158 research outputs found

    On the Design of Sidelink for Cellular V2X: A Literature Review and Outlook for Future

    Get PDF
    Connected and fully automated vehicles are expected to revolutionize our mobility in the near future on a global scale, by significantly improving road safety, traffic efficiency, and traveling experience. Enhanced vehicular applications, such as cooperative sensing and maneuvering or vehicle platooning, heavily rely on direct connectivity among vehicles, which is enabled by sidelink communications. In order to set the ground for the core contribution of this paper, we first analyze the main streams of the cellular-vehicle-to-everything (C-V2X) technology evolution within the Third Generation Partnership Project (3GPP), with focus on the sidelink air interface. Then, we provide a comprehensive survey of the related literature, which is classified and critically dissected, considering both the Long-Term Evolution-based solutions and the 5G New Radio-based latest advancements that promise substantial improvements in terms of latency and reliability. The wide literature review is used as a basis to finally identify further challenges and perspectives, which may shape the C-V2X sidelink developments in the next-generation vehicles beyond 5G

    NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services

    Get PDF
    The Third Generation Partnership Project (3GPP) has specified Cellular Vehicle-to-Everything (C-V2X) radio access technology in Releases 15–17, with an emphasis on facilitating direct communication between vehicles through the interface, sidelink PC5. This interface provides end-to-end network slicing functionality together with a stable cloud-native core network. The performance of direct vehicle-to-vehicle (V2V) communications has been improved by using the sidelink interface, which allows for a network infrastructure bypass. Sidelink transmissions make use of orthogonal resources that are either centrally allocated (Mode 1, Release 14) or chosen by the vehicles themselves (Mode 2, Release 14). With growing interest in connected and autonomous vehicles, the advancement in radio access technologies that facilitate dependable and low-latency vehicular communications is becoming more significant. This is especially necessary when there are heavy traffic conditions and patterns. We thoroughly examined the New Radio (NR) sidelink’s performance based on 3GPP Releases 15–17 under various vehicle densities, speeds, and distance settings. Thus, by evaluating sidelink’s strengths and drawbacks, we are able to optimize resource allocation to obtain maximum coverage in urban areas. The performance evaluation was conducted on Network Simulator 3 (NS3.34/5G-LENA) utilizing various network metrics such as average packet reception rate, throughput, and latency

    Out-of-Coverage Multi-Hop Road Safety Message Distribution via LTE-A Cellular V2V (C-V2V)

    Get PDF
    This work investigates the performance of a multi-hop scheme for the dissemination of road safety messages on highway segments, employing the recently standardized LTE-A Cellular Vehicle-to-Everything (C-V2X) technology. In order to guarantee a seamless service in areas where cellular coverage is unavailable, vehicles directly communicate over the unlicensed ITS 5.9 GHz frequency band, operating in accordance to Mode 4 of the C-V2X standard. The behavior of the proposed scheme reveals that the delivery of safety messages can successfully take place on a dedicated radio channel, as well as on a shared channel where periodic messages are broadcast at the maximum frequency foreseen by ETSI

    Toward 6G Vehicle-to-Everything Sidelink: Nonorthogonal Multiple Access in the Autonomous Mode

    Get PDF
    The cellular vehicle-to-everything (C-V2X) sidelink technology, specified in the long-term evolution (LTE) and further improved in the 5G new radio (NR) standards to facilitate direct data exchange between vehicles, will play a crucial role in revolutionizing transportation systems. However, the demand for very high reliability and ultralow latency services especially challenges the sidelink resource allocation mechanism when performed by distributed vehicles, in the so-called autonomous mode. One of the major causes of ­performance degradation is the resource allocation mechanism, which was designed for orthogonal multiple access (OMA) and can generate interference and collisions under high load conditions. In this context, here we argue in favor of the use of non-OMA (NOMA) as a game changer for the sidelink in the upcoming 6G V2X, and the purpose of this article is to provide a reference for further intriguing studies in the field. Additionally, the gain achievable over conventional allocation schemes by enabling NOMA through the use of successive interference cancelation (SIC) at the receiver is measured through realistic simulations conducted when considering the latest C-V2X specifications

    Performance Analysis of Sidelink 5G-V2X Mode 2 through an Open-Source Simulator

    Get PDF
    The Third Generation Partnership Project (3GPP) has recently published a new set of specifications to enable advanced driving applications in fifth generation (5G) vehicle-to-everything (V2X) scenarios, with particular effort dedicated to the sidelink resource allocation in the autonomous mode, named Mode 2. In this paper, we conduct a comprehensive analysis of Mode 2 performance via an open-source system-level simulator, which implements the 5G New Radio (NR) flexible numerology and physical layer aspects together with the newly specified sidelink resource allocation modes for V2X communications and different data traffic patterns. Results collected through extensive simulation campaigns, under a wide variety of vehicle density, data transmission settings and traffic patterns, showcase the effects of the new 5G-V2X features on the sidelink resource allocation performance and provide some insights into possible ways to further improve Mode 2 performance

    Robust distributed resource allocation for cellular vehicle-to-vehicle communication

