the x̃CCD, ỹCCD vectors since this is a mapping 

from a continuous system to a discrete one. In 
this case the inverse mapping only fits the 
x̃CCD, ỹCCD vectors when transforming back 

from the forward mapping.  

α = sgn ζwarped( )sin−1 ρ sinζwarped RE + z0( )( )

 







θ linear = xCCD FOVθ Nx( )
φlinear = yCCD FOVφ Ny( )
ζ linear = θ linear

2 +φlinear
2

ζwarped = L ζ linear( )

ρ = RE
2 cos2ζwarped + z0

2 + 2REz0 − RE cosζwarped

α = cos−1 1+ z0
2 − ρ2

2RE RE + z0( )
⎛

⎝⎜
⎞

⎠⎟

†

⌢
A = RE + z0( )α

⌢x =
⌢
Aθ linear ζ linear

⌢y =
⌢
Aφlinear ζ linear

Airglow-imager-CCD 3D coordinate transformation:


P ⌢x, ⌢y, z0( )← →⎯ P θ linear xCCD ,φlinear yCCD,ρ( )

xCCD, yCCD are always discrete coordinates,

z0, ρ, θlinear, φlinear are in general continuous coordinates


        


Nx = total number of pixels in the CCD x-dimension (columns)

Ny = total number of pixels in the CCD y-dimension (columns)


FOVθ is the zenith field-of-view of the imager in the x-dimension (shouldn't be > 90º)

FOVφ is the zenith field-of-view of the imager in the y-dimension (shouldn't be > 90º)

ρ ∈ RE ,∞[ )km
α ∈ −π ,π[ ]rad‡

ζ linear/warped ∈ −π ,π[ ]rad‡
θ linear ,φlinear ∈ −π ,π[ ]rad‡

z0 ∈ 0,∞[ )km
⌢
A∈ −π RE + z0( ),π RE + z0( )⎡⎣ ⎤⎦km

xCCD ∈ !xCCD = −Nx +1− nx( ) 2;   nx = 0,  1,  2,  3,  ...,  2Nx −1{ }
yCCD ∈ !yCCD = −Ny +1− ny( ) 2;   ny = 0,  1,  2,  3,  ...,  2Ny −1{ }

3D airglow-imager coordinates


Sensor coordinates


side view

α
x

z0

RE

O

P

z

RE

Ȃ
z0

ζ ρI(O)

y

z x

y

y̑

x̑  P

Ȃ

γ̑

I(O)

top-down view

Airglow-imager-CCD 3D coordinate transformation:


P ⌢x, ⌢y, z0( )← →⎯ P θ linear xCCD ,φlinear yCCD, z0( )
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2.7. Orthogonal Coordinates, Grids & Interpolation


	 Typically atmospheric data is given by the geodetic coordinates latitude, 

longitude and ellipsoidal height, which is an orthogonal coordinate system; however this 

system is not orthonormal and does not have a linear relationship between its bases 

which complicates vector operations and linear interpolation in 3D space. The previous 

is also true for atmospheric data given in airglow-observer coordinates of arc distances 

and heights or line-of-sight distances, although this is not an orthogonal system. For 

these reasons and for simplicity coordinate transformations and interpolation in 3D 

space is usually carried in ECEF coordinates, which is a Cartesian system. However, if 

we consider arc distances to be the basis for an orthonormal linear system we may 

represent the curved coordinates as a flat surface and therefore apply 2D linear analyses 

techniques. This process is called “unwarping” and will invariably distort the data in 

ways specific to the type of map projection. This is because spheres and ellipsoids are 

not developable surfaces, that is, they cannot be represented by a flat surface without 

distortion; see Section 3.1 for more on this. For the case of atmospheric wave 

phenomena, spectral analyses in general require an orthonormal basis which are 

numerically represented by uniform grids. In this section we describe a specific 

procedure for applying transformations between coordinates based on uniform and 

nonuniform numerical grids and the numerical implications associated with such grids. 

The topic of map distortion will be discussed in the following chapter.


	 We refer to a grid as the representation of the Cartesian plane with a discrete 

numerical matrix, where the -coordinate appears as columns and the -coordinate as 

rows. Here we will use the terminology uniform to describe evenly spaced grids or 

vectors and nonuniform for non-evenly spaced grids or vectors. Uniform coordinates are 

obtained by making a grid with constant spacing (resolution); each dimension can have 

x y
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its own different constant spacing so that  and  may not necessarily be the same. 

Nonuniform coordinates are usually obtained by applying a transformation or mapping 

unto a uniform grid since these transformations usually describe a nonlinear relationship 

between coordinate systems, such as the mappings for airglow-imager coordinates. The 

source and target coordinates can always be interchanged, forward or inverse mapping 

applied to them respectively. Which ones of these grids are uniform or nonuniform will 

depend on which coordinates the uniform grid is created on.


	 The uniform grids may represent discrete coordinate systems, such as the position 

of pixel units on a sensor panel, or be a numerical representation of a continuous 

coordinate system, such as a height vs horizontal distance matrix with a set spatial 

resolution. When transforming from a discrete coordinate system to a continuous one 

the output of the transformation will contain allowed values since the target system is 

continuous (if it falls within the domain of the continuous coordinates); however, the 

opposite case will not be necessarily true. When trying to represent the continuous 

system by a discrete one the desired values may need to be approximated onto the 

discrete grid; whichever way the fit is done (i.e. rounding, least-squares, interpolation) 

this will lead to loss of information and may render the transformation irreversible. 

When the system we want to represent requires these continuous-discrete 

transformations we may try to find reversible transformations, up to the approximation 

inherent to the interpolation method. For this purpose we should only interpolate within 

the continuous system, where all of the discrete values are contained. So, if we want to 

represent continuous data by a discrete system, we need to first define and transform the 

uniform discrete grid to the corresponding grid representation of the continuous system. 

The latter is the nonuniform grid where we want to interpolate the original data onto. 

After the interpolation we can now transform the newly interpolated data back to the 

discrete coordinates. In summary we transform the data in original continuous 

coordinates to a discrete grid (usually nonuniform) that represents those coordinates 

Δx Δy
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then interpolate onto the desired uniform grid. We now see that a transformation from a 

continuous to a discrete system for the purposes of data representation requires both a 

forward and inverse mapping and interpolation, as opposed to the discrete to continuous 

transformation that only requires a forward (or inverse depending on which way you 

define the transformations) mapping and no interpolation.


2.8. Synthetic images and single line-of-sight instruments


	 All of the previous sections have been building on the transformations and tools 

leading to the creation of synthetic images, that is, simulated observations for an 

instrument designed in accordance to the imager coordinates and whose lines-of-sights 

intersect an atmospheric 3D dataset in accordance to the airglow-observer coordinates. 

We now define imaging as the integration of volumetric data along the line-of-sight of an 

imaging unit, be it a pixel or a collection of binned pixels. The types of integration are 

based on the kind of volumetric data. We specifically work with those simulation 

outputs that are “observables”, which are quantities that qualify for remote sensing, i.e. 

imaging in this case. Photon irradiance and electron density measurements are two of 

the most common observable quantities we will perform simulations from. Our example 

dataset includes the observables volume-emission-rates (VER) or  for airglow emissions 

and electron densities for total-electron-content (TEC). Additionally, volumetric 

temperature data is also available, which can be integrated along with the VER to 

create brightness-weighted-temperatures (BWT) which is an observable that can be 

obtained from filtered imaging of multiple emission lines (i.e. (Pautet, Taylor et al. 

2014)). For these quantities the corresponding integrals are, simply:


Integrated-volume-emission rate (IVER) in units of cm–2 s–1:


ε
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	 	 (2.40)


Brightness-weighted-temperatures (BWT) in units of Kelvin:


	 	 (2.41)


Total-electron-content (TEC) in TECU units (1 TECU = 1016 m–2):


	 	 (2.42)


where  is the line-of-sight and the path of integration and ,  are the pixel 

coordinates. Each integration yields a synthetic 2D image represented in pixel 

coordinates. This synthetic image represents the integrated simulated layer which is 

approximated to be at an arbitrary fixed mean layer height at the expected vertical 

location of the mean peak of the observed emissions or electron densities; this is the thin 

layer or shell representation. In reality both the airglow layers and the electron densities 

are thick layers distributed around these mean peaks at each particular height. For the 

most typically imaged airglow layers, the mean heights and typical full-width-half-

maximums (FWHM) of their intensity distributions are:


• the OH(3,1) airglow band that peaks at  8̴7 km height with a FWHM of  8̴ km,


• The O2(b) 865.5 nm line that peaks at ∼94 km height with a FWHM of ∼8 km,


• the O(1S) 557.7 nm greenline that peaks at  9̴5 km with also a FWHM of  8̴ km,


• the sodium D line doublet emissions Na(2P, 2S) 589.0 nm and 589.6 nm that peak 

at  9̴0 km with a FWHM of  1̴0 km, and


• the O(1D) 630.0 nm redline with peak at  2̴30 km with a FWHM of  6̴0 km.


I (x̃pix, ỹpix, t) = ∫
ρ

ε (x̃pix, ỹpix, ρ, t) dρ

BW T (x̃pix, ỹpix, t) = 1

I(x̃pix, ỹpix, t)
∫
ρ

ε (x̃pix, ỹpix, ρ, t) T (x̃pix, ỹpix, ρ, t) dρ

TEC (x̃pix, ỹpix, t) = ∫
ρ

ne (x̃pix, ỹpix, ρ, t) dρ

ρ xpix ypix
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Please refer to Figure 1.3 for a visual representation of each layer’s widths. These 

integrations are done for every imaging unit of sensor panels that have varying sizes. 

Typical configurations include 1024×1024 pixels binned to 512×512 for better signal-to-

noise ratio or newer higher resolution imagers with a 2048×2048 sensor binned to 

1024×1024. Our synthetic imagers do not require binning since we currently don’t 

include any type of noise (i.e. ambient, heat, electric) to our simulation. With this 

consideration we choose our sensor to match the effective pixel size of the imagers we 

are trying to simulate. However we may consider the integration of several bins of 

imaging units for the purpose of parallelization, the only requirement is the need for 

including neighboring lines-of-sights for the linear interpolation. So a single imaging unit 

requires the lines-of-sights of the neighboring 8 imaging units, making this the smallest 

parallelization bin possible. See Figure 2.6 for a schematic.





Figure 2.6. Imaging units on a sensor panel. These can be pixels or binned pixels such 
as a 1024×1024 binned to a 512×512 for increased signal-to-noise ratio. Integration 
through the line-of-sight requires interpolation between lines-of-sights of neighboring 
imaging units opening the possibility of parallelization.
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There is a balance to interpolation performance that depends on the size of the bin; the 

larger the bin the faster the computation but also the memory allocation. At some point 

it may become unfeasible to allocate to memory the entire sensor and looping through 

the bins (with or without parallelization) will be the only way to perform the 

interpolation without running out of memory. This is dependent on the interpolant size, 

which in turn depends on the number of imaging units, the size of the line-of-sight 

vector  and the size of the original data. In fact, in our results sensor sizes of 512×512 

with full resolution simulation data require up to tens of GBs of memory, so either we 

subsample the data or reduce the FOV of the sensor which in turn reduces the amount 

of data that intersects the lines-of-sight. Still, depending on the gravity wave 

wavelengths we are trying to study, full resolution might already be unnecessary, where 

sensor detail is enough to image at least the largest phenomena quantitatively. We can 

use the airglow-imager geometry to calculate the resolutions at a chosen airglow layer 

height for a given sensor configuration, we showed this in Figure 1.5 for the OH layer.


	 Beyond imaging sensors we may also consider single line-of-sight imaging 

instruments such as spectrographs or GPS networks. For the latter we can use a thin 

shell representation of ionospheric electrons so that we may apply the airglow-observer 

transformations to obtain the intersection of the line-of-sight with the electron density 

along the F-region (160–800 km). The TEC is then approximated to be at the height of 

the ionospheric-pierce-point (IPP), which is height of the peak of vertical TEC typically 

between 250–350 km. The height locations and peaks of these layers are not fixed and 

fluctuate for different background conditions. While the average heights of the different 

mesopause airglow layers are more consistent, (they can still vary by several kilometers, 

see Zhao et al. (2005)), the electrons’ distribution may vary greatly, being affected by 

photoionization, chemistry, the Earth’s magnetic field and other electromagnetic factors. 

Thus the choice of IPP for analysis of TEC fluctuations depends on the nature and 

altitude of perturbations of the layer.


ρ
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	 As a final note for this section it should be noted that background removal is a 

common procedure, and often a necessary one. The background is essentially the 

intensity data that is not a perturbation and represents the ambient intensity. The 

removal process can be accomplished in numerous ways. For simulated data, it is 

possible to model the background atmosphere, which can be a steady-state solution. 

This is then integrated with the appropriate line-of-sight mappings to create the 

background integrated image. Alternatively, the background can be approximated with a 

polynomial surface, by means of difference images if temporal evolution is available or 

by applying a time series filter. For the most part, we use the first approach, obtaining 

background information directly as a simulation output. It should be noted that it is 

possible to have the background significantly perturbed for large non-linear wave 

interaction; in this cases other approaches may be better suited, such as designing and 

applying appropriate bandpass filters.


2.9. Example: Interpolating atmospheric data for all-sky imaging


	 Here in this section we present detailed steps for a particular set of 

transformations based on the 3D airglow-imager equations of Section 2.2. The input 

3D data is given in a discrete uniform rectangular 3D matrix  which are the 

discrete values that represent the continuous nonuniform airglow-observer coordinates 

; we will use tilde (∼) to denote discrete coordinates. The all-sky imager’s 

sensor coordinates are


	 	 (2.43)


(x̃, ỹ, h̃)

( ⌢x , ⌢y , h)

(θ̃linear | x̃pix, ϕ̃linear | ỹpix, ρ)
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where the notation “ ” reads as “given” and it means the angles ,  are 

determined by the choice of , , by means of Equation 2.40; the third coordinate 

 is effectively a pixel’s line-of-sight and is a continuous variable chosen arbitrarily 

within . Note that we have a mix of discrete and continuous coordinates for 

the all-sky imager’s coordinates. The goal is to obtain the transformed coordinates 

 which represent points along the line-of-sight (LOS) for each pixel of 

the sensor. This process is simply the transformation:


	 	 (2.44)


Note that we have to specify a discrete  to create a purely discrete representation of 

the imager coordinates in order to obtain in turn discrete LOS coordinates. A first 

approach would be to arbitrarily decide what this vector  is and construct it with 

whichever values we want, as long as it is uniform; this will save us the process of doing 

inverse transformations required to know  resolution and minimum/maximum values.  

Collectively the inverse transformations can provide us with information about the 

input’s data domain and resolutions in the imager’s coordinates. While this information 

can be used to choose design variables for the imager depending on the data, usually the 

imager’s parameters are fixed for real use cases and therefore inverse mappings have 

limited use. By creating an educated guess for , such as using a small  and let it 

start at 0 and end at a distance that will reach the sought data features (i.e. airglow 

layer) at every zenith angle we can skip the inverse transformations and go straight into 

interpolation. We will, however, show the process of obtaining resolution and domain 

information from these inverse transformations.


	 To setup our inverse transformations we first need to create the uniform grid of 

the imager’s coordinates . The first two coordinates are 

| θ̃linear ϕ̃linear

x̃pix ỹpix

ρ

ρ ∈ [0,∞)

(x̃LOS, ỹLOS, h̃LOS)

(θ̃linear | x̃pix, ϕ̃linear | ỹpix, ρ̃ )
forward mapping

(x̃LOS, ỹLOS, h̃LOS)

ρ̃

ρ̃

ρ

ρ̃ Δρ

(θ̃linear | x̃pix, ϕ̃linear | ỹpix, ρ̃ )
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determined from the sensor panel characteristics, namely the fields-of-view ,  

and number of pixels , , these define the grid . We now need 

to discretize the continuous line-of-sight coordinate  by choosing a sufficiently 

small resolution . This is a designer’s choice and the minimum value that the system 

is able to resolve is limited by both the data and sensor resolution. To know these 

resolution limitations we need to apply the inverse transformations. In either case, it is 

worth noting that when doing spectral analyses of atmospheric wave data the choice of 

resolution will always be related to the desired wave parameters by the Sampling 

Theorem were the Nyquist frequency should function as a threshold for minimum chosen 

resolutions. We also need to determine the desired domains of , and to know the 

allowed values we need again to apply inverse transformations to obtain what the 

minimum and maximum values for  that are within the airglow-observer coordinates 

. Conversely, the sensor array doesn’t limit the domain values for  since 

. Note that the discrete variable  does not need to start at 0, especially if 

there is no data available up to a certain height from the imager. Let us now use the 

previous considerations to proceed with the creation of the uniform grid and use the 

inverse mapping equations on the input coordinates :


	 	 (2.45)


We could ignore the outputs  since they are not a representation of 

the discrete grid we are trying to create, they represent the data in nonuniform imager 

coordinates. However, they provide the effective domain size for the pixel vectors and 

could be used to crop the  grid if, for example, the data doesn’t 

span the entire FOV of the imager. This inverse mapping yielded the corresponding 

values for  that are contained within the input data. The minimum available resolution 

can then be calculated by  where  is the gradient of the matrix  

FOVθ FOVϕ

Nx Ny (θ̃linear | x̃pix, ϕ̃linear | ỹpix)

ρ → ρ̃

Δρ

ρ̃

ρ

( ⌢x , ⌢y , h) ρ̃

ρ ∈ [0,∞) ρ̃

(x̃, ỹ, h̃)

(x̃, ỹ, h̃)
inverse mapping

(θ̃linear | x̃, ϕ̃linear | ỹ, ρ̃ )

(θ̃linear | x̃, ϕ̃linear | ỹ)

(θ̃linear | x̃pix, ϕ̃linear | ỹpix)

ρ̃

Δρ̃min = min (∇ρ̃ ) ∇ρ̃ {ρ̃}
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that contains the local  for all points in the grid. We can now construct the  vector 

as  where the minimum and maximum 

values are taken from all elements of . Finally we can now have a purely discrete 

uniform representation of the all-sky imager coordinates as


	 	 (2.46)


which is what we originally set out to find to be able to apply the transformation in 

(2.42) and obtain . We now have the necessary coordinates for 

interpolation of the input data. This interpolation is from nonuniform to uniform grids, 

which requires a scattered data interpolant of choice. Finally, to create synthetic images 

all that is required is the integration along the line-of-sight coordinate . For such 

integration the resulting coordinates of the imaged data are  and 

this is the image we have been looking for. We can now do some post-processing that is 

helpful in extracting perturbations from the background. A concise summary of this 

entire procedure is presented in Table 2.5. Note that for clarity a new notation for 

uniform and nonuniform vectors is introduced and the transformation equations have 

been broken into steps and grouped together by colors.


