892 research outputs found

    Palate-referenced Articulatory Features for Acoustic-to-Articulator Inversion

    Get PDF
    The selection of effective articulatory features is an important component of tasks such as acoustic-to-articulator inversion and articulatory synthesis. Although it is common to use direct articulatory sensor measurements as feature variables, this approach fails to incorporate important physiological information such as palate height and shape and thus is not as representative of vocal tract cross section as desired. We introduce a set of articulator feature variables that are palate referenced and normalized with respect to the articulatory working space in order to improve the quality of the vocal tract representation. These features include normalized horizontal positions plus the normalized palatal height of two midsagittal and one lateral tongue sensor, as well as normalized lip separation and lip protrusion. The quality of the feature representation is evaluated subjectively by comparing the variances and vowel separation in the working space and quantitatively through measurement of acoustic-to-articulator inversion error. Results indicate that the palate-referenced features have reduced variance and increased separation between vowels spaces and substantially lower inversion error than direct sensor measures

    Speaker adaptation of an acoustic-to-articulatory inversion model using cascaded Gaussian mixture regressions

    No full text
    International audienceThe article presents a method for adapting a GMM-based acoustic-articulatory inversion model trained on a reference speaker to another speaker. The goal is to estimate the articulatory trajectories in the geometrical space of a reference speaker from the speech audio signal of another speaker. This method is developed in the context of a system of visual biofeedback, aimed at pronunciation training. This system provides a speaker with visual information about his/her own articulation, via a 3D orofacial clone. In previous work, we proposed to use GMM-based voice conversion for speaker adaptation. Acoustic-articulatory mapping was achieved in 2 consecutive steps: 1) converting the spectral trajectories of the target speaker (i.e. the system user) into spectral trajectories of the reference speaker (voice conversion), and 2) estimating the most likely articulatory trajectories of the reference speaker from the converted spectral features (acoustic-articulatory inversion). In this work, we propose to combine these two steps into the same statistical mapping framework, by fusing multiple regressions based on trajectory GMM and maximum likelihood criterion (MLE). The proposed technique is compared to two standard speaker adaptation techniques based respectively on MAP and MLLR

    ARTICULATORY INFORMATION FOR ROBUST SPEECH RECOGNITION

    Get PDF
    Current Automatic Speech Recognition (ASR) systems fail to perform nearly as good as human speech recognition performance due to their lack of robustness against speech variability and noise contamination. The goal of this dissertation is to investigate these critical robustness issues, put forth different ways to address them and finally present an ASR architecture based upon these robustness criteria. Acoustic variations adversely affect the performance of current phone-based ASR systems, in which speech is modeled as `beads-on-a-string', where the beads are the individual phone units. While phone units are distinctive in cognitive domain, they are varying in the physical domain and their variation occurs due to a combination of factors including speech style, speaking rate etc.; a phenomenon commonly known as `coarticulation'. Traditional ASR systems address such coarticulatory variations by using contextualized phone-units such as triphones. Articulatory phonology accounts for coarticulatory variations by modeling speech as a constellation of constricting actions known as articulatory gestures. In such a framework, speech variations such as coarticulation and lenition are accounted for by gestural overlap in time and gestural reduction in space. To realize a gesture-based ASR system, articulatory gestures have to be inferred from the acoustic signal. At the initial stage of this research an initial study was performed using synthetically generated speech to obtain a proof-of-concept that articulatory gestures can indeed be recognized from the speech signal. It was observed that having vocal tract constriction trajectories (TVs) as intermediate representation facilitated the gesture recognition task from the speech signal. Presently no natural speech database contains articulatory gesture annotation; hence an automated iterative time-warping architecture is proposed that can annotate any natural speech database with articulatory gestures and TVs. Two natural speech databases: X-ray microbeam and Aurora-2 were annotated, where the former was used to train a TV-estimator and the latter was used to train a Dynamic Bayesian Network (DBN) based ASR architecture. The DBN architecture used two sets of observation: (a) acoustic features in the form of mel-frequency cepstral coefficients (MFCCs) and (b) TVs (estimated from the acoustic speech signal). In this setup the articulatory gestures were modeled as hidden random variables, hence eliminating the necessity for explicit gesture recognition. Word recognition results using the DBN architecture indicate that articulatory representations not only can help to account for coarticulatory variations but can also significantly improve the noise robustness of ASR system

