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Abstract

The selection of effective articulatory features is an important
component of tasks such as acoustic-to-articulator inversion and
articulatory synthesis. Although it is common to use direct
articulatory sensor measurements as feature variables, this
approach fails to incorporate important physiological
information such as palate height and shape and thus is not as
representative of vocal tract cross section as desired. We
introduce a set of articulator feature variables that are palate
referenced and normalized with respect to the articulatory
working space in order to improve the quality of the vocal tract
representation. These features include normalized horizontal
positions plus the normalized palatal height of two midsagittal
and one lateral tongue sensor, as well as normalized lip
separation and lip protrusion. The quality of the feature
representation is evaluated subjectively by comparing the
variances and vowel separation in the working space and
quantitatively through measurement of acoustic-to-articulator
inversion error. Results indicate that the palate-referenced
features have reduced variance and increased separation
between vowels spaces and substantially lower inversion error
than direct sensor measures.

Index Terms: articulatory features, Electromagnetic
Articulography (EMA), acoustic-to-articulatory inversion

1. Introduction

The use of articulatory information can be beneficial for a wide
variety of speech tasks. Such information can improve the
performance of automatic speech recognition (ASR) systems by
accounting for speech production knowledge [1-3], or increase
the quality of synthesis algorithms [4-6]. For tasks such as
pronunciation assessment accurate articulatory information can
help provide more detailed user feedback [7]. The goal of
articulatory inversion is to recover articulatory trajectories from
the acoustic signal for such purposes. One challenge for this
task is the selection of appropriate articulatory feature variables
that represent articulator movements and vocal tract structure in
a meaningful way across differing speakers and physiologies
Often kinematic sensor positions are used directly for inversion
methods, but this is not always the best representation. In this
paper we investigate articulatory feature representations that
use palate-referenced measures of vocal tract area rather than
direct sensor positions and evaluate their performance.

The kinematic data used in this work is Electromagnetic
Articulography (EMA) sensor measurements. The EMA
modality is currently a popular approach to tracking articulatory
motion due to its relative low cost and balance between spatial
and temporal resolution. The measured trajectory consists of a
set of position coordinates for each sensor during speech. Toda
[8] has shown that speech spectra can be produced from EMA
measurements by learning statistical dependencies between
position trajectory and the corresponding speech signal,
indicating that raw EMA measures relate to the output of the
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speech generation process. While most work in this area has
used sensor position data directly [9-12], this has significant
weaknesses in terms of usefulness for acoustic-to-articulatory
inversion and applications. One key weakness is that
differences in subject physiology and sensor placement cause
absolute sensor positions to vary significantly across speakers.
Even more significant, however, is the fact that raw sensor data
does not include all relevant vocal tract information, most
notably information about the location of the palate relative to
the sensor. This information is typically available, since palate
data is typically collected along with other baseline calibration
measures as part of the EMA data collection process.

This paper proposes the use of palate-referenced articulatory
measures as reliable and phonetically meaningful features to
characterize vocal tract shapes from EMA measurements.
These features are evaluated through comparisons of the feature
space across different vowels any by comparing acoustic-to-
articulator inversion accuracy.

2. Method

2.1. Maeda’s vocal tract model

A model-based approach is used to estimate the vocal tract
configuration and identify appropriate features. Several
theoretical models that describe speech production process have
been proposed [13-15]. In this work the Maeda model mid-
sagittal vocal tract representation is used, as shown in Figure 1.
The Maeda model represents the articulatory working space
with seven key parameters that relate to the cross-sectional
areas of the vocal tract, determined from a factor analysis of x-
ray vocal tract contour data [16].

Figure 1: Maeda's articulatory model: Pl jaw height,
P2 tongue dorsum length, P3 tongue dorsum shape, P4
tongue apex position, P5 lip separation, P6 lip
protrusion, P7 larynx height.
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2.2. Dataset

The Marquette EMA-MAE corpus [17] includes synchronous
acoustic and three-dimensional kinematic data collected at 400
Hz. Acoustic records were obtained using a cardioid pattern
directional condenser microphone positioned approximately |
meter from participants. The corpus includes approximately 45
minutes of synchronized acoustic and kinematic data for each
speaker, including word, sentence, and paragraph level speech
samples.

As shown in Figure 2, articulatory sensors included the jaw
(MI) (interior lower front incisor), lower lip (LL), upper lip
(UL), tongue dorsum (TD), and tongue tip (TT), all placed in
the midsaggital plane. In addition, there were two lateral
sensors, one (LC) at the right comer of the mouth to help
indicate lip rounding and one (LT) in the right central midpoint
of the tongue body to help indicate lateral tongue curvature.

Figure 2: EMA-MAE sensor placement

2.3. Proposed articulatory feature

We have developed a geometric transformation from the EMA
kinematic measurements to vocal tract (VT) parameters based
on an extension of the Maeda model. These parameters include
the following articulatory feature variables:

Table 1. Articulatory features

Description
VT1 | Tongue dorsum normalized horizontal position
VT2 Tongue dorsum vertical height to hard palate
VT3 Tongue body normalized horizontal position
VT4 Tongue body vertical height to hard palate
VT3 Tongue apex normalized horizontal position
VTé Tongue apex vertical height to hard palate
VT7 Normalized horizontal lip protrusion
VT8 Normalized vertical lip separation

We measured the distance between the center incisors and the
middle point of the back molar from each speaker’s bite plate
record. This distance is used as a normalization scalar when
calculate horizontal position of the tongue, to give a better
information of tongue’s position relative to the whole vocal
tract regardless of the difference among individuals. The
horizontal (x-axis) variables VT1, 3, 5, and 7, are all calculated
directly from sensor position divided by this normalization
constant. This will lead to improvement in cross-subject
variability but not variability or inversion accuracy within a
single subject. The vertical (y-axis) variables VT2, 4, and 6;
however, are computed as the vertical distance between the
sensor position and the palate, representing vocal tract height at
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the sensor positions, including two midsagittal positions and
one lateral position. It is hypothesized that these vertical
articulatory variables will be significantly more representative
of vocal tract height and therefore of acoustic spectral
characteristics both within and across subjects. Lip protrusion
VT7 is taken directly from the sensor x position without any
normalization, and vertical lip separation VT8 is calculated as

VT8 = (UL}' = “‘)’) — (ULy — LLy)ciosed position

(ULy = LLy)max )

representing lip separation rescaled to a [0,1] working space.