Δρ̃ ρ̃

ρ̃ = {ρ̃min, …, ρ̃min + nΔρ̃, …, ρ̃max ; n = 1,2,3,…}

ρ̃

(θ̃linear | x̃pix, ϕ̃linear | ỹpix, ρ̃ )

(x̃LOS, ỹLOS, h̃LOS)

ρ

(θ̃linear | x̃pix, ϕ̃linear | ỹpix)
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Figure 2.7. Interpolation of airglow coordinates. (a) 3D sketch of the imager-airglow 
system in ENU coordinates. (b) The airglow emission data in airglow-imager 
coordinates. In both panels the arrow represents the integration (imaging) path. (c) The 
resulting synthetic IVER image. (d) IVER image with the background removed. (e) 
Unwarped image in uniform kilometer grid.
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Table 2.5. Workflow for interpolating data in atmospheric coordinates at airglow-
imager’s coordinates. Different sections have been highlighted in varying colors. Steps 2 
and 6 correspond to the inverse and forward mapping respectively of the airglow-image 
coordinates. 

1 Input 3D 
coordinates

6

a
Transform 

the uniform 
grid

2

a 3D → 2D

(magnitude)

b Forward lens 
function

b
2D inverse 
mapping 
equations

c
2D forward 
mapping 
equations

c
Inverse lens 

function
d 2D → 3D 

(components)

d
2D → 3D 

(component
s)

7 Output

3 Determine 
domain sizes 

8
Interpolate data in original uniform coordinates (x̑·, y̑·, 
h·) onto the new nonuniform coordinates (x̑LOS∗, y̑LOS∗, 

hLOS∗,)

4

a
Angles from 

pixel 
location 
vectors

b
Crop if 

necessary

5
Create new 
ρ vector

System originally given in , use:

forward mapping with inputs: ; but first determine domain sizes by using inverse mapping.

(⌢x ∙,
⌢y ∙, h∙)

(θ∙, ϕ∙, ρ∙)

θi = xCCD FOVθ M
φi = yCCD FOVφ N

ζwi = L ζui( )

ζui = θi
2 +φi

2⌢xi,
⌢yi,hi( )

†Alternatively use law of sines: 


‡The colon notation implies: 

α = sgn ζwarped( )sin−1 ρ sinζwarped RE + z0( )( )

ρi = ρ∗min,…,ρ∗min +n∆ ρ,…,ρ∗max;  n =1,2,3,…{ }

⌢xLOS∗ =
⌢
A∗θi ζui

⌢yLOS∗ =
⌢
A∗φi ζui

hLOS∗ = ρi
2 −2Sρi cosζwi +S

2 − RE

α∗ = cos
−1 S2 − ρi

2 + RE +h∗( )2

2S RE +h∗( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⌢
A∗ = RE +h∗( )α∗

ζu∗ = L
−1 ζw∗( )

minθ∗ ≤θi ≤maxθ∗( )
minφ∗ ≤ φi ≤maxφ∗( )

⌢xi
2 +
⌢yi
2 =
⌢
Ai

αi =
⌢
Ai RE +hi( )

ρ∗ = S2 + RE +hi( )2 −2S RE +hi( )cosα

ζw∗ = cos
−1 S2 + ρ∗

2 − RE +hi( )2

2Sρ∗

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⌢xLOS∗,
⌢yLOS∗,hLOS∗( )

θ∗ =ζu∗
⌢xi
⌢
Ai

φ∗ =ζu∗
⌢yi
⌢
Ai

ρi ∈ minρ∗,maxρ∗[ ]
θi ∈ minθ∗,maxθ∗[ ]
φi ∈ minφ∗,maxφ∗[ ]

WORKFLOW FOR INTERPOLATING DATA IN ATMOSPHERIC COORDINATES AT AIRGLOW-IMAGER’S COORDINATES
for clarity:  stands for uniform, ∗ stands for nonuniform quantities∙

∆ ρ =min ∆ ⌢xi,∆
⌢yi∆ h( )

ρi = minρ∗ :∆ ρ :maxρ∗[ ]‡
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Chapter 3


Methods: 3D Data Visualization


	 3D rendering has been increasingly explored in the context of atmospheric data in 

the forms of visualization of sparse meteorological data, 3D printing, or virtual and 

augmented reality experiences. NASA’s Scientific Visualization Studio website has many 

relevant examples of this with notable visualizations by Shirah (2018, 2021), Kekesi 

(2020) and Kekesi & Perkins (2010), the latter included in Figure 3.1.





Figure 3.1. Stereoscopic visualization of hurricane Katrina on August 28, 2005. 
Composition includes cloud cover data from TMMR’s Visible and Infrared Scanner 
(VIRS) and GOES and rain from TRMM’s Tropical Microwave Imager (TMI). [Credit: 
Kekesi & Perkins, 2010].
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So when we think about data visualization two approaches come to mind: visualizations 

that suit our mathematical analyses and visualizations that better represent the 

morphology of the data. One fundamental concept in terms of representing data in space 

is data projection, which is representing 3D data in a 2D plane. This process requires 

choosing which spatial coordinates to project our data onto and these may or may not 

be appropriate for either mathematical or morphological analyses. Therefore it is of 

great importance to fully understand the types of projections suited for conveying the 

results of our research. In general, our data analysis techniques are computationally 

more efficient in 2D space. Additionally, considering large datasets can be built in 4D 

data grids to include time evolution, 2D projections or slicing still represents the most 

viable method for determining parameters even in fundamentally three-dimensional 

phenomena (i.e. non-linear interactions). Part of this research focuses on developing 

better 3D visualization tools in an effort to recognize the viability for volumetric data 

interpretation.


	 Our 2D and 3D modeled data comes from two physics-based models and their 

coupling. First is the compressible atmospheric dynamics model “MAGIC" (Snively, 

Pasko et al. 2010), the Model for Acoustic-Gravity wave Interactions and Coupling 

which simulates quantities including winds, temperature and emission rates for  

atmospheric dynamics following inputs from physically constrained or idealized sources. 

Secondly we use the self-consistent multi-fluid ionosphere model “GEMINI” (Zettergren 

and Semeter 2012), the Geospace Environment Model for Ion-Neutral Interactions, and 

its coupling with MAGIC to obtain TEC and also volume emission rates of oxygen 630 

nm airglow. The MAGIC-GEMINI coupling is one way, where the mesospheric and 

thermospheric results of MAGIC are taken as inputs for GEMINI to obtain modeled 

data representing physical responses throughout the ionosphere. In this chapter we will 

present visualization tools and coordinate transformations appropriate for atmospheric 

gravity waves and atmospheric disturbances in the context of our modeled data. These 
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simulated results have helped and shaped the methods developed here for visualization 

techniques and therefore are optimized for them. The techniques used in this research 

include isosurfaces for large-scale perturbations, a morphology enhancement technique 

developed for use with thin layers and synthetic images, and point clouds to visualize 

dense data sets such as electron density or high-resolution wave breaking. For the 

development of this Chapter we will use two data sets, the first one is modeled after 

convective thunderstorm cell from MAGIC featured in Heale et al. (2019) and the 

second one is from a tsunamigenic OH airglow response modeled in MAGIC featured in 

Inchin et al. (2020) with additional results for coupling with GEMINI.


3.1. 2D and 3D visualization techniques


3.1.1. Slices


	 The gateway to understanding the need for volumetric 3D visualization is 

through the use of slices, which has been in use since 3D simulations were first created. 

2D plots of simulated data can be obtained directly from 2D outputs or as slices and 

integrations from 3D data. This is the most commonplace data visualization format and 

is necessary to perform spectral analysis on wave phenomena: i.e., obtain horizontal or 

vertical wavelengths in longitude vs latitude or height vs longitude plots respectively. 2D 

plots allow us to clearly distinguish dynamic wave features in volumetric data and thus 

are a primary analysis tool for interpretation of AGWs. 2D plots portray data in limited 

(albeit accessible)  ways that may or may not be fully representative of the 3D dynamics 

they are depicting. Thus, the choice of where and how to slice the data will determine 

the morphology of the plot and understanding the projection it represents is necessary 

for a correct interpretation. A collection of slices like these can be built into 3D space in 

an effort to visualize volumetric data; see Figure 3.1 for an example. By using 
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appropriately selected slices we can describe characteristics from the simulated data such 

as model domains and features along more familiar coordinate projections. How 

successful this is depends on the choice of coordinates as well as the number of slices, 

viewing angle and choice of colormap scales. Figure 3.2 provides an example of the 

same 3D data, sliced at the same heights but with different projections and aspect 

ratios. The plots on the right are the original MAGIC coordinates and the plots on the 

left side have been mapped along the curvature of the Earth in the ENU local 

coordinate system. While each slice clearly represents “flat” horizontal features at the 

selected heights, they fail to show the morphology along the  axes. Additionally, it may 

prove useful to reduce the number of slices shown and adjust viewing angles accordingly 

to reduce occlusion and maximize viewing area. As a general remark, MAGIC and 

GEMINI have good slice visualization in their native coordinate systems: MAGIC in 

Cartesian and GEMINI in its diapole coordinates that are aligned to Earth’s magnetic 

field lines; interpolations may be required to define slices obliquely.


z
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Figure 3.1. Slices at regular intervals for visualization of a 3D MAGIC volumetric 
data. (Top) latitudinal slices; (bottom) height slices. Transparency has been applied up 
to a certain threshold. The limitations of stacking slices for visualizing 3D data, as the 
overlap doesn’t allow for a clear morphologic appreciation.
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Figure 3.2. Comparison of slices at regular intervals for visualization of a 3D MAGIC 
volumetric data for different height ratios. (left) Data follows the curvature of the Earth. 
(right) Data in its original Cartesian coordinates. (top) Height ratios of  vs  of 1:14. 
(bottom) Height ratios of  vs  of 1:5.


z x, y
z x, y
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In a different use case, Figure 3.3 shows an example on how to use slices to describe 

model domains, coordinate projections and interfacing and coupling of models. This 

graphic is a visual tool that assists in the understanding of boundary conditions, the size 

of each domain and necessary interpolations to feed one model’s output into another. In 

this case a full 3D visualization, as the ones discussed in the following sections, may in 

fact obfuscate the desired connections, reducing their accessibility and utility.





Figure 3.3. Good example of use of slices: describing the coupling between models, 
domains and boundaries. Shown models are: GEMINI (Zettergren and Semeter 2012), 
MAGIC (Snively 2013), SPECFEM3D (Komatitsch and Tromp 2002) and GeoClaw 
(Berger, George et al. 2011). Courtesy: Pavel Inchin (2020).
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Let us discuss another example of why 2D plots may meaningfully simplify data that is 

inherently a 3D quantity. Figure 3.4 shows wind measurements from a radiosonde and 

and empirical model, given in cylindrical coordinates. A 3D stem plot of these quantities 

has been created, however the relationship between values is better understood in terms 

of their projections on the familiar planes: zonal, meridional and horizontal. 2D plots of 

the projections are enough for a general understanding of the wind. There may yet be 

value for the 3D stem plot and that is in the context of the other 3D visualizations 

techniques discussed later in this chapter. Ultimately the use of 2D plots is a purposeful 

decision that depends on the features being analyzed.





Figure 3.4. 3D wind stem plot with projection on the meridional, zonal and horizontal 
planes. Data is from a radiosonde (SCSN Santo Domingo station from University of 
Wyoming’s Department of Atmospheric Science Upper Air Soundings) and modeled 
wind from HWM07 empirical model (Drob, Emmert et al. 2008).
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	 When it comes to visualize wave data it is useful to do so in terms of 

perturbations, which means subtracting the background. While this is not a trivial 

process for real imaged data, when working with simulated data often the background is 

readily available for subtraction. This background could come from simulation of the 

steady state solution at the given time, or it can be obtained as a spatial or temporal 

mean; alternatively filtering techniques for signal analysis can be used to obtain 

perturbations as well. These latter processes more closely resemble the techniques used 

to obtain perturbations from real data. We define absolute perturbations simply as the 

subtraction of background from the simulated data and relative perturbations as those 

also divided by background (shown as a fraction or percentage). Absolute perturbations 

are given in the data’s units and are useful when comparing to calibrated measurements. 

They also provide a visualization of the morphology in the most significant orders of 

magnitude. An example is provided in Figure 3.5 using MAGIC results for a 

thunderstorm in the US midwest (Heale, Snively et al. 2019). The morphology of the 

data can be significantly different when using relative perturbations, revealing 

fluctuations that may be locally significant relative to their background. Figure 3.6 

shows a comparison between absolute and relative percentage perturbations for a 

GEMINI simulation of the O(1D) airglow emission perturbations due to a tsunami 

(Inchin 2020). Relative perturbations can help understand the propagation of 

perturbations across the entire domain, however they can also bring out numerical 

artifacts, such as those due to computational precision or boundary effects. For this 

reason it is important to have a firm understanding of the computational characteristics 

of the simulation to properly interpret these relative perturbation plots. However, they 

may prove useful to study the local perturbations, that is, those with similar orders of 

magnitude or neighboring perturbations that can be grouped by any relevant 

atmospheric quantity, such as height or density. In the case of Figure 3.6, the only 
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significant observable morphology is the one shown for the absolute perturbation. 

Nevertheless, by using a relative perturbation plot we can trace perturbations all along 

the magnetic field lines, where they will eventually excite its opposite hemisphere 

counterpart, enough to be measurable; this may not provide any insight into the 

physical process but it serves as a diagnosis tool for the model and can reveal noise and 

artifacts where fluctuations are large relative to the ambient emission intensity.





Figure 3.5. Absolute perturbation plots of MAGIC temperature, OH(3,1) and O(1S) 
emissions due to a simulated thunderstorm. Data is sliced at middle position which is 
centered at latitude (42°).
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Figure 3.6. GEMINI O(1D) airglow emissions perturbation plots due to a tsunami, 
projected onto geodetic coordinates and sliced at middle longitude (142°). (left) absolute 
perturbations; (right) relative percentage perturbations.


	 If we want to represent morphology in volumetric 3D data in a more significant 

way we have to circumvent some of the challenges associated with it. The main one 

being the fact that we interact with media through projections on a plane, so that we 

may print, publish and easily distribute it. We currently do possess several technologies 

for visualizing data in true 3D environments such virtual or augmented reality (AR/VR) 
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and 3D printing. Beyond these, however, there will always be data occlusion that has to 

be considered. The following sections present several techniques for meaningfully 

representing 3D volumetric data that is relevant to atmospheric wave phenomena at 

different scales.


3.1.2. Point clouds


	 A collection of rendered objects in 3D space where each object is at the location 

of a data point represents a point cloud. These “particles” are usually spheres or squares 

and are usually color coded to represent some meaningful quantity, such as the data 

point value itself, some type of gradient or textures. Point clouds are particularly useful 

when it is possible to track individual elements such as in a simulation of dynamical 

system of particles. This technique is used commonly for visualizing mass densities fluids 

such as liquids, gas, smoke, clouds or even plasma in magnetohydrodynamics (Macklin 

and Müller 2013, Lehmann, Federrath et al. 2016); relevant uses for AGW phenomena is 

in the study of turbulence (Fritts, Wang et al. 2017). Here we present a volumetric 

visualization of an acoustic wave seen in airglow emissions in Figure 3.7. This 

representation characterizes well the density distribution of the particles, volume 

emission rates in this case, and can provide insight into the sampling of data according 

to morphologic features, such as whether large 3D-spatial gradients have enough 

resolution. Figure 3.8 provides a comparison of point cloud sparsity and its impact on 

its visualization; it can be argued that for more complex features a lesser number of 

particles may provide a clearer view. It is important to mention that in a movie format 

there is a natural expectation from the viewer that each particle is persistent and 

tracked across frames. This is not the case for our point clouds which are not 

simulations of position dynamics, but rather fixed grid points whose values may or may 

not be represented in the point cloud. 
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Figure 3.7. Point clouds of AGWs: (left) acoustic wave in O(1D) 630.0 nm emission line 
due to a tsunami; (right) gravity wave in OH(3,1) emission band due to a thunderstorm. 
The same colormap has been used, however the point cloud on the right is much denser 
than the left one. Transparency has been linearly mapped to data values.





Figure 3.8. Point clouds of AGWs in temperature distribution at different particle 
densities: from top to bottom and left to right: 1:40, 1:20, 1:10, 1:5. Particle sizes are the 
same. Transparency has been linearly mapped to data values.
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3.1.3. Isosurfaces


	 An isosurface is the 3D rendering of surfaces that connect data points with the 

same value, the isovalue, or the interpolation of them that yields such value. Its 

algorithm ensures that the nearest neighbors are chosen to conform to a smooth surface 

without overlapping. For large-scale/spatially-widespread features (such as highly-linear 

AGWs) isosurfaces provide a clear morphological view and when presented in movie 

format may provide excellent visualization of wave dynamics. The selection of isovalue is 

a design choice that will determine the amount of detail and shapes represented; it can 

be seen in Figures 3.9 and 3.10 that a smaller isovalue captures the model’s noise floor 

and domain extents while the large isovalue better represents observable perturbations.





Figure 3.9. Isosurfaces of positive and negative MAGIC temperature perturbations for 
an isovalue of ±2K due to a thunderstorm over the Midwest. Top height is 250 km.
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Figure 3.10. Isosurfaces of positive and negative (left) and only negative (right) 
MAGIC temperature perturbations for an isovalue of ±0.1K due to a thunderstorm over 
the Midwest.