    Modeling the production of VCV sequences via the inversion of a biomechanical model of the tongue

    Get PDF
    A control model of the production of VCV sequences is presented, which consists in three main parts: a static forward model of the relations between motor commands and acoustic properties; the specification of targets in the perceptual space; a planning procedure based on optimization principles. Examples of simulations generated with this model illustrate how it can be used to assess theories and models of coarticulation in speech

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies

    Studies on automatic speaker recognition

    Get PDF

    Speaker Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography - Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data

    Direct Speech Reconstruction From Articulatory Sensor Data by Machine Learning

    Get PDF
    This paper describes a technique that generates speech acoustics from articulator movements. Our motivation is to help people who can no longer speak following laryngectomy, a procedure that is carried out tens of thousands of times per year in the Western world. Our method for sensing articulator movement, permanent magnetic articulography, relies on small, unobtrusive magnets attached to the lips and tongue. Changes in magnetic field caused by magnet movements are sensed and form the input to a process that is trained to estimate speech acoustics. In the experiments reported here this “Direct Synthesis” technique is developed for normal speakers, with glued-on magnets, allowing us to train with parallel sensor and acoustic data. We describe three machine learning techniques for this task, based on Gaussian mixture models, deep neural networks, and recurrent neural networks (RNNs). We evaluate our techniques with objective acoustic distortion measures and subjective listening tests over spoken sentences read from novels (the CMU Arctic corpus). Our results show that the best performing technique is a bidirectional RNN (BiRNN), which employs both past and future contexts to predict the acoustics from the sensor data. BiRNNs are not suitable for synthesis in real time but fixed-lag RNNs give similar results and, because they only look a little way into the future, overcome this problem. Listening tests show that the speech produced by this method has a natural quality that preserves the identity of the speaker. Furthermore, we obtain up to 92% intelligibility on the challenging CMU Arctic material. To our knowledge, these are the best results obtained for a silent-speech system without a restricted vocabulary and with an unobtrusive device that delivers audio in close to real time. This work promises to lead to a technology that truly will give people whose larynx has been removed their voices back

    Sigma-lognormal modeling of speech

    Full text link
    Human movement studies and analyses have been fundamental in many scientific domains, ranging from neuroscience to education, pattern recognition to robotics, health care to sports, and beyond. Previous speech motor models were proposed to understand how speech movement is produced and how the resulting speech varies when some parameters are changed. However, the inverse approach, in which the muscular response parameters and the subject's age are derived from real continuous speech, is not possible with such models. Instead, in the handwriting field, the kinematic theory of rapid human movements and its associated Sigma-lognormal model have been applied successfully to obtain the muscular response parameters. This work presents a speech kinematics based model that can be used to study, analyze, and reconstruct complex speech kinematics in a simplified manner. A method based on the kinematic theory of rapid human movements and its associated Sigma lognormal model are applied to describe and to parameterize the asymptotic impulse response of the neuromuscular networks involved in speech as a response to a neuromotor command. The method used to carry out transformations from formants to a movement observation is also presented. Experiments carried out with the (English) VTR TIMIT database and the (German) Saarbrucken Voice Database, including people of different ages, with and without laryngeal pathologies, corroborate the link between the extracted parameters and aging, on the one hand, and the proportion between the first and second formants required in applying the kinematic theory of rapid human movements, on the other. The results should drive innovative developments in the modeling and understanding of speech kinematics.Comment: Published in Open Acce
    • …
    corecore