146,604 research outputs found

    Offline and Online Optical Flow Enhancement for Deep Video Compression

    Full text link
    Video compression relies heavily on exploiting the temporal redundancy between video frames, which is usually achieved by estimating and using the motion information. The motion information is represented as optical flows in most of the existing deep video compression networks. Indeed, these networks often adopt pre-trained optical flow estimation networks for motion estimation. The optical flows, however, may be less suitable for video compression due to the following two factors. First, the optical flow estimation networks were trained to perform inter-frame prediction as accurately as possible, but the optical flows themselves may cost too many bits to encode. Second, the optical flow estimation networks were trained on synthetic data, and may not generalize well enough to real-world videos. We address the twofold limitations by enhancing the optical flows in two stages: offline and online. In the offline stage, we fine-tune a trained optical flow estimation network with the motion information provided by a traditional (non-deep) video compression scheme, e.g. H.266/VVC, as we believe the motion information of H.266/VVC achieves a better rate-distortion trade-off. In the online stage, we further optimize the latent features of the optical flows with a gradient descent-based algorithm for the video to be compressed, so as to enhance the adaptivity of the optical flows. We conduct experiments on a state-of-the-art deep video compression scheme, DCVC. Experimental results demonstrate that the proposed offline and online enhancement together achieves on average 12.8% bitrate saving on the tested videos, without increasing the model or computational complexity of the decoder side.Comment: 9 pages, 6 figure

    Cubic-Spline Flows

    Get PDF
    A normalizing flow models a complex probability density as an invertible transformation of a simple density. The invertibility means that we can evaluate densities and generate samples from a flow. In practice, autoregressive flow-based models are slow to invert, making either density estimation or sample generation slow. Flows based on coupling transforms are fast for both tasks, but have previously performed less well at density estimation than autoregressive flows. We stack a new coupling transform, based on monotonic cubic splines, with LU-decomposed linear layers. The resulting cubic-spline flow retains an exact one-pass inverse, can be used to generate high-quality images, and closes the gap with autoregressive flows on a suite of density-estimation tasks.Comment: Appeared at the 1st Workshop on Invertible Neural Networks and Normalizing Flows at ICML 201

    Avoiding Flow Size Overestimation in the Count-Min Sketch with Bloom Filter Constructions

    Get PDF
    The Count-Min sketch is the most popular data structure for flow size estimation, a basic measurement task required in many networks. Typically the number of potential flows is large, eliminating the possibility to maintain a counter per flow within memory of high access rate. The Count-Min sketch is probabilistic and relies on mapping each flow to multiple counters through hashing. This implies potential estimation error such that the size of a flow is overestimated when all flow counters are shared with other flows with observed traffic. Although the error in the estimation can be probabilistically bounded, many applications can benefit from accurate flow size estimation and the guarantee to completely avoid overestimation. We describe a design of the Count-Min sketch with accurate estimations whenever the number of flows with observed traffic follows a known bound, regardless of the identity of these particular flows. We make use of a concept of Bloom filters that avoid false positives and indicate the limitations of existing Bloom filter designs towards accurate size estimation. We suggest new Bloom filter constructions that allow scalability with the support for a larger number of flows and explain how these can imply the unique guarantee of accurate flow size estimation in the well known Count-Min sketch.Ori Rottenstreich was partially supported by the German-Israeli Foundation for Scientic Research and Development (GIF), by the Gordon Fund for System Engineering as well as by the Technion Hiroshi Fujiwara Cyber Security Research Center and the Israel National Cyber Directorate. Pedro Reviriego would like to acknowledge the sup-port of the ACHILLES project PID2019-104207RB-I00 and the Go2Edge network RED2018-102585-T funded by the Spanish Ministry of Science and Innovation and of the Madrid Community research project TAPIR-CM grant no. P2018/TCS-4496

    Speeding Up the Estimation of Expected Maximum Flows Through Reliable Networks

    Get PDF
    In this paper we present a strategy for speeding up the estimation of expected maximum flows through reliable networks. Our strategy tries to minimize the repetition of computational effort while evaluating network states sampled using the crude Monte Carlo method. Computational experiments with this strategy on three types of randomly generated networks show that it reduces the number of flow augmentations required for evaluating the states in the sample by as much as 52% on average with a standard deviation of 7% compared to the conventional strategy. This leads to an average time saving of about 71% with a standard deviation of about 8%.

    Does intentional mean hierarchical? Knowledge flows and innovative performance of European regions

    Get PDF
    The production of scientific and technical knowledge is mostly concentrated in specific locations (high-tech clusters, innovative industry agglomerations, centres of excellence, and technologically advanced regions). Knowledge flows very easily within regions; however, scientific and technical knowledge also flow between regions. The aim of this paper was to analyse how knowledge flows between regions, and the effect of these flows on the innovative performance, measured by patent applications. We estimate a regional knowledge production function, and, using appropriate spatial econometric estimation techniques, we test the effect of both geographical and relational autocorrelation (measured by participation in EU funded research networks as part of Fifth Framework Programme). We model unobservable structure and link value of knowledge flows in these joint research networks. We find that knowledge flows within inter-regional research networks, along non-symmetrical and hierarchical structures in which the knowledge produced by network participants tends to be exploited by the network coordinator

    The trade-creating effects of business and social networks: evidence from France

    Get PDF
    Using theory-grounded estimations of trade flow equations, this paper investigates the role that business and social networks play in shaping trade between French regions. The bilateral intensity of networks is quantified using the financial structure and location of French firms and bilateral stocks of migrants. Compared to a situation without networks, migrants are shown to double bilateral trade flows, while networks of firms multiply trade flows by as much as four in some specifications. Finally, taking network effects into account divides the estimation of the impact of transport costs and of the effect of administrative borders by around three.http://econ.sciences-po.fr/sites/default/files/file/tmayer/networks_clm.pd
    corecore