One of the challenges that isosurfaces seek to alleviate is the comparison between 

vertical and horizontal features, especially when horizontal wavelengths are much larger 

than vertical ones. One technique we can apply is vertical stretching, that is, the 

stretching of vertical scales so they appear comparable to the horizontal ones. This is 

another designer’s choice and the end result will vary between uses. Figures 3.11 and 

3.12 show this for two MAGIC different simulations; Figure 3.13 shows this for a 

GEMINI simulation. These examples show a clear vertical structure that appears 

“flatter” in the original scales. We can conclude then that having so much vertical 

extension appearing so flat means that the waves are highly slanted and line-of-sight 

imaging will have a significant impact on the imaged horizontal structure. In fact, 

overlapping projected images with isosurfaces in 3D space provides a direct comparison 

on the impact of such slants as well as the assumed layer height; we will show this later 

in Chapter 4. See Wright, Hindley et al. (2017, 2021) for more examples on vertical 

stretching of isosurfaces and a discussion of vertical wave parameters.
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Figure 3.11. Isosurfaces of positive perturbations of MAGIC CO2 radiances in gray, 
OH VER in green and OI VER in red due to a thunderstorm over the Midwest. (left) 
True scale. (right) Stretched in the vertical direction to better show vertical structure. 
Simulated date: 2016/07/08 12:51:30 UTC.


 


Figure 3.12. Isosurfaces of positive perturbations of MAGIC OH VER in green and OI 
VER in red due to a tsunami. (left) True scale. (right) Stretched in the vertical direction 
to better show vertical structure. Simulated date: 2016/07/08 12:51:30 UTC.
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Figure 3.13. Isosurfaces of positive and negative perturbations for GEMINI due to a 
tsunami: electron density in pink (+) and gray (–), O(1S) in green (+) and blue (–), 
O(1D) VER in red (+) and light blue (–). An overlay of vertically stretched out 
isosurfaces at the top of each plot is included for comparison. There is very pronounced 
slant in the morphology of the wavefronts. Simulated date: 2011/03/11 14:46:23 LT.


	 Isosurfaces should be calculated from perturbation quantities and they can vary 

greatly in shape whether using absolute or relative perturbations. As discussed before 

for the case of slices, absolute perturbations will more appropriately show features 

within a given order of magnitude while relative perturbations will feature smaller detail 

throughout the entire domain. This is particularly useful when analyzing purely the 

propagation of information throughout the domain, such as in GEMINI simulations 

where relative perturbations can trace the impact all across to opposite magnetic 

hemisphere. Additionally we can better observe linearity and nonlinearity development 

across the vertical domain. While the significance of relative perturbations may be more 

technical than physical we may yet study the local influence throughout the atmospheric 

layers which could be relevant for in-situ measurements if such a study were desired. We 

show some interesting results from GEMINI when using relative perturbations in 
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Figure 3.14: the left and center plots show two different isovalues at the same 

simulation time. The smaller isovalue connects more surfaces and encapsulates the larger 

perturbations. Compare these plots to those of Figure 3.13; the perturbation plots are 

better at tracing the acoustic signatures propagation. Finally we demonstrate the effect 

of varying isovalues to trace perturbations along the entire magnetic field line in Figure 

3.15.


  


Figure 3.14. Isosurfaces of relative perturbations isovalue of GEMINI O(1D) VER (left 
and center) and OI 557.7 nm VER (right). Isovalues at 200% (left) 80% (center) and 
20% (right) The large isovalue brings out significant wave structures even at high 
altitudes.
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Figure 3.15. Comparison of different isovalues for isosurfaces of electron density along 
GEMINI’s domain. The electric field perturbations are instantaneously propagated along 
the magnetic field lines under GEMINI’s electrostatic approximation. Simulated date: 
2011/03/11 14:46:23 LT.


3.1.4. Morphology enhancement


	 This technique has been developed to enhance topology for thin layers, 

represented by 2D plots, such as those obtained with real imager data. This consists in 

extruding 2D data by an amount equivalent to each pixel’s magnitude and proportional 

to an arbitrary constant. By giving 3D topology to the data, we can better compare flat 

images to 3D volumetric structures such as isosurfaces or point clouds. We will use CO2 

and OH VER data on the thunderstorm over the Midwest to explain this technique. We 

have Figure 3.16 with a schematic of the morphology enhancement creation process: 

the 3D surface is a composition of caps, which are slices chosen at the edges of the data 

where the top cap is used to protrude itself by an arbitrary stretch factor. The end 

result is an artificial volume that gives a 3D perspective to interpret intensity values. 

5% isovalue 3% isovalue 2% isovalue

1% isovalue 0.5% isovalue 0.1% isovalue
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Just as we saw in our discussion of isosurfaces, stretching vertical scales may greatly 

improve the visualization as exemplified in Figure 3.17 with a comparison of height vs 

horizontal ratios, or, it may create a distorted visualization that may instead be harder 

to interpret. Particular to this technique is the choice of caps, mainly the choice of the 

top height; Figure 3.18 presents an example where we choose different top caps 

through the upper part of the thin airglow layer. Lastly we show Figure 3.19 and 

Figure 3.20 where we include the whole globe and optional transparencies for the 

surfaces. Since this technique is derived from the use of slices some of the considerations 

mentioned before still apply. Namely for large spatial scales occlusion is still a concern 

when stacking layers and certain projections might still be better suited for this 

technique. However most 3D visualization use the concept of world coordinates, which is 

a fixed Cartesian system that represents 3D space. This concept we will be further 

developed on in the following section.





Figure 3.16. Schematic of the creation of a morphology enhancement visualization. Side 
surfaces are slices plotted in 3D space, intensity data of the top slice is stretched by an 
arbitrary stretch factor.
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Figure 3.17. Comparison of different  vs  ratios for a morphology enhancement 
visualization. From left to right and top to bottom: 1:1, 2:1, 3:1, 4:1.





Figure 3.18. Comparison of different top surface choice for a morphology enhancement 
visualization. From left to right and top to bottom: CO2 @ 60 km & OH @ 90 km, CO2 
@ 60 km & OH @ 95 km, CO2 @ 35 km & OH @ 95 km.
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Figure 3.19. Morphology enhancement surfaces mapped to the globe with a true 1:1  
vs  ratio.





Figure 3.20. Morphology enhancement surfaces with included transparency linearly 
mapped to the lower values up to a certain opacity threshold. (Left) CO2 BWT (right) 
OH(3,1).
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	 As a final remark for this technique, it must be acknowledged that the choice of 

intensity layer that maps out the height that creates the topography may or should be 

in fact different than the intensity itself. In other words, any relevant sliced data can be 

suited for creating the height displacement including estimates of actual displacements. 

This opens the opportunity to represent different physical quantities, such as vertical 

gradients or the Krassovsky parameters that relate intensity and temperature 

perturbations and may better characterize the morphological and dynamical features 

(Ghodpage, Taori et al. 2015 and references therein). This is left as a thought for future 

work.


3.2. Camera projections


	 We will briefly discuss the 2 possible ways of viewing 3D space defined by the 

world coordinates that describe it. In computer graphics 3D objects positions are 

described by the Cartesian system that makes up the world coordinates, in this space 

both the 3D objects and the camera exist. The relationship between the objects and the 

camera is given by the camera coordinates and this can be a complex set of linear 

transforms depending on the complexity of the camera system (such as optics and 

particulates of the camera calibration). The most basic camera properties are its 

position in the world coordinates, its field-of-view that determines the target plane, its 

up-vector that determines the viewfinder orientation and finally the type of camera 

projection. The 2 projections we will use are orthographic camera projection and 

perspective camera projection:


• Orthographic camera projection preserves the size of objects and it’s the default 

view in MATLAB. This projection images objects within a box.
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Figure 3.21. Orthographic camera projection. Source: MATLAB documentation.


• Perspective camera projection causes foreshortening with distances, similar to 

how an observer would see objects in 3D space. This projections images objects 

within a cone.





Figure 3.22. Perspective camera projection. Source: MATLAB documentation.


We will generally use an orthographic camera projection for interpreting volumetric 

data, due to its characteristic of preserving scales. In fact, when not specified, all 

volumetric renderings are assumed to be an orthographic camera projection. On the 

other hand perspective camera projection is useful when simulation points-of-view for an 

arbitrary observer. This is a concept akin to the equations we derived back in Chapter 2 

relating an observer to points on the airglow layer; by rendering objects in 3D space and 

using a perspective camera projection we can readily simulate the field-of-view in terms 

of the 3D visualization of our choice. Here are some examples of this: as a baseline we 

have Figure 3.23 with orthographic camera projections, then we have Figure 3.24 

81



Chapter 3 – Methods II                                                                                                                                           

that shows the perspective view from a satellite with a track right through the heart of 

the storm, Figure 3.25 shows the perspective view from a ground observer and finally 

using the Tohoku simulation data is Figure 3.26 that presents a comparison of 

simulated perspective views from ground-based imagers looking at airglow layer.





Figure 3.23. Orthographic camera projections of positive perturbations for: (left) 
temperature in blue, (center) CO2 radiances in gray + OH VER in green + OI VER in 
red (right) same as center but stretched in the vertical direction to better show vertical 
structure. The big cities seen in the center are Houston, TX on the coast and Dallas-
Fort Worth, TX. Simulated date: 2016/07/08 12:51:30 UTC.





Figure 3.24. Perspective camera projections of positive perturbations for: OH VER in 
green + OI VER in red. The camera is at an altitude of ～400 km with a track at ～11° 
North. The different images are different positions along its track, (left) approximately 
above the city of San Angelo, TX and (center) New Cordell, OK. The (right) image is 
an observation straight down (towards nadir). The big cities seen here are Dallas-Fort 
Worth, TX and Oklahoma City, OK. Simulated date: 2016/07/08 12:51:30 UTC.
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Figure 3.25. Perspective camera projections of positive perturbations for: OH VER in 
green + OI VER in red. The camera represents a human observer on Ely, IA looking 
towards the center of the storm in Iowa. (left) The average FOV of 100° is a good 
approximation of what the human eye would see (focused vision) if the airglow was 
bright enough. (center) A zoomed in view at 60° FOV. (right) An observer (or imager) 
on Madison, KS looking straight up: while an all-sky imager would be able to capture 
the entire 180º FOV, a human or standard camera would see closer to 100° FOV of the 
sky, in this case, the smallest circle plotted. Simulated date: 2016/07/08 12:51:30 UTC.


Perspective camera projection is useful for simulating different instruments FOV in the 

3D environment. We can readily create visualizations that clearly show the data and 

instruments, relation in 3D space and relative to the globe, such as to create fly-over 

imagery for satellites and evaluate perspective distortions even before synthesizing 

imagery from simulated data.


From Ely, IA towards Iowa

100º FOV (human observer)

From Ely, IA towards Iowa

60º FOV (zoomed in observer)

From Madison, KS straight up

180º – 100º FOV

180º

170º
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Figure 3.26. Perspective camera projections of positive and negative perturbations of 
OH(3,1) and O(1S) from MAGIC and O(1S) 557.7 nm and O(1D) 630.0 nm from 
GEMINI. The observer is on the coast of Japan looking straight up (towards zenith) 
with a FOV of 160°. We have included stars (celestial sphere) and the position of the 
Sun; the latter can be seen close to zenith, which means that a CCD imager would be 
completely saturated in the daylight. (Note that we only consider nightglow imaging). 
Simulated date: 2011/03/11 16:21:22 LT for MAGIC and 14:46:23 LT for GEMINI; 
sunset was at 5:32 pm that day.


3.3. 	Map projections


	 So far, we have described the tools we developed for 3D visualization. These exist 

in the 3D space that is always defined as a 3D Cartesian system, the world coordinates. 

The great advantage of doing so is that data does not need to be projected and can be 

presented in true scale. This applies as well to the globe itself. The Earth, being 

approximately an oblate ellipsoid of revolution, is not a developable surface, meaning it 

cannot be represented without distortion as a continuous flat surface. The 3D globe 

representation is in fact the only one that preserves distances, directions, shapes and 

areas. But this being a true 3D object means that physically presenting data may be 

limited to cases where a 3D “globe” spherical projector may be used, which may or may 

OH(3,1) MAGIC O(1S) MAGIC O(1S) GEMINI O(1D) GEMINI
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not be suited to the information we are trying to visualize, such as small regional detail 

or several layers of information that also extend in spherical radii above the surface. 

Using a 3D computer renderer is a much more fruitful and practical case and it is 

commonplace for familiar mapping software such as Google Earth or Systems Tool Kit 

(STK); in this case it is effortless to layer projected data that is shape- and area-

preserving with great precision thanks to the current satellite mapmaking capabilities. 

This is an example of a perspective map projection and it’s the one most people are 

familiar with; a photograph from space, aerial photography or a zoom-in on Google 

Earth are all perspective projections. This concept is not unlike the perspective camera 

projection we discussed previously. Conversely, if we place the observer at infinity then 

we achieve the orthographic map projection, a concept akin to the orthographic camera 

projection. These projections are also azimuthal map projections, which means all 

directions from the center point are straight lines and are accurate. See Figure 3.27 for 

an overview of how the perspective map projection changes with the position of the 

viewer.





Figure 3.27. Overview of perspective map projections. Source: Wikipedia, by Cmglee - 
Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=38583511.
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We can in fact create a perspective map projection by rendering the globe in 3D and 

placing the camera at a vantage point using the perspective camera projection. There 

are two implications for this: firstly, it requires a 3D rendering environment and plotting 

onto the globe, and secondly, there is no precise mapping between the data and the 

pixels show on screen. This approach is necessary when doing perspective projections on 

3D volumetric visualizations, as we saw in Section 3.2. However, each map projection 

has a geometric definition that relates pixels in a 2D image to exact locations on the 

map. If we recall from Chapter 2, synthetic images are described by their pixel 

coordinates  and are related to geodetic positions on the atmospheric layers, 

therefore we can choose to project them onto any suitable map projection. This process 

of mapping the integrated data in  and  pixel coordinates to the globe in latitude and 

longitude coordinates is called unwarping. The choice of map projection depends on the 

properties that matter the most for the unwarped data. The three most important 

properties of map projections are:


• Conformal which preserves angles locally (i.e. 90° angles between parallels and 

meridians) which in turn means shapes will be accurate.


• Equal-area which accurately portrays areas in relation to others everywhere on 

the map.


• Equidistant which accurately portrays distances between one or more points on 

the map depending on the type of projection.


Efforts to satisfy these properties have lead to the creation of dozens of map projections 

throughout history, including many arbitrary projections to suit the cartographer’s need. 

In general, the type of projection to use will depend on two things: the shape and size of 

the area (i.e. is it a long-stretching, small or large area?) and the property that is more 

relevant to the data (i.e. equal-area for densities or conformal for shape comparison). 

This brings us to the particular needs of AGWs captured in images, whether synthetic 

or real data. By and large the most important property is the accurate measurement of 

(x̃, ỹ)

x̃ ỹ
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distance, therefore an equidistant projection will be most suited. That being said, equal-

area projections are useful for certain parametrization of AGWs in global circulation 

models, such as comparing regional hot-spots across the globe or mapping momentum 

fluxes. Figure 3.28 shows two types of momentum flux plots, the ones from a high-

resolution model by Wedi, Polichtchouk et al. (2020) that are using equal-area maps and 

the ones from observational data by Zhou, Scaife et al. (2013) which are lower resolution 

satellite measurements and projected onto an equirectangular map. Regional hot-spots 

can be directly compared across the globe in the equal-area map, so we can accurately 

compare the area of a hotspot in the equatorial region to that of those at higher 

latitudes. The same cannot be done for the equidistant map, where areas are distorted 

and enlarged towards the poles. Even so, equirectangular maps, or cylindrical in general, 

are far more common for global studies, and the lack of general discussion on map 

projections suggests there is no purposeful advantageous use of map projections 

properties. Perhaps this is also due to the properties of the equirectangular map being 

orthonormal which means parallels and meridians have equal spacing and cross at a 

right angles. This orthonormality allows for the description of map and data in terms of 

zonal and meridional directions in uniform angle units; however, it is important to 

understand that distortion will always increase towards the poles. While the map 

coordinates themselves are orthonormal, the data projected onto them is not at true 

scale and is affected by the distortion. This distortion will play an important factor in 

any spectral analysis of data that has been projected, thus decompositions in native 

coordinate systems may be preferred.
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Figure 3.28. Literature comparison: global map projections for momentum fluxes. 
(Left) zonal-mean absolute gravity wave momentum flux [mPa] on an equal-area map 
projection (Wedi, Polichtchouk et al. 2020). (right) Model and satellite-derived absolute 
gravity wave momentum fluxes on an equirectangular map projection (Zhou, Scaife et 
al. 2013).


In Figure 3.29 we have taken a plot directly from Sassi, Richter et al. (2010) in the 

equirectangular map projection and reprojected it onto an equal-area projection, the 

Galls-Peters projection. This is a plot of frontogenesis thresholds across the globe for 

WACCM, a global circulation model, that are used for gravity wave parametrization. 

This plot features a lot of regional hotspots in the high-latitudes, where distortions are 

the greatest. For comparison examine the two large features across the Bering Strait 

how their areas are more comparable in the equal area map. A useful tool for visually 

representing these distortions are the Tissot’s indicatrices of deformation. These are 

connected to the metric of each map coordinate, in other words, it is directly related to 

the measure of distances at each coordinate. By obtaining these distances for a small 

value, such as 0.1°, an ellipse can be created and then drawn at a larger scale where its 

axes and rotation demonstrate the deformation as deviations from circles; see Goldberg 

and Gott (2006) for an expansion on this topic, including extra deformation parameters. 

Figure 3.30 shows the corresponding deformation indicatrices for the projections in the 
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preceding figure. It is very evident that both of these projections have high distortions 

near the edges, a trait shared by all cylindrical projections.


 


Figure 3.29. A comparison between an equirectangular map projection and an equal-
area map projection with data. (left) is a gravity wave frontogenesis threshold plot for a 
global circulation model, WACCM, in an equirectangular map projection (detail from 
Richter, Sassi et al. 2010). (right) Same plot but reprojected onto the Gall-Peters equal-
area projection, a map projection that greatly distorts shapes but accurately portrays 
sizes across the globe.