    Get PDF
    Mit Release 14 des LTE Standards unterstützt dieser die direkte Fahrzeug-zu-Fahrzeug-Kommunikation über den Sidelink. Diese Dissertation beschäftigt sich mit dem Scheduling Modus 4, einem verteilten MAC-Protokoll ohne Involvierung der Basisstation, das auf periodischer Wiederverwendung von Funkressourcen aufbaut. Der Stand der Technik und eine eigene Analyse des Protokolls decken verschiedene Probleme auf. So wiederholen sich Kollisionen von Paketen, wodurch manche Fahrzeuge für längere Zeit keine sicherheitskritischen Informationen verbreiten können. Kollisionen entstehen vermehrt auch dadurch, dass Hidden-Terminal-Probleme in Kauf genommen werden oder veränderliche Paketgrößen und -raten schlecht unterstützt werden. Deshalb wird ein Ansatz namens "Scheduling based on Acknowledgement Feedback Exchange" vorgeschlagen. Zunächst wird eine Funkreservierung in mehrere ineinander verschachtelte Unter-Reservierungen mit verschiedenen Funkressourcen unterteilt, was die Robustheit gegenüber wiederholenden Kollisionen erhöht. Dies ist die Grundlage für eine verteilte Staukontrolle, die die Periodizitätseigenschaft nicht verletzt. Außerdem können so veränderliche Paketgrößen oder -raten besser abgebildet werden. Durch die periodische Wiederverwendung können Acknowledgements für Funkressourcen statt für Pakete ausgesendet werden. Diese können in einer Bitmap in den Padding-Bits übertragen werden. Mittels der Einbeziehung dieser Informationen bei der Auswahl von Funkressourcen können Hidden-Terminal-Probleme effizient vermieden werden, da die Acknowledgements auch eine Verwendung dieser Funkressource ankündigen. Kollisionen können nun entdeckt und eine Wiederholung vermieden werden. Die Evaluierung des neuen MAC-Protokolls wurde zum großen Teil mittels diskreter-Event-Simulationen durchgeführt, wobei die Bewegung jedes einzelnen Fahrzeuges simuliert wurde. Der vorgeschlagene Ansatz führt zu einer deutlich erhöhten Paketzustellrate. Die Verwendung einer anwendungsbezogenen Awareness-Metrik zeigt, dass die Zuverlässigkeit der Kommunikation durch den Ansatz deutlich verbessert werden kann. Somit zeigt sich der präsentierte Ansatz als vielversprechende Lösung für die erheblichen Probleme, die der LTE Modus 4 mit sich bringt.The LTE Standard added support for a direct vehicle-to-vehicle communication via the Sidelink with Release 14. This dissertation focuses on the scheduling Mode 4, a distributed MAC protocol without involvement of the base station, which requires the periodic reuse of radio resources. The state of the art and a own analysis of this protocol unveil multiple problems. For example, packet collisions repeat in time, so that some vehicles are unable to distribute safety-critical information for extended periods of time. Collisions also arise due to the hidden-terminal problem, which is simply put up with in Mode 4. Additionally, varying packet sizes or rates can hardly be supported. Consequently, an approach called "Scheduling based on Acknowledgement Feedback Exchange" is proposed. Firstly, a reservation of radio resources is split into multiple, interleaved sub-reservations that use different radio resources. This increases the robustness against repeating collisions. It is also the basis for a distributed congestion control that does not violate the periodicity. Moreover, different packet rates or sizes can be supported. The periodic reuse of radio resources enables the transmission of acknowledgements for radio resources instead of packets. These can be transmitted in a bitmap inside the padding bits. Hidden-terminal problems can be mitigated by considering the acknowledgements when selecting radio resources as they announce the use of these radio resources. Collisions can also be detected and prevented from re-occurring. The evaluation of the MAC protocol is mostly performed using discrete-event simulations, which model the movement of every single vehicle. The presented approach leads to a clear improvement of the packet delivery rate. The use of an application-oriented metric shows that the communication robustness can be improved distinctly. The proposed approach hence presents itself as a promising solution for the considerable problems of LTE Mode 4

    Adaptive RRI Selection Algorithms for Improved Cooperative Awareness in Decentralized NR-V2X

    Full text link
    Decentralized vehicle-to-everything (V2X) networks (i.e., C-V2X Mode-4 and NR-V2X Mode-2) utilize sensing-based semi-persistent scheduling (SPS) where vehicles sense and reserve suitable radio resources for Basic Safety Message (BSM) transmissions at prespecified periodic intervals termed as Resource Reservation Interval (RRI). Vehicles rely on these received periodic BSMs to localize nearby (transmitting) vehicles and infrastructure, referred to as cooperative awareness. Cooperative awareness enables line of sight and non-line of sight localization, extending a vehicle's sensing and perception range. In this work, we first show that under high vehicle density scenarios, existing SPS (with prespecified RRIs) suffer from poor cooperative awareness, quantified as tracking error. Decentralized vehicle-to-everything (V2X) networks (i.e., C-V2X Mode-4 and NR-V2X Mode-2) utilize sensing-based semi-persistent scheduling (SPS) where vehicles sense and reserve suitable radio resources for Basic Safety Message (BSM) transmissions at prespecified periodic intervals termed as Resource Reservation Interval (RRI). Vehicles rely on these received periodic BSMs to localize nearby (transmitting) vehicles and infrastructure, referred to as cooperative awareness. Cooperative awareness enables line of sight and non-line of sight localization, extending a vehicle's sensing and perception range. In this work, we first show that under high vehicle density scenarios, existing SPS (with prespecified RRIs) suffer from poor cooperative awareness, quantified as tracking error
    corecore