633 research outputs found

    On the Reliability of LTE Random Access: Performance Bounds for Machine-to-Machine Burst Resolution Time

    Full text link
    Random Access Channel (RACH) has been identified as one of the major bottlenecks for accommodating massive number of machine-to-machine (M2M) users in LTE networks, especially for the case of burst arrival of connection requests. As a consequence, the burst resolution problem has sparked a large number of works in the area, analyzing and optimizing the average performance of RACH. However, the understanding of what are the probabilistic performance limits of RACH is still missing. To address this limitation, in the paper, we investigate the reliability of RACH with access class barring (ACB). We model RACH as a queuing system, and apply stochastic network calculus to derive probabilistic performance bounds for burst resolution time, i.e., the worst case time it takes to connect a burst of M2M devices to the base station. We illustrate the accuracy of the proposed methodology and its potential applications in performance assessment and system dimensioning.Comment: Presented at IEEE International Conference on Communications (ICC), 201

    Deep Reinforcement Learning for Real-Time Optimization in NB-IoT Networks

    Get PDF
    NarrowBand-Internet of Things (NB-IoT) is an emerging cellular-based technology that offers a range of flexible configurations for massive IoT radio access from groups of devices with heterogeneous requirements. A configuration specifies the amount of radio resource allocated to each group of devices for random access and for data transmission. Assuming no knowledge of the traffic statistics, there exists an important challenge in "how to determine the configuration that maximizes the long-term average number of served IoT devices at each Transmission Time Interval (TTI) in an online fashion". Given the complexity of searching for optimal configuration, we first develop real-time configuration selection based on the tabular Q-learning (tabular-Q), the Linear Approximation based Q-learning (LA-Q), and the Deep Neural Network based Q-learning (DQN) in the single-parameter single-group scenario. Our results show that the proposed reinforcement learning based approaches considerably outperform the conventional heuristic approaches based on load estimation (LE-URC) in terms of the number of served IoT devices. This result also indicates that LA-Q and DQN can be good alternatives for tabular-Q to achieve almost the same performance with much less training time. We further advance LA-Q and DQN via Actions Aggregation (AA-LA-Q and AA-DQN) and via Cooperative Multi-Agent learning (CMA-DQN) for the multi-parameter multi-group scenario, thereby solve the problem that Q-learning agents do not converge in high-dimensional configurations. In this scenario, the superiority of the proposed Q-learning approaches over the conventional LE-URC approach significantly improves with the increase of configuration dimensions, and the CMA-DQN approach outperforms the other approaches in both throughput and training efficiency

    Frame Structure Design and Analysis for Millimeter Wave Cellular Systems

    Full text link
    The millimeter-wave (mmWave) frequencies have attracted considerable attention for fifth generation (5G) cellular communication as they offer orders of magnitude greater bandwidth than current cellular systems. However, the medium access control (MAC) layer may need to be significantly redesigned to support the highly directional transmissions, ultra-low latencies and high peak rates expected in mmWave communication. To address these challenges, we present a novel mmWave MAC layer frame structure with a number of enhancements including flexible, highly granular transmission times, dynamic control signal locations, extended messaging and ability to efficiently multiplex directional control signals. Analytic formulae are derived for the utilization and control overhead as a function of control periodicity, number of users, traffic statistics, signal-to-noise ratio and antenna gains. Importantly, the analysis can incorporate various front-end MIMO capability assumptions -- a critical feature of mmWave. Under realistic system and traffic assumptions, the analysis reveals that the proposed flexible frame structure design offers significant benefits over designs with fixed frame structures similar to current 4G long-term evolution (LTE). It is also shown that fully digital beamforming architectures offer significantly lower overhead compared to analog and hybrid beamforming under equivalent power budgets.Comment: Submitted to IEEE Transactions for Wireless Communication