 


Figure 3.30. A comparison between an equirectangular map projection and an equal-
area map projection with their Tissot’s indicatrices of deformation: (left) 
equirectangular (also equidistant cylindrical or, in this case plate carré) that has been 
shortened on the horizontal axis and (right) the Gall-Peters equal-area.
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	 For most equator-centered maps the high latitudes will show large distortions. 

For this reason it is commonplace to use azimuthal projections for polar regions. As 

before, a choice must be made for the most appropriate azimuthal projection; we’ve 

already shown examples of these in Figure 3.27. Using the same frontogenesis example 

as before, we now project the data onto an equidistant, equal-area and conformal 

azimuthal projections in Figure 3.31 and their corresponding Tissot’s indicatrices in 

Figure 3.32. We can see near the North Pole the deformation is minimal for all three 

projections. The equidistant plot has the property that all the distances from the center 

point are great circles (or geodesics for ellipsoids) and are correct. The equal-area 

projection benefits are minimal here since most of the frontogenesis features are close to 

the center. Equal-area maps are most relevant for whole world comparisons, so studies 

focusing only on regional AGWs may not benefit from them, where conformal and 

equidistant options more useful.


  


Figure 3.31. A comparison between azimuthal map projections with data: (left) 
azimuthal equidistant, (center) Lambert azimuthal equal-area and (right) stereographic 
which is conformal. Adapted from,Richter, Sassi et al. (2010).
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Figure 3.32. A comparison between azimuthal map projections and their Tissot’s 
indicatrices of deformation: (left) azimuthal equidistant, (center) Lambert azimuthal 
equal-area and (right) stereographic which is conformal.


3.3.1. Projecting imaging data


	 The previous consideration will inform what types of map projections are most 

useful and relevant to AGWs scales for MAGIC/GEMINI results. A good candidate 

relevant for all-sky imager data is the Mercator map projection that was discussed in 

Section 2.5, a conformal map projection that is useful in the definition of rhumb lines 

for calculating distances on the surface of an ellipsoid. As we saw before, the lines-of-

sights for imagers have constant azimuth angles which therefore implies the use of 

rhumb lines is accurate.  Therefore using the Mercator projection seems like the natural 

choice, and it has two positive characteristics: E-W and N-S cardinals are aligned with 

the  and  axis respectively and secondly all straight lines correspond to arc-lengths. 

The major concern is the fact that the spacing of the coordinates is not uniform, a 

requisite for spectral analysis. Another possibility is to use a map projection that works 

naturally with the airglow-imager geometry. Recalling again Section 2.5 which talks 

about calculating arc distances for mapping the airglow from an origin point (imager’s 

location), then two possibilities arise: mapping with rhumb lines as we just discussed, or 

x y
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mapping with great circles or geodesics. The former gives rise to the loximuthal 

projection, a pseudocylindrical projection, and the latter is a fundamental property in 

any azimuthal projection, which we have already discussed.  There is an additional 

relevant projection, the gnomonic projection, where great circles are all straight lines; 

this projection only exists for a spherical representation of the Earth. We can examine 

the associated distortions at mid-latitudes for both the loximuthal and gnomonic 

projections in Figure 3.33. As expected, the loximuthal projection has rhumb lines 

aligned with parallels and meridians but it shows greater distortions between parallels. 

In contrast, the gnomonic projection has great circles as straight lines and shows little 

deformation within the chosen region. It should be mentioned that for points around the 

equator most projections will be excellent choices for preserving all of the properties. To 

satisfactorily decide upon a choice of projection we still need to fundamentally 

understand what we are trying to plot; this has been the recurring factor throughout 

this discussion. AGWs and related phenomena are modulated by winds and the Coriolis 

force which have a zonal dependency related to the Earth’s rotation. As such, there is no 

significance in describing AGWs in terms of great circles or geodesics; it is more 

meaningful to have them aligned with the parallels. If this becomes our design 

parameter then any cylindrical or pseudocylindrical projection with low regional 

distortion will accurately represent meridional features of the AGWs and reasonably 

characterize spectral analyses.


92



Chapter 3 – Methods II                                                                                                                                           

  


Figure 3.33. A comparison between the loximuthal map projection (left) and the 
gnomonic map projection (right) with their Tissot’s indicatrices of deformation, centered 
at (40°N, 90°W). Plotted lines are distances of 1000 km from the center point: rhumb 
lines (blue lines) and great circles (red lines).


	 In an effort to better understand the merits of cylindrical map projections in 

comparison to the loximuthal projection, Figure 3.34 shows contours of 3 distortion 

parameters in percentage: parallel, meridian and area. These distortions have a direct 

impact on the characteristics of any feature that might be present in our data. We can 

see that overall the loximuthal projection has the lowest distortion values, except for 

area. If conserving equal-area within the map borders is not a concern then loximuthal 

will be the choice with lowest overall distortion. However, loximuthal is not a true 

cylindrical map projection and has all types of distortions. The angle deviation error 

introduced by it is effectively analog to using an azimuthal or conic projection in terms 

of obtaining meridional/zonal components; now we’ve come full-circle to choosing again 

between these projections. It should be evident at this point that using non-equal-area 

cylindrical projections will yield accurate equidistant meridional scales, but obtaining 

the equivalent for parallel scales is not possible in any of these map projections.
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Figure 3.34. A comparison of cylindrical and the loximuthal projection and their 
distortions around mid-latitudes. Contour plots represent the percentage of distortion 
for the measure shown on the left. Tissot’s indicatrices of deformation are also plotted at 
10° latitude/longitude intervals. The blue lines are rhumb lines with a length of 1000 
km. The loximuthal projection is the only one that has angle distortions, implied by the 
shape of the bounds of the plot which are the [110°W, 70°W] meridians. All projections, 
except for Mercator, have their standard parallels set at the latitude of the center of the 
data (40°N); for Mercator the standard parallel is set at the equator by definition.
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Figure 3.35. A comparison of map distortions for mock wavefronts with 45°-from-
North orientation on different map projections around mid-latitudes. A MAGIC ideal 
concentric simulation is also plotted at (40°N, 90°W).


	 We can draw two conclusions from the previous discussion: azimuthal and conic 

projections are great at preserving shapes and scales even at comparable large distances 

from center; secondly, cylindrical projections align parallels and meridians but contain 

significant distortions at medium distances from center. Refer to Figure 3.35 for a 

comparison using mock wavefronts to show distortion along the meridians. However 

cylindrical projections may better be suited for spectral analyses. This is in line with our 

equal-area cylindrical equidistant cylindrical Mercator

loximuthal Lambert azimuthal equal-area Lambert conformal conic
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opening statement where we referred to two types of visualizations, those suited for 

mathematical analyses and those visualizations that preserve morphology or shape. In 

case of the Earth, if our mathematical analyses where done in spherical or even 

ellipsoidal coordinates, then the need for map projections is unnecessary and we could 

do those separately from the shape-preserving visualizations. For wave analyses, it is 

clear, we have to find a compromise, and the loximuthal projection is in fact a 

compromise map projection that is valuable for wave analyses near the center of the 

projection.


3.3.2. The loximuthal projection


	 We have discussed the loximuthal projection in the previous section and it was 

implied back in Section 2.5 when obtaining the equations for distances over 

loxodromes or rhumb lines. This is a pseudo-cylindrical compromise projection that may 

suit wave analysis of atmospheric data, since it preserves East-West alignment and angle 

distortions are small around the center coordinate. As expected, this map projection is 

constructed by calculating the shortest  rhumb lines from a center point. Figure 3.36 5

shows the wold map as projected in loximuthal coordinates. In contrast to other 

cylindrical projections, there is only a standard parallel to set, which is also the center 

of the coordinates. Different choice of standard parallel changes the shape and 

distribution of the graticule, as shown in Figure 3.37. Therefore, this projection is only 

useful for wave analyzes for a region around the choice of center coordinates. We can 

also see the angle and scale distortions follow the same deformation, making it easier to 

account for these in analyses, either as compensation in the found parameters or straight 

as an inherent error. This is the projection we have chosen for unwarping MAGIC data 

that is originally in Cartesian coordinates, and re-interpret it as ellipsoidal shells.

 The shortest rhumb line is the one that ends at the 180° meridian from the center coordinate. Otherwise this 5

projection would allow for infinite extension through infinite rhumb lines.
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Figure 3.36. The loximuthal projection and its Tissot indicatrices of deformation, 
centered at 90°W. (left) Standard parallel is the equator. (right) the standard parallel is 
set at 40°N.





Figure 3.37. Loximuthal map projection with different standard parallels and aligned 
at 90°W longitude. Blue contours are maximum/minimum scale deformation and red 
contours are right-angle deviation. The shape of the map itself changes with different 
choice of standard parallel.


3.3.3. Projecting the MAGIC Cartesian grid


	 Local simulations with the MAGIC model are based on 3D Cartesian coordinates 

which means that there will always be inherent errors when mapping into geodetic 

standard parallel = 20°
standard parallel = 40°

standard parallel = 60°
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coordinates. MAGIC model inputs (such as background winds) are usually aligned East-

West for the -coordinate and South-North for the -coordinate. For this reason the 

loximuthal projection becomes a viable option for mapping MAGIC results. We explore 

the effect of using different map projections to unwarp MAGIC in Figures 3.38 and 

3.39. Note that while the unwarping projections are different, all of the plots are 

projected onto a loximuthal projection. We additionally show in these the effects of 

choosing different center coordinates for each projection.





Figure 3.38. A comparison of different unwarping projections for MAGIC data. An 
ideal concentric simulation is used. Two center coordinates have been used for each 
projection: the middle coordinates and the bottom left of the MAGIC domain.


x y

Mercator - center Mercator - bottom left loximuthal - center loximuthal - bottom left

Equidistant cylindrical - 
center

Equidistant cylindrical - 
bottom left

Lambert equal-area 
azimuthal - center

Lambert equal-area 
azimuthal - bottom left
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Figure 3.39. A comparison of different unwarping projections for MAGIC data. An 
ideal linear simulation is used. Two center coordinates have been used for each 
projection: the middle coordinates and the bottom left of the MAGIC domain.


It is evident from these plots that the mapped results can vary greatly in shape and 

position depending of not only the type of projection, but also the place of the center 

coordinates. The Mercator projection, for example, makes all the scales be smaller 

everywhere, introducing a base error everywhere. Note that the loximuthal-center 

projection appears undistorted; this happens when the unwarping projection is the same 

as the map plotting projection. With this reasoning, it is worth unwarping and plotting 

MAGIC data in the same projection to avoid compound errors. Another example is 

shown in Figure 3.40, where a temperature perturbation slice at 250 km height is 

shown with angle and scale deformation contours. We include further deformations in 

Figure 3.41. These deformations are calculated by MATLAB by perturbing locally the 

map projection and measuring the deviations from true distances.


Mercator - center Mercator - bottom left loximuthal - center loximuthal - bottom left

Equidistant cylindrical - 
center

Equidistant cylindrical - 
bottom left

Lambert equal-area 
azimuthal - center

Lambert equal-area 
azimuthal - bottom left

99



Chapter 3 – Methods II                                                                                                                                           

  


Figure 3.40. Three MAGIC simulation outputs, unwarped as a loximuthal projection 
and plotted onto a loximuthal map projection. (left) CO2 vertical BWT perturbations 
with right-angle deviation contours shown in pink and maximum-to-minimum 
deformation ratios shown in blue. (center) OH(3,1) vertical IVER perturbations with 
parallel scaling contours shown in pink and meridian scaling shown in blue. (right) 
Temperature perturbations at 250 km height. Simulated data: Midwest thunderstorm 
2016/07/08 5:15:12 UTC.


     





Figure 3.41. Distortions of the loximuthal unwarping of a MAGIC Cartesian grid 
centered at coordinates (40.82°N, 93.57°W). Low level contours of the MAGIC 
temperature perturbation data are shown for reference. Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.
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Since the meridional deformations are very small and this projection is always aligned 

with the East-West, the accuracy of zonal (East-West) measurements is very good. 

Furthermore, meridional (South-North) measurement errors can be calculated as shown 

in Figure 3.41 for all the MAGIC domain. This error can then be properly propagated 

with spectral analysis confidence intervals to show a better estimate of the obtained 

wave parameters.


3.4. Example: combining all the visualization tools


	 In this section we will provide an overview of different cases for simultaneously 

utilizing different visualization tools for MAGIC and GEMINI simulation results. The 

first and foremost information that should be conveyed is the overall structure, or 

morphology, of the phenomena being studied; this includes a sense of its scale, domain 

and a clear perception of what type of wave structure it is. An example of this is shown 

in Figure 3.42, where a timestamp of MAGIC temperatures are shown for large scales 

in the 3D isosurface plot; along with it there are the more familiar slices that can 

provide a direct comparison with similar studies. If appropriate, grids, colorbars, labels 

and dates can be added to clearly quantify the scales. The 3D isosurface often helps 

validate the domain and dynamics of the simulation with a quick glance, while the slices 

convey the information of the magnitude of the perturbations, as well as the components 

of the wave parameters. This is a good start of a comprehensive analysis, but it is 

focused at the particular scales picked by the choice of isosurface.
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Figure 3.42. (background) Volumetric visualization (isosurface) of positive temperature 
perturbations of 3D modeled data above the US midwest. The simulation source is a 
large group of convective thunderstorms. (foreground) 2D slice through the middle 
latitude of the same 3D data shown in 2 distinct colormaps. (top) Jet colormap is a 
community standard for temperature. (bottom) A grayscale-based colormap may better 
represent positive and negative perturbations.


We present in Figures 3.43 - 3.47 showcases of camera projections in combination 

with synthetic imaging and map projections. Figure 3.43 shows isosurfaces of OH 

airglow perturbations that are both plotted on the exact same 3D space; green are the 

positive perturbations while blue are the negative ones. The left image is shown with an 

orthographic camera projection from a high altitude while the right circular image is a 

perspective camera projection where the camera is at the same location as the imager of 

Figure 3.44, looking straight up, aligned to North and with a 160° FOV. Compare the 

3D perspective view to the simulated image in Figure 3.44. The data comes from a 

tsunamigenic OH airglow response modeled in MAGIC featured in Inchin et al. (2020). 

Figure 3.44 left is a 3D sketch of the LOS intersections of a ground-based imager (at 

the location of the red dot) with the airglow layer (yellow shell) where the parula colors 

correspond to individual pixels and their corresponding FOV angles with the 0° at 

2D slice: grayscale

3D isosurface

2D slice: jet
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zenith (center). The 2D unwarped image is the simulated observation in an orthographic 

map projection. The data comes from a tsunamigenic OH airglow response modeled in 

MAGIC featured in Inchin et al. (2020).


  .


Figure 3.43. Isosurfaces of OH airglow perturbations due to a tsunami off the coast of 
Japan. Green are positive perturbations while blue are negative ones. (Left) 
Orthographic camera projection from a high altitude. (right) Perspective camera 
projection from a ground-based imager (same location of Figure 3.44). Note that at 
the time of the simulation the Sun is close to zenith and would have saturated a real 
CCD imager. Data provided from Inchin, Snively et al. (2020).
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Figure 3.44. Synthetic imaging off the coast of Japan. (left) 512×512 pixels and 160º 
FOV synthetic image of a modeled OH airglow tsunamigenic response unwrapped onto 
an orthographic projection. (right) Visualization of the CCD pixel intersections at the 
airglow layer. A similar version appears on Inchin, Snively et al. (2020).


	 Now we use another simulation along with synthetic images this time from an 

imaging instrument onboard a satellite. Figure 3.45 are images of CO2 BWT both 

plotted on the same 3D space; they represent positive perturbations. The left image is 

shown with an orthographic camera projection from a high altitude while the right image 

is a perspective camera projection where the camera is onboard a satellite looking 

straight down with a 48.95º FOV. Compare the 3D perspective view to the simulated 

satellite image in Figure 3.46 with approximated AQUA satellite values (Aumann, 

Chahine et al. 2003). The data comes from modeled CO2 BWT disturbances due to a 

convective thunderstorm from MAGIC featured in Heale et al. (2019). For Figure 3.46 

the background image is a 3D sketch of the satellite position (red dot) and attitude 

sphere (with pitch, yaw and roll guides) along with imager sensor checkerboard 

projections on the airglow layer (yellow shell). The 2D unwarped images are the 

simulated satellite observations along the track in orthographic map projections. The 

Orthographic view from space of 
mapped 3D ellipsoid-imager 

intersections

Synthetic image of 
MAGIC simulation
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data comes from modeled CO2 BWT disturbances due to a convective thunderstorm 

from MAGIC featured in Heale et al. (2019).


  


Figure 3.45. Isosurfaces of CO2 BWT positive perturbations due to a convective 
thunderstorm over the midwest. (left) Orthographic camera projection from a high 
altitude. (right) Perspective camera projection from an imager onboard a satellite with a 
48.95º FOV. Data from [Heale et al., 2019].
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Figure 3.46. Synthetic imaging from a satellite along-track. (left) Visualization of 
forward and backward facing CCD imagers with checkerboard pattern. (right top) 
Vertical integration of model output of CO2 BWT. (right bottom) Simulated satellite 
observation of nadir cross-track slabs using approximated AIRS satellite track values.


