5 research outputs found

    Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    Get PDF
    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns

    Estimation of Woody Biomass of Pine Savanna Woodlands From ALOS PALSAR Imagery

    No full text
    We present an adapted woody biomass retrieval approach for tropical savanna areas appropriate for use with satellite acquired L-band SAR imagery. We use the semiempirical water cloud model to describe the interaction between the SAR signal and vegetation and re-arrange the model to predict biomass. Estimations are made using dual polarization SAR imagery collected by ALOS PALSAR during 2008 in combination with community woodland inventory data from pine savanna areas in Belize. Estimation accuracy is assessed internally by the fit of the model to the ground training data, and then validated against an independent external dataset, quality controlled using Worldview II imagery. The internal validation shows a biomass estimation with an RMSE of 25 t/ha and a coefficient of determination R2 of 0.70, while the external validation indicates an RMSE of 13 t/ha with R2 of 0.53. This approach to biomass estimation appears to be most influenced by the plots with higher tree numbers and where the trees were more homogeneous. The existence of many similar sized individuals in those plots influence the SAR backscatter and is predicted to be the cause the elevated level of saturation found in this study (>100t/ha) with complete saturation predicted as a result of number density increases, and concurrently increasing basal area, both not exclusively dependent on biomass

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Evaluation of low-cost Earth observations to scale-up national forest monitoring in Miombo Woodlands of Malawi

    Get PDF
    This study explored the extent that low-cost Earth Observations (EO) data could effectively be combined with in-situ tree-level measurements to support national estimates of Above Ground Biomass (AGB) and Carbon (C) in Malawi’s Miombo Woodlands. The specific objectives were to; (i) investigate the effectiveness of low-cost optical UAV orthomosaics in geo-locating individual trees and estimating AGB and C, (ii) scale-up the AGB estimates using the canopy height model derived from the UAV imagery, and crown diameter measurements; and (iii) compare results from (ii), ALOS-PALSAR-2, Sentinel1, ESA CCI Biomass Map datasets, and Sentinel 2 vis/NIR/SWIR band combination datasets in mapping biomass. Data were acquired in 2019 from 13 plots over Ntchisi Forest in 3-fold, vis-a-vis; (i) individual tree measurements from 0.1ha ground-based (gb) plots, (ii) 3-7cm pixel resolution optical airborne imagery from 50ha plots, and (iii) SAR backscatter and Vis/NIR/SWIR bands imagery. Results demonstrate a strong correlational relationship (R2 = 0.7, RMSE = 11tCha-1) between gb AGB and gb fractional cover percent (FC %), more importantly (R2 = 0.7) between gb AGB and UAV-based FC. Similarly, another set of high correlation (R2 = 0.9, RMSE = 7tCha-1; R2 = 0.8, RMSE = 8tCha-1; and R2 = 0.7) was observed between the gb AGB and EO-based AGB from; (i) ALOS-PALSAR-2, (ii) ESA-CCI-Biomass Map, and (iii) S1-C-band, respectively. Under the measurement conditions, these findings reveal that; (i) FC is more indicative of AGB and C pattern than CHM, (ii) the UAV can collect optical data of very high resolution (3-7cm resolution with ±13m horizontal geolocation error), and (iii) provides the cost-effective means of bridging the ground datasets to the wall-to-wall satellite EO data (ÂŁ7 ha-1 compared to ÂŁ30 ha-1, per person, provided by the gb system). The overall better performance of the SAR backscatter (R2 = 0.7 to 0.9) establishes the suitability of the SAR backscatter to infer the Miombo AGB and fractional cover with high accuracy. However, the following factors compromised the accuracy for both the SAR and optical measurements; leaf-off and seasonality (fire, aridness), topography (steep slopes of 18-74%), and sensing angle. Inversely, the weak to moderate correlation observed between the gb height and UAV FC % measurements (R2 = 0.4 to 0.7) are attributable to the underestimation systematic error that UAV height datasets are associated with. The visual lacunarity analysis on S2-Vis/NIR/SWIR composite band and SAR backscatter measurements demonstrated robust, consistent and homogenous spatial crown patterns exhibited particularly by the leaf-on tree canopies along riverine tree belts and cohorts. These results reveal the potential of vis/NIR/SWIR band combination in determining the effect of fire, rock outcrops and bare land/soil common in these woodlands. Coarsening the EO imagery to ≄50m pixel resolution compromised the accuracy of the estimations, hence <50m resolution is the ideal scale for these Miombo. Careful consideration of the aforementioned factors and incorporation of FC parameter in during estimation of AGB and C will go a long way in not only enhancing the accuracy of the measurements, but also in bolstering Malawi’s NFMS standards to yield carbon off-set payments under the global REDD+ mechanism
    corecore