2.3.1. Bite-plate correction

All sensor measures are referenced to an origin at the upper
front incisor, with the data orientation referenced to the
subject’s head orientation. In addition to this baseline physical
normalization, we use a bite-plate with each subject to
determine the orientation of the maxillary occlusal plane where
the upper and lower mandible meet, and apply a bite-plate
correction to all sensor data so that the planes of the working
space are the midsagittal plane (x-y plane) and the maxillary
occlusal plane (x-z plane) [18].

2.3.2. Palate mesh estimation

The EMA-MAE palatal reference data includes a trace of the
mid-sagittal palate line and a series of transverse traces across
the palate. We use the thin plate spine (TPS) method [19] for
estimation of the palate mesh from the collected palatal
reference data. This approach mathematically warps a flat thin
metal plate to approximate a set of control points. The TPS
method allows control of the smoothness of the resulting mesh
via a smoothness parameter A , which in this work we have set
equal to 0.05 [20].

2.4. Acoustic-to-articulator inversion

In this experiment, we implemented an HMM based inversion
to estimate the articulatory parameters from the acoustic signal.
The core inversion approach is similar to that in [21], with two
parallel streams trained separately in acoustic and articulatory
feature space. Three state left-to-right mono-phone HMMs with
one Gaussian per state are used for training and testing. Twelve
Mel-Frequency Cepstral Coefficients (MFCCs) plus energy,
along with their first and second derivatives are used for the
acoustic features. The 198 sentences from one subject are
divided into training (178) and testing (20) sets. Two sets of
articulatory feature vectors are implemented, the first being the
direct x and y position values of the designated EMA sensors,
and the second being the proposed articulatory features of Table
1, along with their first and second derivatives.

2.5. Evaluation

Several evaluation metrics are used to compare the baseline and
proposed features sets. The first is simply the variance of the
features, overall and within specific vowel configurations, with
an emphasis on the variance in the vertical direction where the
palate referencing has significant impact on the feature
information. The second is the normalized RMS error or the
acoustic-to-articulator inversion output, computed as
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The third metric is the correlation between the actual
articulator motion y; and the estimated motion f(x;).
Figure 4 compares the working spaces for three different

3. Experiments and results vowels. It can be seen that the overlap between the vowel spaces
is significantly reduced using the proposed articulatory
3.1. Working space analysis variables.
Figure 3 compares the working spaces for the vowel [iy] for a 20 T T v _ T
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Figure 3: Working space for vowel [iy] for direct sensor
measures (upper) and proposed articulatory features
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3.2. Acoustic-articulator inversion accuracy

Figure 5 illustrates the measured and reconstructed time
trajectories of raw sensor coordinates and articulatory feature in
vertical dimension for a test utterance.
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Figure 5: Measured (blue lines) and reconstructed (red
lines) trajectories of the direct measures {upper) and
articulatory features (lower), in the test sentence “The
boy was there when the sun rose”. Phone boundaries
are shown by vertical bars.

Table 3. RMS error and correlation coefficients
between acoustic-to-articulator inversion estimates
and actual trajectories.

r
Sensor AF Sensor AF
space space space space
Dorsum | 0.975 0.644 0.658 0.718
Body 1.052 0.715 0.620 0.729
Tip 0.862 0.617 0.603 0.786
Lips 0.887 0.678 0.592 0.736
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Results indicate that the normalized EMS error is smaller and
the correlation coefficient is higher for articulatory features
compared to raw movement data under the same inversion
system, suggesting that the proposed palate-referenced features
are better choices for representing the vocal tract configuration.

4. Discussion

The results in Figure 3 and Table 2 show that the vertical
variance is significantly reduced in the palate-reference feature
space, and Figure 4 clearly shows that the proposed features
have significantly less overlap between the working space,
strongly suggesting that the new features have better
discriminatory representations than direct kinematic data. This
directly influences the performance of HMM based acoustic-to-
articulatory inversion due to increased separation between the
observation distributions of different models, as shown by the
decreased inversion error and increased correlation to actual
feature trajectories. From the inversion results Table 3, the
average decrease in RMS error for the vertical dimension is
29% and the increase in correlation is 20%. This improvement
implies that the proposed feature is more capable in
characterizing vocal tract shapes than the direct measure.

50

This paper introduces a set of palate-referenced articulatory
features to characterize vocal tract shapes from EMA
measurements, and compares the working space and acoustic-
to-articulator inversion accuracy of these new features to that of
direct sensor data. Analysis show that the variance of the palate-
referenced features is reduced, and even more importantly that
the overlap of the vowel spaces characterized by these features
is also significantly reduced. The resulting acoustic-to-
articulator error is decreased by 29%, while correlation between
the estimated and actual feature trajectories increased by 20%.
Overall, these results strongly support the hypothesis that
palate-referenced articulatory features are significantly more
representative of vocal tract structure and acoustic spectral
characteristics than direct sensor measures.

Conclusion
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