We finally show Figure 3.47 with 3D outputs from GEMINI of electron density plotted 

using point clouds; the red dot and arrows represent a single GPS receiver station with 

two different LOS. In this example we can see that while both 3D models are using an 

orthographic camera projection, one is plotted onto a 3D globe and the other onto a 2D 

plate carrée map projection.
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satellite velocity: 7.5 km/s
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Figure 3.47. 3D Point clouds representing the same electron density on the GEMINI 
domain (along magnetic lines). The arrows are two lines-of-sight for a GPS receiver. 
(left) Plot on a globe, (right) plot on a plate carrée (equirectangular) projection. Both 
(left) and (right) 3D models are plotted with an orthographic camera projection.
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Chapter 4


Results: line-of-sight effects and characterization


	 In the previous chapters, a foundational framework was laid for a systematic 

study of line-of-sight effects. Its main advantage being the scope of the coordinate 

transformations, which allow for freely placing instruments and data with accurate 

geometry and mapping. While a main effort of this thesis was spent in constructing 

bespoke tools needed for reconstruction of synthetic observables and quantitative 

mapping of 3D data, in this chapter we will pursue a case study to systematically 

characterize line-of-sight effects for a specific simulation. In doing so, we further 

establish the capabilities of the analysis code while also assessing observability effects on 

spectral analysis of unwarped imagery data. It was briefly mentioned in Chapter 1 the 

implications of off-zenith imaging; it leads to intensity modulations and scale filtering 

effects due to the oblique alignment or anti-alignment with wavefronts through a 

volumetric atmospheric layer. In this chapter we will further expand upon this concept 

by presenting results from a series of tests for imagers at different positions from zenith 

to extreme viewing angles. A power spectrum analysis will be used as the main gauge 

for characterization of scale filtering, while total intensity will be used to assess 

enhancements or cancelations.
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4.1. Case in study


	 As with the previous chapters, we will use data from the study case by Heale, 

Snively et al. (2019) due to its multilayered simulation of small-to-medium scale gravity 

waves over a large spatial extent for which we can apply our synthetic imagers and 

characterize line-of-sight effects. This simulation study models a large Mesoscale 

Convective System (MCS) in the Midwestern US on July 8th, 2016 that took place 

between 0 UTC and 6 UTC (7 pm to 1 am CDT local time). These types of deep 

convection systems are an important source of gravity waves that influence atmospheric 

circulation and reach altitudes up to the thermosphere (Holton, Haynes et al. 1995, 

Song, Chun et al. 2003). The simulation is first run on MAGIC with data inputs at the 

troposphere from the Next Generation Radar (NEXRAD) for thunderstorm reflectivity 

and Digital Precipitation Rate (DPR). Ambient winds are taken from MERRA-2 for 0 

km to 60 km and HWM08 for 60 km to 500 km, using the technique of Stephan and 

Alexander (2015). Neutral densities and temperatures are calculated from 

NRLMSISE-00. The resolution of MAGIC grid is 4×4×1 km ( × × ), temporal cadence 

of 60 s and centered around coordinates (40.83°N, 93.57°W) with a total domain 

extension of 2400×2400×500 km. MAGIC simulation results are then coupled with 

GEMINI to model the propagation through the ionosphere and thermosphere; GEMINI 

results will be addressed at the end of this chapter. For this particular study, we will 

focus on a single time step at 5:15:15 UT or at 341 frames into the simulation. At this 

time the sources are still actively generating gravity waves, and there has been 

significant interaction with the background atmosphere since the onset of the 

thunderstorm and start of the simulation. This allows for this particular time step to 

feature both smaller scales from instabilities and substantially linear large-scale waves. 

These can be seen in the 3D render of OH(3,1) isosurfaces of 10,000 photons/cm3 

perturbations shown in Figure 4.1. Smaller perturbations of 340 photons/cm3 are 

x y z
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shown in Figure 4.2 where the entire simulation domain can be appreciated. Note that 

both figures present the layer stretched by a factor of ten in order to enhance the 

vertical structure for better appreciation. The OH(3,1) airglow layer is thin in relation 

to the horizontal scales, where the layer thickness has a FWHM of approximately 8 km 

and the horizontal scales of several hundred kilometers. Furthermore, the vertical 

structure of the wavefronts within the airglow layer is at times very small, as is the 

depth of the layer itself; this has important implications for imaging at moderate FOV 

angles and leads to significant filtering of scales at larger FOV angles as discussed 

further down. For vertical scale comparison the CO2 BWT 3D render is shown in 

Figure 4.3 with a tenfold stretch as well. The vertical scales seen in the CO2 BWT are 

much larger; while the underlying waves have larger vertical scales than those seen in 

the OH(3,1) layer, the CO2 layer is also simply deeper than the OH layer. While this is 

expected for convectively generated waves, insight of the gravity waves’ vertical 

progression is not contained in single-layer mesospheric airglow observations unless 

viewed obliquely by multiple instruments for tomographic reconstruction (Hart, Doyle et 

al. 2012). The true scale of waves throughout the entire vertical domain can be directly 

assessed from the temperature isosurfaces, as shown in Figure 4.4. The obvious 

downside is that temperature over altitude is typically not an observable, and must be 

weighted over the depth of another quantity being measured, which is a feature inherent 

to the “flattening” of volumetric data when imaged. This clearly shows the biggest 

limitation for single-layer (or single-wavelength) imaging: the impossibility to measure 

three-dimensional structure without multiple oblique perspectives. However, models and 

visualization tools can fill the gaps and describe the evolution of the gravity waves both 

spatially and temporarily and, specifically, how they relate to our measured data.


	 The largest feature present in the simulation is the appearance of 3 main 

concentric sources of gravity waves that correspond to the three large convective cells 

seen in the NEXRAD data (not shown here). These concentric wavefronts will be the 
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testbed for our scale-filtering characterization. They retain both large-scale features as 

well as high frequency components, discernible within the same image. The largest 

wavefronts are seen propagating Northeast in semi concentric circles. With the assurance 

from the 3D renderings we know that they have very small vertical scales and we can 

expect imagers that view parallel to these Northeastward-propagating fronts will be 

enhanced. Moreover, because of the selfsame shallow depth, we expect the filtering of 

scales will be severe for imagers looking across the wavefronts.


 


Figure 4.1. 3D renders of OH(3,1) isosurfaces of ±10,000 photons/cm3 perturbations of 
the simulation data in two different views. Positive perturbation are shown in green 
colormap and negative in pink. The height axis has been stretched by 10 times (scale of 
10:1 vertical vs horizontal). Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 
UTC.
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Figure 4.2. 3D renders of OH(3,1) isosurfaces of ±340 photons/cm3 perturbations of 
the simulation data in two different views. Positive perturbation are shown in green 
colormap and negative in pink. The height axis has been stretched by 10 times (scale of 
10:1 vertical vs horizontal). Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 
UTC.


 


Figure 4.3. 3D renders of CO2 isosurfaces of ±11.4% perturbations of the simulation 
data in two different views. Positive perturbation are shown in grayscale colormap and 
negative in pink. The height axis has been stretched by 10 times (scale of 10:1 vertical 
vs horizontal). Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.
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Figure 4.4. 3D renders of temperature isosurfaces of ±10K perturbations of the 
simulation data in two different views. Positive perturbation are shown in blue colormap 
and negative in pink. No stretching has been applied (scales are true or 1:1 relative to 
each other). Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.


4.2. Filtering of scales and line-of-sight intensity enhancements


	 To understand how measured wave parameters may change purely due to line-of-

sight effects, we propose an analysis of the total spectral power (TSP) for unwarped 

images at the same location at different imager positions, thus changing the FOV of 

observations. Spectrum and periodogram analysis of airglow images has long been a 

useful tool for determining wave parameters (Hecht, Walterscheid et al. 1994, Garcia, 

Taylor et al. 1997, Coble, Papen et al. 1998, Sivjee 2005). The expectation is that as 

viewing angles become aligned with wavefronts there will be an increase in both 

intensity of the integration and sharpness of the spectral components. Thus, more 

filtering of scales leads to more distributed spectral power and less filtering leads to 

denser spectral peaks concentrating near certain wavenumbers. We first define the 

periodogram of an image, in a method similar to Jing, Kamalabadi et al. (2005): let 

 denote the unwarped  pixels image and  its windowed discrete Fourier 

transform, the windowed periodogram  is then defined as


I(x, y) n × n J(k , l )

S(k , l )
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	 	 (4.1)


and is a measure of the spectral density of the image with units of power/frequency. In 

the equation above  are the zonal and meridional wavenumber respectively,  is the 

number of data points in both dimensions,  a normalizing factor of the window  

defined as:


	 	 (4.2)


and  are the number of data points in each dimension. The empirically 

chosen window is the Hanning window (Coble, Papen et al. 1998), defined as


 	 	 (4.3)


The 2D implementation of this 1D window is just a revolution around the center of the 

image. The wavenumber vectors are defined as:


	 	 (4.4)


	 	 (4.5)


with units of cycles/km. The total spectral power is then the summation of the 

periodogram over all the wavenumbers:


S(k , l ) =
1
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	 	 (4.6)


The units of the total spectral power, in this case radiant power, are typically Watts 

(W) or decibel-Watts (dB) defined by the relation . We 

however will use units of photons2/km2 for spectral density (periodogram) and photons2 

as a proxy for total power to match the units of our IVER images. To perform this 

spectral analysis, a specific tool has been created to visualize and quantify the 

periodograms. Specifically, a peak-finding method has been incorporated to identify 

more prominent frequencies, up to a certain spectral energy threshold, from which wave 

parameters can be obtained. While the focus of this discussion is not the successful 

identification of waves and their characteristics, it is noteworthy to mention that such 

capability has been implemented and its total spectral power estimates will be used 

throughout this chapter, henceforth referred to as the “spectral analysis tools”.


	 For this study we have chosen to measure the total spectral power of all the 

frequencies that are bounded by the interval ±0.121 km–1, which correspond to 

wavelengths larger than 8.26 km. This latter value is approximately twice the resolution 

of the original data, which in turn is also the chosen resolution for the interpolation grid 

for all unwarped images. We have chosen the dimensions of the discrete Fourier 

transform (DFT) to only allow for twice the wavelengths ; this satisfies the Nyquist-6

Shannon sampling theorem. Additionally, by doing so, we have a measure of the 

prominence of observable wavelengths and how it changes for different viewing 

geometries. We will compare images that are unwarped at the exact same coordinates, 

but imaged from different positions. Firstly, let us exemplify this process with 5 trial 

synthetic OH(3,1) imagers, placed at the coordinates given in Table 4.1. All of the 

P = ∑
nx

∑
ny

S(k , l ) Δk Δl

 dB = 10 log10(Power/W)

 The small discrepancy between 8.26 km and 8 km comes from the fact that we ensure the size of the DFT is odd by 6

adding 1 more pixel if the original data has even dimensions. This is so that zero is exactly at the origin.
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imagers are 512×512 pixels and 180° FOVs. A center imager has been chosen to align 

with the center of the data at (40.82°N, 93.57°W). Four other imagers are placed on the 

cardinal positions at 500 km from the center.


Table 4.1. Location of test surface imagers from the center of the data. Distances are 
calculated as arc lengths over rhumb lines at surface height along azimuths: 0° 
(Northwards), 180° (Southwards), 90° (Eastwards), 270° (Westwards). The tilt angle to 
reference is the tilt (zenith) angle from the imager’s location to the center coordinates.


The imager location allows for all five imagers to contain within view the same square 

area at the center of the map, that is, a 500×500 km square that is unwarped at the 

mean airglow height of 87 km and will be used for spectral analysis. The resulting 

synthetic images are shown unwarped and plotted on the map in Figure 4.5; the 

vertical integration of the data is included for reference. All images have a fixed and 

shared color scale. It should be mentioned that all map plots correspond to the 

loximuthal map projection and all distances are calculated over rhumb lines. The 

simulated IVER images as seen by the synthetic imagers are shown in Figure 4.6. As 

was stated before, the spectral analysis is performed on a square area around the center 

of the image, and these are shown in Figure 4.7. At first glance, it is evident from 

these images how the loss of angular resolution impacts the detail on the images. Purely 

from a resolution standpoint there is indeed loss of spectral power associated with the 

Imager 
location

Coordinates

(lat, lon)

Meridional

shift

Zonal

shift

Tilt angle 
to reference

Center 40.82°N, 93.57°W 0 km 0 km 0°

North 45.33°N, 93.57°W 500 km 0 km 82.450°

South 36.32°N, 93.57°W -500 km 0 km 82.452°

East 40.82°N, 87.65°W 0 km 500 km 82.440°

West 40.82°N, 99.50°W 0 km -500 km 82.440°
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undersampled data. However, all of the off-center imagers have roughly the same angular 

resolution (see Table 4.1 for reference), yet they still exhibit important differences. 

While these may be subtle to the eye, they reveal the a priori expectation that wave-

aligned lines-of-sight provide enhanced detail. As mentioned before, there are two of the 

three semi-concentrical waves clearly visible in this area and they are propagating 

North-Northeast within the image. This should result in sharper images from the South 

and West imagers, and the opposite for the North and East ones. We can asses this 

supposition by looking at the frequency distribution of their periodograms of Figure 

4.8. First and foremost, the power values of the vertical or column integration are the 

smallest as they should be since it represents the shortest possible path of integration. 

Nevertheless, its spectral distribution is very similar to that of the central imager, albeit 

at a much lower spectral density. Next, the spectral analysis tools found that the highest 

TSP correspond to the South and West imagers as expected, while the North and East 

ones have the smallest values. Additionally, the narrowest distribution is found for the 

South imager, so much in fact that the spectral analysis tools where able to find a peak 

within its energy and frequency requirements (10% energy threshold and only 

wavelengths smaller than half the domain size); the tools present this information as a 

cross-hair with the computed orientation and proper wavelengths length. In this instance 

it found a wave with parameters:  = 159.98 km,  = 214.08 km with  =  = 

128.15 km, orientation angle of  = 37.77° and power ratio of  = 28.77%. With the aid 

of the cross-hair we can verify this wavelength to coincide with the peak-to-peak 

distance of the prominent perturbations at the center/top-right portion of the image.


λx λy λ λ2
x + λ 2

y

∠ P
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Figure 4.5. Five synthetic unwarped images of OH(3,1) IVER at 87 km from simulated 
ground imagers placed at five different locations looking straight up. Vertical integration 
of original data is included for reference. Center imager is at the center of the data at 
(40.83°N, 93.57°W). The other locations are 500 km away along parallel 93.57°W or 
meridian 40.83°N accordingly. Imagers are 512×512 pixels, 180° FOV. All images share 
color scale. Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.


North imager:

45.33°N, 93.57°W

South imager:

36.32°N, 93.57°W

East imager:

40.82°N, 87.65°W

West imager:

40.82°N, 99.50°W

Center imager:

40.82°N, 93.57°W

Vertical integration

118



Chapter 4 - Results                                                                                                                                           




Figure 4.6. Five synthetic images of OH(3,1) IVER at 87 km from simulated ground 
imagers placed at five different locations looking straight up. Center imager (a) is at the 
center of the data at (40.83°N, 93.57°W). Locations are 500 km away along parallel 
93.57°W or meridian 40.83°N accordingly, where: (b) is North, (c) is South, (d) is East 
and (e) is West. Imagers are 512×512 pixels, 180° FOV. Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.


(a)

(b) (d)

(c) (e)
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Figure 4.7. 500×500 km unwarped OH(3,1) IVER at 87 km detail images around 
center of data (40.83°N, 93.57°W) for 4 imagers and vertical integration. (a) vertical 
integration of original data; (b) center imager; (c) North imager, (d) South imager, (e) 
East imager, (f) West imager. All images have been unwarped at 4×4 km resolution. 
Imagers are 512×512 pixels,180° FOV and are pointed towards the center of data at 
mean airglow height. Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.


(a)

(b)

(c)

(d)

(e)

(f)
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Figure 4.8. 500×500 km unwarped OH(3,1) IVER at 87 km detail images around 
center of data (40.83°N, 93.57°W) and their periodograms of frequencies bounded by 
±0.121 km–1  (±8.26–1 km–1). (a) vertical integration of original data; (b) center imager; 
(c) North imager, (d) South imager, (e) East imager, (f) West imager. All images have 
been unwarped at 4×4 km resolution. Imagers are 512×512 pixels,180° FOV and are 
pointed towards the center of data at mean airglow height. Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.


(a)

(c)

(e)

(b)

(d)

(f)
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	 We now proceed to place the imagers on the same locations as before, but this 

time they will be pointing towards the center of the data at the OH(3,1) airglow height. 

It is worthwhile to validate the geometry of the code by plotting the interpolation 

coordinates as seen by the code itself. We show this in Figure 4.9. These 3D scatter 

plots show the data interpolation coordinates and imagers’ line-of-sight coordinates both 

in ENU, where the location of the imager is the ENU origin. These types of visual 

validations are an integral part of the synthetic imaging code and represent the results 

of the line-of-sight-ellipsoid intersection algorithm of Section 2.4.





Figure 4.9. Scatter plots of ENU coordinates for interpolation of 4 imagers pointed 
towards the center of data. Green colormaps correspond to the input coordinates, color 
coded with height; turbo colormaps corresponds to query coordinates color coded to 
distance from origin. The imager is 32×32 pixels and the data is at full resolution of 
4×4×1 km ( × × ). Line-of-sight coordinates beyond the horizon have been discarded.


North imager 
looking South

East imager 
looking West

South imager 
looking North

West imager 
looking East

x y z
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The synthetic unwarped and map-projected images are shown in Figure 4.10. The 

original IVER images as seen from the imagers are shown in Figure 4.11. As before, we 

analyze an overlapping center area of 500×500 km around the center coordinates and 

perform spectral analysis on it. These areas are shown in Figure 4.12 and their 

corresponding periodograms shown in Figure 4.13.





Figure 4.10. Four synthetic unwarped images of OH(3,1) IVER at 87 km from 
simulated ground imagers placed at four different locations with their zeniths aimed 
towards the center of the data (40.83°N, 93.57°W) at the mean airglow height. Locations 
are 500 km away along parallel 93.57°W or meridian 40.83°N accordingly. Imagers are 
512×512 pixels, 180° FOV. All images share color scale. Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.


North imager 
looking South

East imager 
looking West

South imager 
looking North

West imager 
looking East
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Figure 4.11. Four synthetic images of OH(3,1) IVER at 87 km from simulated ground 
imagers placed at four different locations with their zeniths aimed towards the center of 
the data (40.83°N, 93.57°W) at the mean airglow height. Locations are 500 km away 
along parallel 93.57°W or meridian 40.83°N accordingly, where: (a) is North, (b) is 
South, (c) is East and (d) is West. Imagers are 512×512 pixels, 180° FOV. Simulated 
data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.