    LTE-LAA ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ MAC ๊ณ„์ธต ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ตœ์„ฑํ˜„.3GPP long term evolution (LTE) operation in unlicensed spectrum is emerging as a promising technology in achieving higher data rate with LTE since ultra-wide unlicensed spectrum, e.g., about 500 MHz at 5โ€“6 GHz range, is available in most countries. Recently, 3GPP has finalized standardization of licensed-assisted access (LAA) for LTE operation in 5 GHz unlicensed spectrum, which has been a playground only for Wi-Fi. In this dissertation, we propose the following three strategies to enhance the performance of LAA: (1) Receiver-aware COT adaptation, (2) Collision-aware link adaptation, and (3) Power and energy detection threshold adaptation. First, LAA has a fixed maximum channel occupancy time (MCOT), which is the maximum continuous transmission time after channel sensing, while Wi-Fi may transmit for much shorter time duration. As a result, when Wi-Fi coexists with LAA, Wi-Fi airtime and throughput can be much less than those achieved when Wi-Fi coexists with another Wi-Fi. To guarantee fair airtime and improve throughput of Wi-Fi, we propose a receiver-aware channel occupancy time (COT) adaptation ( RACOTA ) algorithm, which observes Wi-Fi aggregate MAC protocol data unit (A-MPDU) frames and matches LAAs COT to the duration of A-MPDU frames when any Wi-Fi receiver has more data to receive. Moreover, RACOTA detects saturation of Wi-Fi traffic and adjusts COT only if Wi-Fi traffic is saturated. We prototype saturation detection algorithm of RACOTA with commercial off-the-shelf Wi-Fi device and show that RACOTA detects saturation of Wi-Fi networks accurately. Through ns-3 simulations, we demonstrate that RACOTA provides airtime fairness between LAA and Wi-Fi while achieves up to 334% Wi-Fi throughput gain. Second, the link adaptation scheme of the conventional LTE, adaptive modulation and coding (AMC), cannot operate well in the unlicensed band due to intermittent collisions. Intermittent collisions make LAA eNB lower modulation and coding scheme (MCS) for the subsequent transmission and such unnecessarily lowered MCS significantly degrades spectral efficiency. To address this problem, we propose a collision-aware link adaptation algorithm ( COALA ). COALA exploits k-means unsupervised clustering algorithm to discriminate channel quality indicator (CQI) reports which are measured with collision interference and selects the most suitable MCS for the next transmission. By prototype-based experiments, we demonstrate that COALA detects collisions accurately, and by conducting ns-3 simulations in various scenarios, we also show that COALA achieves up to 74.9% higher user perceived throughput than AMC. Finally, we propose PETAL to mitigate the negative impact of spatial reuse (SR) operation. We first design the baseline algorithm, which operates SR aggressively, and show that the baseline algorithm degrades the throughput performance severely when the UE is close to an interferer. Our proposed algorithm PETAL estimates and compares the spectral efficiency for the SR operation and non-SR operation. Then, PETAL operates SR only if the spectral efficiency of SR operation is expected to be higher than the case of non-SR operation. Our simulation verifies the performance of PETAL in various scenarios. When two pair of an eNB and a UE coexists, PETAL improves the throughput by up to 329% over the baseline algorithm. In summary, we identify interesting problems that appeared with LAA and shows the impact of the problems through the extensive simulations and propose compelling algorithms to solve the problems. The airtime fairness between Wi-Fi and LAA is improved with COT adaptation. Furthermore, link adaptation accuracy and SR operation are improved by exploiting CQI reports history. The performance of the proposed schemes is verified by system level simulation.๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ์˜ LTE ๋™์ž‘์€ ๋” ๋†’์€ ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์„ ๋‹ฌ์„ฑํ•˜๋Š” ์œ ๋งํ•œ ๊ธฐ์ˆ ๋กœ ๋ถ€๊ฐ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ 3GPP๋Š” ๊ธฐ์กด Wi-Fi ๊ธฐ์ˆ ์ด ์‚ฌ์šฉํ•˜๋˜ 5 GHz ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ LTE๋ฅผ ์‚ฌ์šฉํ•˜๋Š” licensed-assisted access (LAA) ๊ธฐ์ˆ ์˜ ํ‘œ์ค€ํ™”๋ฅผ ์™„๋ฃŒํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” LAA์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์„ธ ๊ฐ€์ง€ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค: (1) ์ˆ˜์‹ ๊ธฐ ์ธ์‹ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ์ ์‘, (2) ์ถฉ๋Œ ์ธ์‹ ๋งํฌ ์ ์‘, (3) ์ „๋ ฅ ๋ฐ ์—๋„ˆ์ง€ ๊ฒ€์ถœ ์—ญ์น˜ ์ ์‘. ์ฒซ์งธ, LAA๋Š” ๊ณ ์ •๋œ ์ตœ๋Œ€ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ  ๊ทธ ์‹œ๊ฐ„ ๋งŒํผ ์—ฐ์†์ ์œผ๋กœ ์ „์†กํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด, Wi-Fi๋Š” ๋น„๊ต์  ์งง์€ ์‹œ๊ฐ„ ๋™์•ˆ๋งŒ ์—ฐ์†์ ์œผ๋กœ ์ „์†กํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ Wi-Fi๊ฐ€ LAA์™€ ๊ณต์กดํ•  ๋•Œ Wi-Fi์˜ airtime๊ณผ ์ˆ˜์œจ ์„ฑ๋Šฅ์€ Wi-Fi๊ฐ€ ๋˜ ๋‹ค๋ฅธ Wi-Fi์™€ ๊ณต์กดํ•  ๋•Œ์— ๋น„ํ•˜์—ฌ ์ €ํ•˜๋˜๊ฒŒ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” Wi-Fi์˜ airtime๊ณผ ์ˆ˜์œจ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ Wi-Fi์˜ A-MPDU ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์— ๋งž์ถ”์–ด LAA์˜ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ์กฐ์ ˆํ•˜๋Š” ์ˆ˜์‹ ๊ธฐ ์ธ์‹ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ์ ์‘ ๊ธฐ๋ฒ•์ธ RACOTA๋ฅผ ์ œ์•ˆํ•œ๋‹ค. RACOTA ๋Š” ํฌํ™” ๊ฐ์ง€ ๊ฒฐ๊ณผ Wi-Fi ์ˆ˜์‹ ๊ธฐ๊ฐ€ ๋” ๋ฐ›์„ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋‹ค๊ณ  ํŒ๋‹จ๋  ๋•Œ์—๋งŒ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ์กฐ์ ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” RACOTA ์˜ ํฌํ™” ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ƒ์šฉ Wi-Fi ์žฅ๋น„์— ๊ตฌํ˜„ํ•˜์—ฌ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹ค์ธก์„ ํ†ตํ•ด RACOTA ๊ฐ€ ๊ณต์กดํ•˜๋Š” Wi-Fi์˜ ํฌํ™” ์—ฌ๋ถ€๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•ด๋ƒ„์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ RACOTA ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” LAA๊ฐ€ ๊ณต์กดํ•˜๋Š” Wi-Fi์—๊ฒŒ ๊ณต์ •ํ•œ airtime์„ ์ œ๊ณตํ•˜๊ณ  ๊ธฐ์กด LAA์™€ ๊ณต์กดํ•˜๋Š” Wi-Fi ๋Œ€๋น„ ์ตœ๋Œ€ 334%์˜ Wi-Fi ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ๋‘˜์งธ, ๊ฐ„ํ—์ ์ธ ์ถฉ๋Œ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ๋Š” ๊ธฐ์กด LTE์˜ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์ธ adaptive modulation and coding (AMC)์ด ์ž˜ ๋™์ž‘ํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ„ํ—์ ์ธ ์ถฉ๋Œ์€ LAA ๊ธฐ์ง€๊ตญ์œผ๋กœ ํ•˜์—ฌ๊ธˆ modulation and coding scheme (MCS)์„ ๋‚ฎ์ถ”์–ด์„œ ๋‹ค์Œ ์ „์†ก์„ ํ•˜๋„๋ก ํ•˜๋Š”๋ฐ ๋‹ค์Œ ์ „์†ก ์‹œ์— ์ถฉ๋Œ์ด ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋‚ฎ์ถ˜ MCS๋กœ ์ธํ•ด ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์ด ํฌ๊ฒŒ ์ €ํ•˜๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ์ถฉ๋Œ ์ธ์‹ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์ธ COALA ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. COALA ๋Š” k-means ๋ฌด๊ฐ๋… ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ channel quality indicator (CQI) ๋ฆฌํฌํŠธ ์ค‘ ์ถฉ๋Œ ๊ฐ„์„ญ์— ์˜ํ–ฅ์„ ๋ฐ›์€ CQI ๋ฆฌํฌํŠธ๋“ค์„ ๊ตฌ๋ณ„ํ•ด๋‚ด๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์Œ ์ „์†ก์„ ์œ„ํ•œ ์ตœ์ ์˜ MCS๋ฅผ ์„ ํƒํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์‹ค์ธก์„ ํ†ตํ•˜์—ฌ COALA ๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ์ถฉ๋Œ์„ ๊ฐ์ง€ํ•ด๋ƒ„์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ COALA ๊ฐ€ AMC ๋Œ€๋น„ ์ตœ๋Œ€ 74.9%์˜ ์‚ฌ์šฉ์ž ์ธ์‹ ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ์…‹์งธ, ์šฐ๋ฆฌ๋Š” ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์˜ ๋ถ€์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์‹  ๋‹จ๋ง์„ ๊ณ ๋ คํ•˜์—ฌ ์ „์†ก ํŒŒ์›Œ ๋ฐ ์—๋„ˆ์ง€ ๊ฒ€์ถœ ์—ญ์น˜๋ฅผ ์ ์‘์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” PETAL ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋จผ์ € ์ˆ˜์‹  ๋‹จ๋ง์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ๊ณต๊ฒฉ์ ์œผ๋กœ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•˜๋Š” baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ•˜๊ณ  ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์ˆ˜์‹  ๋‹จ๋ง์ด ๊ฐ„์„ญ์›์— ๊ฐ€๊นŒ์šด ๊ฒฝ์šฐ baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์ด ์‹ฌ๊ฐํ•˜๊ฒŒ ์—ดํ™”๋จ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ PETAL ์€ ์ˆ˜์‹  ๋‹จ๋ง๋กœ๋ถ€ํ„ฐ ๋ฐ›์€ CQI ๋ฆฌํฌํŠธ ์ •๋ณด์™€ ์ฑ„๋„ ์ ์œ  ์‹œ์ ๊นŒ์ง€์˜ ํ‰๊ท  ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ด์šฉํ•˜์—ฌ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•  ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ๊ณผ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•˜์ง€ ์•Š์„ ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์„ ๋น„๊ตํ•˜์—ฌ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•  ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์ด ๋” ํด ๋•Œ์—๋งŒ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ PETAL ์ด baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋Œ€๋น„ ์ตœ๋Œ€ 329%์˜ ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ์š”์•ฝํ•˜์ž๋ฉด, ์šฐ๋ฆฌ๋Š” LAA์˜ ๋“ฑ์žฅ๊ณผ ํ•จ๊ป˜ ์ƒˆ๋กญ๊ฒŒ ๋Œ€๋‘๋˜๋Š” ํฅ๋ฏธ๋กœ์šด ๋ฌธ์ œ๋“ค์„ ํ™•์ธํ•˜๊ณ  ๋ฌธ์ œ๋“ค์˜ ์‹ฌ๊ฐ์„ฑ์„ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์‚ดํŽด๋ณด๊ณ  ์ด ๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. Wi-Fi์™€ LAA ์‚ฌ์ด์˜ airtime ๊ณต์ •์„ฑ์€ LAA์˜ ์—ฐ์† ์ „์†ก ์‹œ๊ฐ„์„ ์ ์‘์ ์œผ๋กœ ์กฐ์ ˆํ•˜์—ฌ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋งํฌ ์ ์‘ ์ •ํ™•๋„์™€ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์˜ ํšจ์œจ์„ฑ์€ CQI ๋ฆฌํฌํŠธ๋“ค์˜ ๋ถ„ํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์˜ ์„ฑ๋Šฅ์€ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค.1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 RACOTA: Receiver-Aware Channel Occupancy Time Adaptation for LTE-LAA . . . . . . . 2 1.3.2 COALA: Collision-Aware Link Adaptation for LTE-LAA . . 3 1.3.3 PETAL: Power and Energy Detection Threshold Adaptation for LAA . . . . . . . . . . . . . . 4 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 5 2 RACOTA:Receiver-AwareChannelOccupancyTimeAdaptationforLTE- LAA 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 MAC Mechanisms of Wi-Fi and LAA . . . . . . . . . . . . . . . . . 10 2.3.1 Wi-Fi MAC Operation . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 LAA Listen-Before-Talk (LBT) Mechanism . . . . . . . . . . 11 2.3.3 Wide Bandwidth Operation . . . . . . . . . . . . . . . . . . 13 2.4 Coexistence performance of LAA and Wi-Fi . . . . . . . . . . . . . . 14 2.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Unfairness between LAA and Wi-Fi . . . . . . . . . . . . . . 15 2.5 Receiver-Aware COT Adaptation Algorithm . . . . . . . . . . . . . . 17 2.5.1 Saturation Detection (SD) . . . . . . . . . . . . . . . . . . . 20 2.5.2 Receiver-Aware COT Decision . . . . . . . . . . . . . . . . . 22 2.6 Performance Evaluation of SD Algorithm . . . . . . . . . . . . . . . 22 2.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.2 PPDUMaxTime Detection . . . . . . . . . . . . . . . . . . . 24 2.6.3 Saturation Detection Performance . . . . . . . . . . . . . . . 26 2.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7.1 Saturated Traffic Scenario . . . . . . . . . . . . . . . . . . . 28 2.7.2 Unsaturated Traffic Scenario . . . . . . . . . . . . . . . . . . 30 2.7.3 Bursty Traffic Scenario . . . . . . . . . . . . . . . . . . . . . 30 2.7.4 Heterogeneous Wi-Fi Traffic Generation Scenario . . . . . . 31 2.7.5 Multiple Node Scenario . . . . . . . . . . . . . . . . . . . . 