(a) (c)

(b) (d)
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Figure 4.12. 500×500 km unwarped OH(3,1) IVER at 87 km detail images around 
center of data (40.83°N, 93.57°W) for 4 imagers and vertical integration. (a) vertical 
integration of original data; (b) center imager; (c) North imager, (d) South imager, (e) 
East imager, (f) West imager. All images have been unwarped at 4×4 km resolution. 
Imagers are 512×512 pixels,180° FOV and are pointed towards the center of data at 
mean airglow height. Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.


(a)

(b)

(c)

(d)

(e)

(f)
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Figure 4.13. 500×500 km unwarped OH(3,1) IVER at 87 km detail images around 
center of data (40.83°N, 93.57°W) and their periodograms of frequencies bounded by 
±0.121 km–1  (±8.26–1 km–1). (a) vertical integration of original data; (b) center imager; 
(c) North imager, (d) South imager, (e) East imager, (f) West imager. All images have 
been unwarped at 4×4 km resolution. Imagers are 512×512 pixels,180° FOV and are 
pointed towards the center of data at mean airglow height. Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.


(a)

(c)

(e)

(b)

(d)

(f)
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The results of this trial are much more noticeable in the unwarped images themselves. 

We see that by pointing the imager off-zenith the spatial resolution is not improved, but 

in fact is reduced. While the angular resolution remains the same, the large horizontal 

distance between the imager and the center of the data results in less resolution at 

layer’s height. This is particularly apparent for the North and East imagers, where the 

decreased spatial resolution compounds the filtering due to perpendicular imaging of the 

wavefronts. On the other hand the periodograms remain largely the same, but the total 

spectral power is lower, again, due to the diminished resolution. Another side-effect for 

the North and East imagers is the noticeable background brightness enhancements with 

respect to the others, which contributes to the perception of filtered scales. Another tell-

tale sign, is the very even distribution of frequencies in the periodogram.


	 We will now detail the last study case, in which we now plot 50 imagers on two 

different “tracks” that are aligned and anti-aligned with the wavefronts. Then we proceed 

to plot the total spectral power and total intensity for each imager as a function of 

distance and tilt angle so that we can better understand the associated line-of-sight 

effects. The two tracks we will use and their design parameters are shown in Table 4.2, 

with a sketch both in Figures 4.14 & 4.15. As before, all imagers are 512×512 pixels 

and 180° FOV. The unwarped area is 500×500 km around the center coordinates.
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Table 4.2. Design parameters of two tracks where simulated imagers are placed. All 
imagers have 512×512 pixel and 180° FOV resolution.





Figure 4.14. Two different perpendicular tracks with 50 locations where synthetic 
imagers are placed for a design study. Blue track is at 34.3° azimuth and red path is at –
55.7° (304.3°) azimuth. Both cross at center of data at (40.83°N, 93.57°W). Blue path 
was chosen as it is largely parallel to the wavefronts of the concentric wave highlighted 
by the orange circle; red path is, therefore, perpendicular to the wavefronts. First imager 
position is located at center of the dot of each arrow at –600 km loximuthal distance 
from center; last imager is at the bottom of the arrowhead. Total traveled distance is 
1200 km. Additionally, for this reason, distance intervals between each imager position 
are not uniform and are reduced for higher latitudes. Simulated data: OH(3,1) vertical 
IVER, Midwest thunderstorm 2016/07/08 5:15:12 UTC.


Track parameters SW2NE track SE2NW track

no. of imagers 50 50

azimuth 34.3° –55.7° (304.3°)

distance 1200 km 1200 km

start coordinates 36.36°N, 97.45°W 36.36°N, 97.45°W

end coordinates 45.11°N, 89.59°W 45.11°N, 89.59°W

SW2NE track:

parallel to 

wavefronts

SE2NW track:

perpendicular 
to wavefronts
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Figure 4.15. Four circles representing the 180° FOV of four imagers located at the 
beginning and the end of the two design tracks. Blue track is at 34.3° azimuth and red 
path is at –55.7° (304.3°) azimuth. Both cross at center of data at (40.83°N, 93.57°W). 
All four FOVs cover the sought area of 500×500 km in the middle, which is represented 
by the orange square. Simulated data: OH(3,1) vertical IVER, Midwest thunderstorm 
2016/07/08 5:15:12 UTC.


As seen in Figure 4.15, all imagers encompass the center area. The Southwest-to-

Northeast 34.3° track is codenamed SW2NE and the Southeast-to-Northwest –55.7° 

track is codenamed SE2NW. Figure 4.14 highlights the most prominent circular 

wavefronts present in the image. However the other source to the East, although minor, 

creates noticeable superpositions especially at the North of the image. This does not 

influence the phase clarity greatly, but it is important to keep in mind that it is far from 

an idealized case. So each track will have some parallel and perpendicular influence. All 

of the track results are presented in Figures 4.16-4.19. 
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Figure 4.16. Total spectral power (TSP) of fifty 500×500 km (4×4 km resolution) 
unwarped images of OH(3,1) IVER centered at (40.83°N, 93.57°W). (top) -axis is 
uniform distance in kilometers. (bottom) -axis is uniform tilt angles. Each data point is 
the TSP for frequencies bounded by ±8.26–1 km–1 in both axes. Simulated images from 
ground-based 512×512 pixel, 180° FOV. Tilt angle is measured between the imager’s 
zenith and the unwarped images’ center coordinates. Positive tilt angles correspond to 
imagers that are Southwest of the coordinates and negative when Northeast of them. 
Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.
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Figure 4.17. Total spectral power (TSP) change of fifty 500×500 km2 (4×4 km2 
resolution) unwarped images of OH(3,1) IVER from that of a ground-based imager 
located at 0° tilt from center of imaged data along two tracks: Southwest-to-Northeast 
track at 34.3° azimuth that is parallel to target wavefronts and Southeast-to-Northwest 
track at –55.7° azimuth that is perpendicular to target wavefronts. 0° tilt has both 
imager and center of data aligned at (40.83°N, 93.57°W). Each data point is the TSP for 
frequencies bounded by ±8.26–1 km–1 in both axes. Simulated images from ground-based 
512×512 pixel, 180° FOV imagers. Simulated data: Midwest thunderstorm 2016/07/08 
5:15:12 UTC.


	 From the total spectral power results we clearly see the difference between both 

tracks and wavefront alignments. The SW2NE track is wavefront-aligned for the first 

half and anti-aligned for the second half. The flatness of the wavefronts is responsible for 

the initial flat curve in the first 300 km. The subsequent sharp decline is also a 

consequence of it. On the other side, the SE2NW track becomes slowly wavefront-

aligned as it images the portions of the concentric wave that are propagating towards 

the Northwest, as it remains largely unaffected by the other sources. According to 
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Figure 4.17, the wavefront alignment provides a 25% spectral enhancement, while the 

anti-alignment causes a dip of over 50% at the larger FOVs.
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Figure 4.18. Total spectral power (TSP), total, max and min intensity (photons) of 
fifty 500×500 km (4×4 km resolution) unwarped images of OH(3,1) IVER centered at 
(40.83°N, 93.57°W) for two tracks. -axis is uniform distance in kilometers. TSP 
frequencies bounded by ±8.26–1 km–1 in both axes. Simulated images from ground-based 
512×512 pixel, 180° FOV imagers. Tilt angle is measured between the imager’s zenith 
and the unwarped images’ center coordinates. Positive tilt angles correspond to imagers 
that are Southeast of the coordinates and negative when Northwest of them. Simulated 
data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.
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Figure 4.19. Total spectral power (TSP), total, max and min intensity (photons) of 
fifty 500×500 km (4×4 km resolution) unwarped images of OH(3,1) IVER centered at 
(40.83°N, 93.57°W) for two tracks. -axis is uniform tilt angle. TSP frequencies bounded 
by ±8.26–1 km–1 in both axes. Simulated images from ground-based 512×512 pixel, 180° 
FOV imagers. Tilt angle is measured between the imager’s zenith and the unwarped 
images’ center coordinates. Positive tilt angles correspond to imagers that are Southeast 
of the coordinates and negative when Northwest of them. Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.
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	 The intensity results further dissect the differences in loss of resolution, spectral 

distribution and line-of-sight intensity enhancements. The first thing to note is that all 

of the plots follow opposite trends for each track, with the exception of the total 

intensity. This may seem like a surprising result at first. To explain this we must 

elaborate as to what the filtering of scales do in an ideal case. Recall Chapter 1, 

Figures 1.8 & 1.9, where we showed an ideal wave extended arbitrarily, then imaged 

with a synthetic imager. Let us now comment further on that ideal example. Figures 

4.20 & 4.21 show an ideal case of a nonlinear simulated wavefront, that has been 

replicated to further extend the domain.





Figure 4.20. 3D visualizations of the OH(3,1) emission layer from an ideal simulation 
imaged from different locations. The input data are 125 m resolution blocks of 
20×10×160 km ( , , ) that have been replicated along  and  to further extend the 
domain. (top) 3D slices of the wave structure. (bottom) LOS integration at the specified 
location: the data is displaced by ±200 km along . (left) Oblique LOS leads to scale 
filtering. (center) Imaging over the zenith provides the most straightforward depiction of 
the wave. (right) Parallel LOS produces clear enhancements. The intensity units are 
(photons·cm–3·s–1).


Off-zenith: 200 km Southwest On-zenith Off-zenith: 200 km Northeast

x y z x y

x
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Figure 4.21. 1D plot of the structures shown in Figure 4.20. Using a slice of the 3D 
data, the domain is extended up to 2000 kilometers to further enhance the cancelation 
effect that happens when the LOS aligns (or not) with the wavefronts. Significant 
filtering happens for anti-alignment.


Shown in Figure 4.20 are three identical blocks that are placed at different locations 

from the synthetic imager. Left block is placed at 200 km West, center block is aligned 

at zenith, and right block is placed at 200 km East. It is worth noting that these 

displacements fall within the trial tracks used above. The 3D slice plots at the top of 

Figure 4.20 (these are actually caps to isosurfaces not shown) show the shape of the 

wavefronts, where it is easy to imagine and trace how significant of an impact line-of-

sight alignment can have. This is greatly evident in the synthetic images. Furthermore,  

in Figure 4.21 the blocks are replicated even farther, 2000 km exactly. This is 

approximately the diameter of the domain for a 180° FOV imager at 87 km; see Figure 

1.7. We can deduce three things for the anti-alignment from these plots:


• the cancellation effect due to anti-alignment is more severe than the 

enhancement,


• the total intensity is actually increased for the anti-alignment due to less “gaps” 

being present, and
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• wave spectral peak of interest is also reduced as is evident from the diminishing 

perturbations as the anti-alignment becomes predominant.


With these results in mind we can now explain the overall intensity enhancements 

present in the unwarped images of the first two trials. Furthermore we can also explain 

the opposite relationship between spectral power and rising total intensity of Figures 

4.18 & 4.19. As the anti-alignment becomes larger, the spectral components are 

reduced, but the total intensity keeps rising. Similarly, the maximum intensity plot 

largely aligns with the shape of the TSP. This is due to the fact that sharper and clearer 

intensity peaks lead to narrower and more energetic frequency peaks, which contribute 

more to the TSP. The same can be said for the minimum intensity plot. These ones have 

a smaller intensity range than the maximum intensity, but this is due to the background 

intensity being integrated as well; a more even spread between min/max would be 

present if we were to remove the background integration. While all these conclusions are 

clear-cut for the SW2NE wavefront-aligned track, less is clear for the other one. Two 

situations of note arise: firstly, the maximum and minimum intensity plots peak right 

before the TSP does. This could imply that intensity peaks happen before optimal 

viewing angles. Secondly, while the TSP rises, increasing the spectral components of the 

image, the total intensity never goes down. So far we have suggested there is a 

relationship between enhanced spectral components and enhanced intensity for line-of-

sight effects, but this last result suggests that they may be independently characterized. 

However, this may be simply due to the fact that the other gravity wave sources are, in 

fact, skewing the results significantly. The SE2NW track starts aligned to this source, 

and becomes anti-aligned about two-thirds of the way, which would coincide with the 

max/min intensity peak. This is a probable cause for the continued rise of the total 

intensity plot. The along-track slices in Figures 4.22 & 4.23 provide a better insight 

into the shapes of the wavefronts and the paths of integration revealing that the 

wavefronts are highly vertical in the analyzed ±500 km region for the SE2NW track.
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Figure 4.22. Slices along the SE2NW (–55.7°) track. (top) Cartesian slice of original 
MAGIC data (ratio 30:1 vertical:horizontal). (bottom 3) ENU slices and positions of the 
50 surface imagers and 256 lines-of-sight of three of them.
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Figure 4.23. Slices along the SW2NE (34.3°) track. (top) Cartesian slice of original 
MAGIC data (ratio 30:1 vertical:horizontal). (bottom 3) ENU slices and positions of the 
50 surface imagers and 256 lines-of-sight of three of them.
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4.3. Line-of-sight effects for satellites and O(1D)


	 So far, we have studied the line-of-sight effects present in the OH(3,1) airglow 

layer. One of the defining characteristics of the imager-airglow relationship for this layer 

is the fact that it is the lowest observable layer from ground-based imagers. For large 

vertical wavelengths AGWs, this distance between imager and layer becomes crucial. 

Figure 4.24 shows imaged gravity waves from imagers at different layer distance.





Figure 4.24. Line-of-sight integrations of a (left) ground- and a (right) satellite-based 
imager at 400 km height at two different times from the onset of a MAGIC OH(3,1) 
airglow response due to a tsunami. The results are presented as perturbations to the 
background mean. Due to the larger coverage of the satellite imager FOV at the airglow 
height, more wavelengths are observed and available for analysis.
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We mentioned in the previous section that while the angular resolution of the imager 

does not change, the location of the intersection of the layer will ultimately determine 

the imaged spatial resolution of such layer. The extreme case of this would be limb-

scans, where small angles may represent several hundreds of kilometers of horizontal 

layer integration. The satellite imaging in Figure 4.24 has lower angular resolution 

because of its greater distance to the layer. This in turn minimizes its sensitivity to line-

of-sight effects for large vertical wavelengths. There are cases when this is opposite, such 

as Rayleigh waves with large horizontal wavelengths that can be measured by GPS 

networks (Inchin 2020).


	 Beyond the OH(3,1) airglow simulation products from MAGIC discussed so far, 

we also have other observables available, namely CO2 BWT, which was already shown 

at the beginning of this chapter, and O(1D) and O(1S), the redline and greenline airglow 

respectively, as GEMINI outputs. Both the redline and greenline were coded as part of 

this thesis as a supplemental capability for GEMINI. The necessary chemistry and 

reaction rates are based on the work of Witasse, Lilensten et al. (1999). While this 

chemistry model, in its current GEMINI implementation, needs further validation, some 

preliminary results are presented here. Specifically the redline is of interest given the 

existence of imagers and particularly the ones available as comparison to the data 

presented in the previous section. The CO2 BWT data available is from the AIRS 4.3  

BWT, which was mentioned in Chapter 1, and is collected onboard the AQUA satellite 

at 725 km mean orbital height. The redline peaks in the F-region of the atmosphere at 

around 250 km and is observed by ground-imagers or satellites. Both of these 

observables, therefore, are less susceptible to line of sight effects at extreme FOVs. 

Effectively, only mild intensity enhancement due to the van Rhijn effect occur and are 

usually accounted for as part of the background removal. Nevertheless, we present the 

imaging capabilities for these observables.


μ

141



Chapter 4 - Results                                                                                                                                           




Figure 4.25. Scatter plots of ENU coordinates for interpolation of three cross-track 

slabs of lines-of-sight for a satellite at 725 km height as it moves Northwards looking 

through a CO2 BWT layer that spans 0 to 100 km height from the surface of the Earth. 

Green colormap correspond to the input coordinates, color coded with height; turbo 

colormap corresponds to query coordinates color coded with radial distance from origin.


	 Figure 4.25 shows the scatter plots of the interpolation coordinates for 

validation for the AIRS synthetic images simulation (Aumann, Chahine et al. 2003). As 

usual, the interpolation coordinates are in ENU centered at the imager, so the layer 

appear to move with respect to the imager. The mean peak intensity for CO2 BWT is 

around 37 km height, with the layer extending up 60 km height, which is at a 

sufficiently large distance from the imager so that line-of-sight effects are small. The 

synthetic images are shown in Figure 4.26 for 3 satellite tracks, zonally shifted by 

±500 km. Note that the resolution along-track is limited by both the satellite’s velocity 

of 7.5 km/s and the exposure cycle cadence of 2.67 s as it scans across track. We can 

readily appreciate the subtle peak enhancement that occurs for the center and right 

tracks, where the lines-of-sights are aligned with the Eastward propagating waves. There 

is also a slight resolution degradation for the left track and partially for the center track 

due to the anti-alignment of the fronts. While these effects will mostly be noticeable and 

measurable for clear AGWs events, these line-of-sight effects might explain why the 
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AIRS data looks so filtered at medium viewing angles, which correlate with 

perpendicular wavefront intersections; see Figure 4.26.





Figure 4.26. Simulated images of CO2 BWT as seen by an imager on board a satellite 
with parameters: 725 km height, 7.5 km/s orbital velocity, 14.4° azimuth track, 2.67 s 
time between exposures, 512 cross-track pixels and 48.7° FOV. (left) track shifted by 500 
km East. (center) original track through center of data. (right) track shifted by 500 km 
West.


 


Figure 4.27. AIRS Comparison of simulated images of CO2 BWT as seen imaged by an 
imager on board a satellite with parameters: 725 km height, 7.5 km/s orbital velocity, 
14.4° azimuth track, 2.67 s time between exposures, 512 cross-track pixels and 48.7° 
FOV. The AIRS map projection was found to be the Albers Equal-Area Conic 
Projection with standard parallels at 29.5°, 49.5°, which is a standard map projection for 
the contiguous USA; our simulation results are plotted accordingly to resemble that of 
the AIRS data. Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.
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	 Let us look now at the GEMINI O(1D) simulation results. The scatter plot of 

interpolation coordinates is shown in Figure 4.28. Since GEMINI domain includes the 

entire magnetic field lines, we trim it at 600 km height and ignore the opposite 

hemisphere. We first show the electron density in Figure 4.29, which is a good tracer 

for the dynamics across the entire height domain. We also include a height gauge, as it 

may become useful to readily estimate height with accurate scaling. Here on display are 

large electron perturbations and suggesting a large background interaction. The O(1D) 

630.0 nm airglow perturbations are shown in Figure 4.30. With a FWHM of 60 km, 

this layer is much deeper than the mesospheric airglow, and it presents opportunities for 

significant intensity enhancements for large vertical wavefronts at small FOVs. For the 

location of the synthetic imagers we have chosen the site location of MANGO imagers, 

although currently only data from one is available; refer to Table 4.3. These 

coordinates are well distributed along the cardinal points from the center of our data, so 

they provide a natural choice. Finally the synthetic imagers are presented in Figures 

4.31 & 4.32.


	 Comparisons with MANGO O(1D) imager data for two different simulation times 

have been performed and shown side-by-side in Figures 4.33 & 4.34. Simulated 

MANGO images are made following the procedure they use for own data processing: a 

time-difference image with two 4-minute exposure integrations 1 minute apart. It is 

found that there is an important disagreement with the simulated data. This simulation 

currently assumes the perturbation depend primarily on the electron density 

disturbances, where the neutrals are obtained from the MSIS model. This realization 

leads to belief that perturbations in the neutral densities play a bigger role in the 

chemistry of the O(1D) emission. This will be addressed with additional tests that 

includes natural outputs from GEMINI, which is not a typical data product yet.
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Figure 4.28. Scatter plots of ENU coordinates for interpolation of GEMINI domain 
and a ground based imager. Green colormap corresponds to the input coordinates, color 
coded with height; turbo colormap corresponds to query coordinates color coded with 
radial distance from origin.


 


Figure 4.29. 3D renders of isosurfaces of ±500 electrons/cm3 perturbations of the 
simulation data in two different views. Positive perturbation are shown in blue/green 
colormap and negative in pink. A height gauge is included in the side view. (Scale of 1:1 
vertical vs horizontal). Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.
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Figure 4.30. 3D renders of O(1D) isosurfaces of ±200 photons/cm3 perturbations of the 
simulation data in two different views. Positive perturbation are shown in red colormap 
and negative in pink. (Scale of 10:1 vertical vs horizontal). Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.


Table 4.3. Location of synthetic imager that matches MANGO redline imagers 
stations. Source: https://github.com/mangonetwork/mangopy/; heights retrieved from 
Google Earth.


MANGO imager station Coordinates (lat, lon, h)

Ely, IA 41.89°N, 92.00°W, 255 m

Madison, KS 38.12°N, 96.10°W, 333 m

French Camp, MS 33.29°N, 89.39°W, 148 m

Pisgah, NC 35.20°N, 82.87°W, 921 m
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Figure 4.31. Unwarped synthetic O(1D) 630.0 nm airglow imagers at MANGO 
locations. From left to right and top to bottom: Ely, Pisgah, French Camp and Madison 
All images share color scale from 0 to 16×107 photons/cm2. Simulated data: Midwest 
thunderstorm 2016/07/08 5:15:12 UTC.
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Figure 4.32. Synthetic IVER images of O(1D) 630.0 nm as seen by the imagers at 
MANGO locations. Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC.
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Figure 4.33. O(1D) synthetic images at 250 km heigh at MANGO’s Ely, IA location. 
(top) 1-minute exposure image at 4:15:12 UT. (middle) Time-difference simulated image 
with 2 4-minutes exposures, 1 minute apart centered on 4:15:12 UT. (bottom) MANGO 
data comparison. Simulated data: Midwest thunderstorm 2016/07/08 4:15:12 UTC.
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Figure 4.33. O(1D) synthetic images at 250 km heigh at MANGO’s Ely, IA location. 
(top) 1-minute exposure image at 5:15:12 UT. (middle) Time-difference simulated image 
with 2 4-minutes exposures, 1 minute apart centered on 5:15:12 UT. (bottom) MANGO 
data comparison. Simulated data: Midwest thunderstorm 2016/07/08 5:15:12 UTC. 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Chapter 5


Conclusions and future work


	 Whether it is ground-based or space-borne imaging of horizontal structures of the 

atmospheric layers or limb-scan views from satellites for 2D height measurements, a full 

description of the observed phenomena is incomplete from images alone. For this reason 

multi-layer and multi-instrument observations have become necessary, and it goes hand-

in-hand with the need for modeling. As these models become more accurate, so must 

our simulated observables. The basis for this thesis are the observable products from the 

MAGIC-GEMINI models, including airglow volume emission rates, temperature and 

electron density. The capability of the models to simulate large domain gravity wave 

phenomena, and effects on the ionosphere, gives rise to the opportunity to study how 

real instruments would measure such data. Of particular interest is the measurement of 

airglow intensity, due to the widespread availability of all-sky airglow imager data and 

its usefulness for determining horizontal features for gravity waves.


5.1. On the creation of synthetic instruments


	 This thesis has focused on creating a meticulous geometric description of the 

airglow-observer coordinate mappings, first, based on purely trigonometric relations 

using a spherical Earth. Then an ellipsoidal model was introduced, where the 

trigonometric relations were replaced by a ray-tracing algorithm which effectively 
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determines the intersection between an observer’s line-of-sight with an ellipsoid. Both 

methods were thoroughly described in Sections 2.1-2.5. The second method 

circumvents the limitations of the trigonometric relations, allowing for a free placement 

of the observer anywhere in 3D space, while also admitting any viewing angle. The 

intersection points are a result of the quadratic solution of the system of equations for 

the line-of-sight-ellipsoid mappings, and the type of solution determines whether the 

intersection exists or not, there are two or one intersection points and whether the 

observer is within the ellipsoid or outside. This contains all the necessary information for 

an instantaneous representation of positions in 3D space that can then be used for 

simulating measurements. It can also be extended to future model datasets provided 

from a variety of coordinate systems.


	 Along with the geometric descriptions, a framework has been developed to create 

synthetic imaging instruments with different configurations, whether they are single-line 

instruments such as GPS receivers or spectrometer/radiometer such as AIRS, to sensors 

with grids of imaging units such as CCD panels in all-sky imagers. The algorithm allows 

for specification of number of imaging units (pixels), and a simplified optics system with 

parameters of FOV and a lens function. It is also possible to specify the orientation, 

zenith angle and geographic coordinates of these synthetic sensors. These design 

variables determine the angular resolution, zenith and North alignment, as well as 

location on the globe. Once the instrument parameters have been specified, the ray-

tracing solution is used for 3D scattered interpolation and to create the 3D coordinates 

for the line-of-sight-ellipsoid/airglow system. This description, along with appropriate 

examples is described in Sections 2.6-2.9. As part of the coordinate validation process, 

a 3D scatter plot is used for a visual validation of these mappings, which includes the 

proper warping of MAGIC data to conform with geographic coordinates; see Figures 

2.7, 4.9 & 4.23 for reference.
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5.2. On the implications of map projections


	 The mapping transformations are determined for a reference ellipsoid of choice. In 

this case we have used the World Geodetic System of 1984 (WGS84). This ellipsoid 

describes both the shape of the Earth and of the airglow layer. It is possible, for 

example, to choose a geoid for the specification for the airglow layer height such as the 

Earth Gravitational Model of 1996 (EGM96) . The use of these ellipsoids have the 7

added benefit of providing higher accuracy in map projection distortions, for which we 

have dedicated Section 3.3. There are two important conclusions from this:


• map projections introduce errors in right-angles, distances and areas and can 

skew horizontal wave parameters with varying severity depending on the 

projection of choice and location within it, and


• unwarping of MAGIC data suffers the same distortions introduced by map 

projections, which can be compounded when plotting it on a map.


For these reason, we evaluated different map projections and discussed their merits and 

limitations. On the subject of projection of atmospheric data one important 

consideration was made, and that is the importance for a separate description of zonal 

and meridional components. This deciding factor rises naturally due to the fact that 

winds are effectively described by these components, predominantly driven by differences 

in zonal heating and the rotation of the Earth. With this in mind, we tested the map 

projections that align zonal, meridional directions directly to the  and  axes, namely 

cylindrical map projections and the loximuthal projection. The biggest problem with 

these is the large scaling error that occurs at high latitudes. For this reason, the 

loximuthal projection, a compromise pseudo-cylindrical map projection, was chosen. 

Also, in agreement with the conclusions of Section 2.5, loxodromes, or rhumb lines, 

provide the accurate distance measurements for calculating arc distances in viewing 

x y

 For displaying model data, the choice of geopontential height would be incompatible with the gravity values used for 7

either MAGIC or GEMINI, which are based on gravity values dependent only on height and not geographic location
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geometries, which follows from the fact that such geometries are determined by their 

fixed azimuth. In summary, the benefits of the loximuthal map projection are:


• -axis is aligned South-North and -axis is aligned West-East,


• angle, scaling and area distortions are low around the origin of the projection,


• all distortions can be accounted and corrected for when determining horizontal 

parameters, and


• all lines crossing through the origin are loxodromes which directly conform to the 

observer-airglow geometry.


Interestingly enough, this map projection is not widely used in our field. In fact, it is my 

opinion that map projections are rarely a conscious design choice for representing data. 

This could be for several reasons, including the scale of the mapped data, the lack of 

need to characterize the errors associated with the distortions and perhaps more 

commonly, the absence of subsequent analyses on the projected data. As an example 

refer to Figures 3.28 & 3.29 where it was discussed what projection needs arise from 

the purpose of the displayed data. If one does not need to appropriately represent area, 

then perhaps the choice of map projection may not be an important one. However, if 

subsequent analyses are needed from such data, then the type of projection may become 

more significant, especially as the scales represented in the data become distorted as 

they get larger and further away from the projection’s origin. This is the case for many 

imagers, including all-sky airglow imagers. It was briefly mentioned in Section 4.3 that 

MANGO post-processing calculates distances over great circles, which is the method we 

suggest not to do in Section 2.5. Moreover, it might be relevant to put this information 

front and foremost, since it leads to measurable error; otherwise, the data analyst will 

assume risks the data analyst to assume distances are geographically accurate. Other 

systems, such as satellite position algorithms, may use GPS for geolocating their data 

products; in this case, the map projection error does not compound with the geolocating 

y x
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of data. In fact, for very precise mapping, such as city roads and local terrain, highly 

precise coordinate reference systems (CRS) are used. These combine a coordinate system 

such as ellipsoidal (lat, lon) or Cartesian ( , ), a horizontal datum such as WGS84 and 

a map projection, all of these chosen to most accurately represent the particular region 

of the world. For this purpose there exists the EPSG Geodetic Parameter Dataset or 

EPSG codes (https://epsg.org), which is a public registry of codes with very specific 

uses and locations, such as cities, countries, continents or any geographic area of 

interest. The framework we have developed here allows for the use of these EPSG codes 

as input for the mapping projections. However, the scales of the phenomena we wish to 

study, namely atmospheric gravity waves do not warrant highly precise geolocating. 

Moreover, MAGIC-GEMINI is not yet a georeferenced model, so any error introduced 

due to projections on the synthetic data is only representative of the projection itself. 

This is a perfect example of why the choice of map projections might be often 

overlooked as a fundamental part of data portrayal and visualization.


5.3. On the characterization of line-of-sight effects


	 A method using power spectrum analysis was devised for characterizing the 

filtering of scales in all-sky airglow imagery. It was found that the frequency content of 

unwarped images varies for different viewing geometries when oblique lines-of-sight align 

or anti-align with the wavefronts. The periodogram features sharper peaks for parallel 

viewing and larger frequency spread for perpendicular views. With the aid of an 

idealized case of replicated nonlinear wave this simple filtering mechanism was 

explained. For quantifying the scale-filtering effect the total power spectrum (TSP) was 

chosen as the characterizing variable. This scalar quantity represents the prominence of 

the frequency content available, in our case, of spatial frequencies for wavelengths over 

8.26 km. The higher spectral power the more discernible the fluctuations or sinusoidal 

x y
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features of the images. By fixing the unwarped images to the same geographical area, we 

were able to vary the position of the imager and determine TSP in terms of the tilt 

angle, for both wavefront-aligned and anti-aligned imaging. It was found that aligned 

imaging provided up to 25% increase in the spectral power at around 86° viewing angle, 

while the anti-alignment dipped down to 50% at the same viewing angle. When we 

placed the imagers on a track perpendicular to the wavefronts, the change was minimal, 

peaking at 102% and dipping at 91%. The study was designed at around a very specific 

semi-concentric wave, which was observed to be mostly Eastward and is in line with the 

original work by Heale, Snively et al. (2019). The wavefront-aligned track leverages such 

wave, while the anti-aligned track, having less influence to this main gravity wave, seems 

to be influenced more by the other sources, leading to less conclusive results regarding 

the shape of its TSP profile. In addition, total, maximum and minimum intensity plots 

were also provided. It was found that for the wavefront-aligned track the total intensity 

increases as the viewing angles become anti-aligned. This was explained by using the 

ideal wave case, and is due to shape of the wavefronts, where perpendicular imaging has 

no gaps.


5.4. Products and publications


	 The structure of this thesis reflects the intended publications, first, a detailed 

technical description of the imager-airglow intersection algorithm, and a secondly, the 

spectral analysis studies for line-of-sight effects based on the Midwestern thunderstorm 

case, as well as detailed reconstructions of multi-layered synthetic data as may be 

observed from instruments on ground or in space. While these two publications are in 

preparation, the tools developed here have contributed to one published paper and one 

that is currently in revision. The first paper is titled “Mesopause airglow disturbances 

driven by nonlinear infrasonic acoustic waves generated by large earthquakes” by Inchin, 
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Snively, et al. (2020). This paper details the tsunamigenic AGWs from MAGIC that 

were used in the discussion of Chapter 3. In this work mesopause airglow perturbations 

are driven by infrasonic acoustic waves after the 2011 M9.1 Tohoku-Oki earthquake and 

subsequent tsunami off the coast of Japan. MAGIC was used to simulate the airglow 

observables and synthetic images were created to characterize the atmospheric response 

to the earthquake, which in turn, can be used to describe the earthquake itself. Given 

the widespread availability of imagers in Japan, as well as the fact that the region is 

located between 4 tectonic plates, it is of great value to evaluate the imaging capabilities 

of the mesospheric airglow as an early warning system, as proposed by the authors. The 

results that were included in the publication are presented in Figure 5.1. These 

synthetic images represent the first of their kind; no real imager has yet captured 

acoustic wave signatures as such in the mesospheric airglow above an earthquake leading 

to a tsunami. The results of this study show very large perturbations and, as the 

manuscript suggests, it should be possible to image acoustic wave signatures in as little 

as 6 minutes from the onset of the earthquake. A numerical test of this hypothesis is 

made possible by the synthetic imaging framework developed in this thesis.


	 A second coauthored publication is currently in revision (minor, and due for 

resubmission by the time of defense). The title of this work is “Simulation of infrasonic 

acoustic wave imprints on airglow layers during the 2016 M7.8 Kaikoura earthquake” bye 

Inchin, Aguilar Guerrero et al. (2022). This work aligns well with the objectives of the 

analysis of Chapter 4. By applying a similar philosophy of scale-filtering and line-of-

sight enhancements, this work attempts to establish parameters for enabling successful 

imaging of yet-to-be seen infrasonic acoustic waves (IAWs) in the mesosphere. This 

particular type of gravity waves require faster and higher resolution imagers, and the 

authors test for different exposure times by integrating several IVER unwarped images. 

This is a standard procedure used to improve signal-to-noise ratio for all-sky imagers, 

one that we can replicate. For fast transient IAWs the exposure time will lead to an 
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effective scale filtering, or blurring; see details in the text, that note of which IAWs 

features are retained which each longer exposure time. The results presented as they are 

in the manuscript are shown in Figure 5.2. Next presented are different synthetic 

images for imagers that have been pointed with different tilt angles. In this case the line-

of-sight effects are visible, including some minor scale filtering and significant intensity 

enhancements. Since these two effects inform over the shape of the wavefronts, targeted 

images like this provide some insights into the 3D morphology of the wave. This work is 

another proof-of-concept and further showcases the potential for more studies like this.





Figure 5.1. Synthetic images of OH(3,1) integrated volume emission rates (IVER) for 
(a) a zenith pointing wide field (180°) imager and (b) an eastward pointing imager with 
40° tilt angle of 140° FOV. (c,d) Synthetic images unwarped on a geographic map and 
shown on an oversaturated scale for better visibility of weaker features. Black circles in 
plot (c) show observable regions for imagers with 120°, 140°, and 160° FOVs, whereas a 
wide field imager covers the whole region. The yellow point in plots (c) and (d) 
represents the position of the imager. Sourced from Inchin, Snively, et al. (2020).
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Figure 5.2. Synthetic images of IVER for the observation systems presented in Table 2 
and their unwarped representations on a geographic map. The images are shown on an 
oversaturated scale for visibility of weaker features. An opacity is added to the 
unwarped images to visualize the underlying topography. Time epochs of snapshots for 
O(1S) IVER are specified separately. Sourced from (Inchin, Aguilar Guerrero et al. 
2022). 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Figure 5.3. Synthetic images of integrated volume emission rates (IVER) captured 
with observation systems 2 with different azimuth angles and location of the imager and 
its unwarped representations on a geographic map. Black dots depict the position of 
imagers and arrows: directions of pointing. Sourced from (Inchin, Aguilar Guerrero et al. 
2022).
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	 It should be mentioned that the software suite created for this thesis, part of 

which has supported the two publications discussed above, will be made available in an 

online repository (GitHub) following software documentation. This includes the imager-

airglow algorithm, which creates an imaging sensor and performs the ray-tracing 

solution, the map projection and the 3D visualization tools. All code has been created to 

run within the latest version of MATLAB© by MathWorks  (release 2021b as of this 

writing). However, the fundamental methods and geometries applied can be readily 

adapted for use in other environments pending software development.