34 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 COALA: Collision-Aware Link Adaptation for LTE-LAA 36 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Backgound and Related Work . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 LAA and LBT . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 AMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 Inter-Cell Interference Cancellation . . . . . . . . . . . . . . 39 3.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Impact of Collision to Link Adaptation . . . . . . . . . . . . . . . . . 41 3.4 COALA: Collision-aware Link Adaptation . . . . . . . . . . . . . . . 47 3.4.1 CQI Clustering Algorithm . . . . . . . . . . . . . . . . . . . 48 3.4.2 Collision Detection and Collision Probability Estimation . . . 48 3.4.3 Suitable MCS Selection . . . . . . . . . . . . . . . . . . . . 49 3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.1 Prototype-based Feasibility Study . . . . . . . . . . . . . . . 51 3.5.2 Contention Collision with LAA eNBs . . . . . . . . . . . . . 53 3.5.3 Hidden Collision . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.4 Bursty Hidden Collision . . . . . . . . . . . . . . . . . . . . 58 3.5.5 Contention Collision with Wi-Fi Transmitters . . . . . . . . . 58 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 PETAL: Power and Energy Detection Threshold Adaptation for LAA 62 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Backgound and Related Work . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Energy Detection Threshold . . . . . . . . . . . . . . . . . . 64 4.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Design of the Baseline Algorithm . . . . . . . . . . . . . . . 65 4.3.2 Performance of the Baseline Algorithm . . . . . . . . . . . . 66 4.4 PETAL: Power and Energy Detection Threshold Adaptation . . . . . 68 4.4.1 CQI Management . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.2 Success Probability and Airtime Ratio Estimation . . . . . . . 69 4.4.3 CQI Clustering Algorithm . . . . . . . . . . . . . . . . . . . 71 4.4.4 SR Decision . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5.1 Two Cell Scenario . . . . . . . . . . . . . . . . . . . . . . . 73 4.5.2 Coexistence with Standard LAA . . . . . . . . . . . . . . . . 75 4.5.3 Four Cell Scenario . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 79 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 79 Abstract (In Korean) 88 ๊ฐ์‚ฌ์˜ ๊ธ€ 92Docto

    A Tractable Model of the LTE Access Reservation Procedure for Machine-Type Communications

    Get PDF
    A canonical scenario in Machine-Type Communications (MTC) is the one featuring a large number of devices, each of them with sporadic traffic. Hence, the number of served devices in a single LTE cell is not determined by the available aggregate rate, but rather by the limitations of the LTE access reservation protocol. Specifically, the limited number of contention preambles and the limited amount of uplink grants per random access response are crucial to consider when dimensioning LTE networks for MTC. We propose a low-complexity model of LTE's access reservation protocol that encompasses these two limitations and allows us to evaluate the outage probability at click-speed. The model is based chiefly on closed-form expressions, except for the part with the feedback impact of retransmissions, which is determined by solving a fixed point equation. Our model overcomes the incompleteness of the existing models that are focusing solely on the preamble collisions. A comparison with the simulated LTE access reservation procedure that follows the 3GPP specifications, confirms that our model provides an accurate estimation of the system outage event and the number of supported MTC devices.Comment: Submitted, Revised, to be presented in IEEE Globecom 2015; v3: fixed error in eq. (4
    • โ€ฆ
    corecore