5.5. Future work


	 The bulk of this thesis reports development of the tools necessary for freedom in 

the design of synthetic imaging instrumentation for atmospheric phenomena, in a 

detailed MATLAB prototype. The scientific applications greatly depend on the modeling 

work done with MAGIC-GEMINI and is motivated by the present and future 

availability of data products and future versions of the code that may include more-

flexible capabilities and more-realistic geometries. With this in mind, we now have the 

capability for effortlessly providing imager data for airglow measurements. Additionally, 

it was not discussed in this thesis, but all techniques may be applied equally to path 

integrations for Global Navigation Satellite System (GNSS) Total Electron Content 

(TEC). These are modeled single-LOS instruments, whose geometry is specified by the 

receiver and satellite locations. In Figure 5.4 we present a detail from Inchin, Snively 

et al. (2021) where the airglow-imager framework is used in this 1D form through a 2D 

domain. In this case the airglow layer description is a proxy for the thin-shell 

representing of the ionosphere, where the electron density is unwarped at the so-called 

IPP position, chosen as 300 km for this specific study. In general, analysis for the 
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GEMINI domain-specific products is still to come, enabled by the latest efforts in 

coupling multi-scale simulations from MAGIC.


	 In addition to GPS studies, future research is needed to unequivocally 

demonstrate cases for which the detection of fast acoustic and acoustic-gravity waves, 

such as later detected in TEC, is possible in the mesospheric airglow layers. Preliminary 

work on this has been performed and the results of the Tohoku-Oki case study are 

promising. This particular scenario has the caveat that such massive earthquakes are not 

very common, and less likely to be captured on airglow imagers. This leads to another 

area of opportunity for future studies, which is simulation of satellite data. While we 

have shown here results from the simulation of AIRS, there are several other satellites 

with imaging products that we are well poised to simulate. This includes a future 

addition to the framework for limb scans. This will require to adequately discern the 

appropriate solutions to the line-of-sight-ellipsoid system of equations, to allow for both 

quadratic solutions. 
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Figure 5.4. Detail from (Inchin, Snively et al. 2021), in which the GPS capabilities of 
our framework are being used to compare simulated vertical-total-electron-content 
(vTEC).


As a final note, it is worth mentioning that additional products have been created 

related to 3D visualization tools. This include the capability of producing augmented 

reality (AR) models of our volumetric data sets and was featured in AGU 2021 

conference (Guerrero, Heale et al. 2020). This capability offers outreach opportunities 

that can be easily distributed online and accessible for mobile users. This process 

requires integration of the MATLAB 3D visualization outputs described in Chapter 3 

into Blender, an open-source 3D modeling software. This is then converted into a AR 

model via Apple’s own ARKit or Adobe’s Aero software, which is compatible with non-

Apple users; see Figures 5.5 & 5.6 for two examples. The most exciting part of this 

technology is that is constantly being developed and is poised to grow larger in the 
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coming years. The scientific and education applications are numerous and we are trying 

to leverage this momentum by extending our framework capabilities with meaningful 

AR applications.





Figure 5.5. An AR model of the O(1S) redline airglow from the Tohoku-Oki simulation. 
These are mobile screenshots of the model placed on a living room table.





Figure 5.6. 3D AR model of airglow imager data with mountain waves over to Ande  
mountains in Chile.
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	 As a final thought, we have shown the importance of multi-layer, multi-sensor 

and even multi-visualization for comprehensive studies of atmospheric phenomena. The 

ultimate goal is to simultaneously analyze data, modeled quantities, modeled 

observables from synthetic instruments and meaningful 3D visualizations. The data has 

to unambiguously measure the observed phenomena, the model results have to 

accurately portray such phenomena, the synthetic observables have to accurately 

replicate the data observations and the visualizations have to be informative. When all 

of these variables are in accordance, or not, we gain knowledge, and with it we can 

improve every aspect of the process. Existing data can be reprocessed with new 

understanding, the models can be revamped to accommodate for more-appropriate 

assumptions, higher resolutions, or new capabilities, the synthetic observables can better 

represent the stochastic nature of the real data, and visualizations can be replotted to 

better convey the author’s point of view. At the end of the process, new instruments, 

models and tools will eventually emerge where the quality and footprint of the work 

produced is ever more accurate, ever more engaging and ever more impactful.
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Appendix


3D Earth-referenced coordinate mappings


A.1. Observer-ellipsoid Coordinate Systems.


	 The coordinate system in which we define our geometry is an Earth-Centered-

Earth-Fixed (ECEF) which is defined as the Cartesian coordinate system where the 

center of the Earth is the origin, positive ,  and  axes are towards the Prime 

Meridian, 90º East and North Pole respectively. The Earth is modeled as an oblate 

ellipsoid defined by its principal semi-major axis  (equator) and its flattening ; the 

polar semi-axes  is then obtained from the flattening given its definition . 

The satellite position is denoted by the ECEF Cartesian coordinates ,  and . The 

satellite’s orientation is defined by the unitary pointing vector whose directions are given 

in its local tangent plane system namely North-East-Down (NED) or East-North-Up 

(ENU). These local Cartesian coordinates are relative to the location of the satellite to 

the surface of an ellipsoid, therefore their origin is determined by their geodetic latitude 

, geodetic longitude  and ellipsoidal height  and this is the geodetic coordinate 8

system. Alternatively, the satellite’s orientation may be given in local azimuth-tilt or 

azimuth-elevation coordinates where azimuth is the angle on the plane tangent to the 

ellipsoid and is clockwise from North and tilt/elevation is the angle from the local 

vertical or from the tangent plane respectively; the local vertical is the line that 

intersects the satellite’s position with the center of the Earth and it can be defined 

x y z

a f

b f = (a − b)/a

x y z

ϕ λ h

 The term geodetic is preferred over geographic to avoid confusion with the geocentric latitude.8
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positive when it’s radially outward (satellite’s zenith) or defined positive when it’s 

radially inward (satellite’s nadir). The azimuth-tilt and azimuth-elevation systems are in 

fact a local spherical coordinate system with unitary spherical radius.


A.2. 3D Coordinate Mappings


	 The intersection equation presented in Section 2.4 requires that all the 

coordinate representations be in ECEF. Given the different systems we use to describe 

the satellite-ellipsoid geometry we need different mappings to and from ECEF:


II. Geodetic to ECEF,


III. ECEF to geodetic,


IV. ENU/NED to ECEF,


V. ECEF to ENU/NED,


VI. local spherical to ENU/NED, and


VII.ENU/NED to local spherical.


A.2.1. Geodetic to ECEF  


	 This is a straightforward mapping that follows from geometrical geodesy:


	 	 (A.1)


	 	 (A.2)


	 	 (A.3)


ϕ, λ, h → x, y, z

x = (N + h) cos ϕ cos λ

y = (N + h) cos ϕ sin λ

z = ((b/a)2N + h) sin ϕ
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where  is the east-west or prime vertical radius:


	 	 (A.4)


which is the distance from the ellipsoid’s surface along its normal to the intersection 

with the -axis of the ECEF system .
9

          


Figure A.1. Geodetic to ECEF mapping. The satellite position vector is , the prime 
vertical radius  that intersects the -axis lies along the normal to the ellipsoid 
surface. The geodetic coordinates are given by the ellipsoidal height , the latitude  
and the longitude  (not shown here, lies on the  plane). The geocentric latitude  is 
different from the geodetic latitude , while the geocentric and geodetic longitudes are 
equivalent.  represents the center of curvature of the spheroid corresponding to the 
foot of , tip of . 


N(ϕ)

N(ϕ) =
a

a2 cos2 ϕ + b2 sin2 ϕ

z

z

x , y plane

Earth
n̂

N

h

ϕϕ′￼

satellite

⃗s

C

⃗s
N(ϕ) z

h ϕ
λ x, y ϕ′￼

ϕ
C

h N

 For derivations see Bomford, G, (1962). Geodesy. 2nd Ed. Oxford University Press and Smart, W. M. Spherical 9

astronomy. Cambridge University Press (1944).
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A.2.2. ECEF to geodetic: 


	 This mapping is usually obtained iteratively, however closed-form solutions are 

possible with a slight compromise in accuracy. The problem can be setup by combining 

Equations  &  to obtain an equation for  and :


	 	 (A.5)


Another equation for  and  can be obtained by using , expanding 

equation (3) and dividing by :


	 	 (A.6)


where  is the square of the first eccentricity. Equations  &  

can be solved iteratively by taking an initial guess . The longitude is readily 

obtained by


	 	 (A.7)


where  is the full-circle inverse tangent function. In practice, a more efficient 

fixed-point iterative formula is used. Developed by Bowring in 1976 , , this will be the 10 11

method of choice for calculations involving satellites. Bowring used the concept of center 

x, y, z → ϕ, λ, h

(A.1) (A.2) h ϕ

ρ = x2 + y2 = (N + h) cos ϕ

h =
ρ

cos ϕ
− N

h ϕ f = (b − a)/a

ρ

z = (N + h − e2N) sin ϕ

z
ρ

= (1 − e2 N
N + h ) tan ϕ

e2 = (a2 − b2)/a2 (A.5) (A.6)

h = 0

λ = atan2 (y, x)

atan2 ()

 Bowring, B. R. (2013). "Transformation from Spatial to Geographical Coordinates." Survey Review 23(181): 10

323-327.

 See implementation at Wolf, P. R., B. A. Dewitt and B. E. Wilkinson (2014). Coordinate Transformations. Elements 11

of Photogrammetry with Applications in GIS. New York, McGraw-Hill Education.
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of curvature of the spheroid  with coordinates  where  is its 

parametric latitude and  is the square of the second eccentricity (see 

Figure A.1). The iterative formulae are then:


	 	 


The updated value of  is then computed from


	 	 (A.10)


which in turns updates the latitude  which can be used to obtain the height  from 

equation . To avoid the problems with the division by  for large latitudes, the 

height can be rewritten as a linear combination of  and  using Equations 

 &  and the fact that :


	 	 


The first iteration of this method already has micrometrical accuracy for calculations on 

the Earth’s surface and converges to sub-millimeter accuracy for extraterrestrial 

calculations.


C (e2a cos3 β, − e′￼2 b sin3 β) β

e′￼2 = e2/(1 − e2)

β0 = atan2 (z, (1 − f ) ρ)
ϕi = atan2 (z + e′￼2 b sin3 β, ρ − ae2 cos3 β)

(A.8)

(A.9)

β

βi+1 = atan2 ((1 − f ) sin ϕi, cosi ϕ)

ϕi+1 h

(A.5) cos ϕ

cos2 ϕ sin2 ϕ

(A.5) (A.6) cos2 ϕ + sin2 ϕ = 1

h =
ρ

cos ϕ
− N; h =

z
sin ϕ

− N (1 − e2)
h = h (cos2 ϕ + sin2 ϕ)
h = ( ρ

cos ϕ
− N) cos2 ϕ + ( z

sin ϕ
− N (1 − e2)) sin2 ϕ

h = ρ cos ϕ + z sin ϕ + N (e2 sin2 ϕ − 1)

((A.5) & (A.6))

(A.11)
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A.2.3. ENU/NED to ECEF


	 This mapping starts with right-handed local tangent coordinates, whether East-

North-Up or North-East-Down, translates them to the origin and applies a rotation to 

the ECEF coordinates. The location of the local tangent plane is given in geodetic 

coordinates , ,  and it is necessary to obtain the equivalent ECEF position 

applying a geodetic to ECEF transformation: . Local tangent 

coordinates are usually notated with primes, ,  and , to distinguish them from 

ECEF, however for clarity the triplets , ,  or , ,  will be used for East-North-Up 

and North-East-Down respectively as defined in Figure A.2; the two systems are 

equivalent if East and North are swapped and Up or Down is negated. Each coordinate 

triplet defines a vector that points from  to . A simple representation of 

this mapping is obtained using a rotation matrix with an added translation operation:


	 	 


where  is the direction vector of the local tangent 

coordinates rotated to ECEF and  is the corresponding unitary direction 

vector. The expanded version of Equation  for each coordinate system is:


	 	 


	 	 


ϕ0 λ0 h0

ϕ0, λ0, h0 → x0, y0, z0

x ′￼ y′￼ z′￼

E N U N E D

(x0, y0, z0) (x, y, z)

⃗rECEF = R ⃗rENU/NED + ⃗r0

[x, y, z]T = [u , v, w]T + [x0, y0, z0]T (A.12)

⃗p = R ⃗rNED/ENU = u x̂ + v ŷ + w ̂z

p̂ = ⃗p /∥ ⃗p ∥

(A.12)

[
x
y
z] =

−sin λ0 −sin ϕ0 cos λ0 cos ϕ0 cos λ0

cos λ0 −sin ϕ0 sin λ0 cos ϕ0 sin λ0

0 cos ϕ0 sin ϕ0
[

E
N
U] +

x0
y0
z0

(A.13)

[
x
y
z] =

−sin ϕ0 cos λ0 −sin λ0 −cos ϕ0 cos λ0

−sin ϕ0 sin λ0 cos λ0 −cos ϕ0 sin λ0

cos ϕ0 0 −sin ϕ0
[

N
E
D] +

x0
y0
z0

(A.14)
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The rotation matrix can be understood as the projection of the local tangent 

coordinates that have been translated to the ECEF’s origin and projected onto the 

Cartesian ,  and  axes. Using the ENU system as an example, Figure A.2 shows the 

projections of a point denoted by coordinates  onto the ECEF axes ,  and ; 

the resulting vector has Cartesian components , ,  and it is the vector that 

results from the multiplication of the local tangent coordinates by the rotation matrix.





Figure A.2. Projection of the ENU coordinate system onto the ECEF coordinate 
system. In this figure the ECEF’s origin has been translated to align with the ENU’s at 
the local tangent plane. The green segments are the sought projections and their lengths 
correspond to the values of , ,  and .


The matrix operations from Equations  &  yield the final results for the 

NED/ENU to ECEF mapping:


	 	 


	 	 


x y z

(E, N, U ) x y z

u x̂ v ŷ w ̂z

ellipsoid’s 
surface

U cos ϕ
N sin ϕ

U sin ϕ

N cos ϕ

z

x
ϕ

ϕ

O

North Pole

Prime Meridian

w = U sin ϕ + N cos ϕ
t = U cos ϕ − N sin ϕ

North (N)

Up (U) ellipsoid’s 
surface

P cos λ

E sin λ

P sin λ
E cos λ

y

x
λ

λ
O

Prime Meridian

90º


v = t sin λ + E cos λ
u = t cos λ − E sin λ

projection on 
x-y plane (t)

East (E)

t u v w

(A.13) (A.14)

x = (U cos ϕ0 − N sin ϕ0) cos λ0 − E sin λ0 + x0

y = (U cos ϕ0 − N sin ϕ0) sin λ0 + E cos λ0 + y0

z = U sin ϕ0 + N cos ϕ0 + z0

(A.15)

x = (−D cos ϕ0 − N sin ϕ0) cos λ0 − E sin λ0 + x0

y = (−D cos ϕ0 − N sin ϕ0) sin λ0 + E cos λ0 + y0

z = − D sin ϕ0 + N cos ϕ0 + z0

(A.16)
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Equations  &  can be verified with Figure 4.3. Given the equivalence of 

ENU and NED, using the substitution  in Equation  yields the exact 

same equation as .


A.2.4. ECEF to ENU/NED


	 This mapping is the inverse transformation from the previous section. Recalling 

that the inverse of the rotation matrix is its transpose, the corresponding inverse 

mapping equation is:


	 	 


The matrix equations are:


	 	 


	 	 


A.15 A.16

U = − D (A.16)

(A.15)

⃗rNED/ENU = RT ( ⃗rECEF − ⃗r0)
[u , v, w]T = [x, y, z]T − [x0, y0, z0]T (A.17)

[
E
N
U] =

−sin λ0 cos λ0 0
−sin ϕ0 cos λ0 −sin ϕ0 sin λ0 cos ϕ0

cos ϕ0 cos λ0 cos ϕ0 sin λ0 sin ϕ0

x − x0
y − y0
z − z0

(A.18)

[
N
E
D] =

−sin ϕ0 cos λ0 −sin ϕ0 sin λ0 cos ϕ0

−sin λ0 cos λ0 0
−cos ϕ0 cos λ0 −cos ϕ0 sin λ0 −sin ϕ0

x − x0
y − y0
z − z0

(A.19)
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The final mapping equations are:


	 	 


	 	 


A.2.5. Local Spherical to ENU/NED


	 This is a standard mapping from local spherical coordinates with coordinates 

azimuth, elevation and slant range  to the local tangent coordinates which is a 

Cartesian system. Local means they share the same origin on the tangent plane of the 

ellipsoid which is determined by the geodetic coordinates, ,  and . The azimuth is 

measured clockwise from North, the elevation is the angle from the local tangent plane 

and the slant range is the distance from the local origin.The mapping equations are:


	 	 


	 	 


E = − (x − x0) sin λ0 + (y − y0) cos λ0

N = − ((x − x0) cos λ0 + (y − y0) sin λ0) sin ϕ0 + (z − z0) cos λ0

U = ((x − x0) cos λ0 + (y − y0) sin λ0) cos ϕ0 + (z − z0) sin ϕ0

(A.20)

N = − ((x − x0) cos λ0 + (y − y0) sin λ0) sin ϕ0 + (z − z0) cos λ0

E = − (x − x0) sin λ0 + (y − y0) cos λ0

D = − ((x − x0) cos λ0 + (y − y0) sin λ0) cos ϕ0 − (z − z0) sin ϕ0

(A.21)

(az, el, s)

ϕ0 λ0 h0

E = s cos az sin el
N = s cos az cos el
U = s sin el

(A.22)

N = s cos az cos el
E = s cos az sin el
D = − s sin el

(A.23)
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A.2.6. ENU/NED to local spherical


	 This is the inverse mapping of the previous section. The equations are:


	 	 


	 	 


where  is the modulo operation or remainder after division. 

az = mod (atan2 (E, N ), 360∘)
el = atan2 (U, E2 + N 2)
s = E2 + N 2 + U2

(A.24)

az = mod (atan2 (N, E ), 360∘)
el = atan2 (−D, N 2 + E2)
s = N 2 + E2 + D2

(A.25)

mod ()
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