21,025 research outputs found

    Evaluation of Coordinated Ramp Metering (CRM) Implemented By Caltrans

    Get PDF
    Coordinated ramp metering (CRM) is a critical component of smart freeway corridors that rely on real-time traffic data from ramps and freeway mainline to improve decision-making by the motorists and Traffic Management Center (TMC) personnel. CRM uses an algorithm that considers real-time traffic volumes on freeway mainline and ramps and then adjusts the metering rates on the ramps accordingly for optimal flow along the entire corridor. Improving capacity through smart corridors is less costly and easier to deploy than freeway widening due to high costs associated with right-of-way acquisition and construction. Nevertheless, conversion to smart corridors still represents a sizable investment for public agencies. However, in the U.S. there have been limited evaluations of smart corridors in general, and CRM in particular, based on real operational data. This project examined the recent Smart Corridor implementation on Interstate 80 (I-80) in the Bay Area and State Route 99 (SR-99, SR99) in Sacramento based on travel time reliability measures, efficiency measures, and before-and-after safety evaluation using the Empirical Bayes (EB) approach. As such, this evaluation represents the most complete before-and-after evaluation of such systems. The reliability measures include buffer index, planning time, and measures from the literature that account for both the skew and width of the travel time distribution. For efficiency, the study estimates the ratio of vehicle miles traveled vs. vehicle hour traveled. The research contextualizes before-and-after comparisons for efficiency and reliability measures through similar measures from another corridor (i.e., the control corridor of I-280 in District 4 and I-5 in District 3) from the same region, which did not have CRM implemented. The results show there has been an improvement in freeway operation based on efficiency data. Post-CRM implementation, travel time reliability measures do not show a similar improvement. The report also provides a counterfactual estimate of expected crashes in the post-implementation period, which can be compared with the actual number of crashes in the “after” period to evaluate effectiveness

    Moving from Walkability? Evaluation Traditional and Merging Data Sources for Evaluating Changes in Campus-Generated Greenhouse Gas Emissions

    Get PDF
    Universities are increasingly committing to reduce campus-generated greenhouse gas emissions, whether voluntarily or in response to a legal mandate. As an initial step to keeping these commitments, universities need an accounting of baseline greenhouse gas emissions levels and means of monitoring changes in campus-generated greenhouse gas emissions over time. Commute-generated greenhouse gas emissions from travel to and from campus by students and employees are among the most difficult to quantify. This report examines some of the challenges associated with estimating campus-generated greenhouse gas emissions and evaluates ways to address those challenges. The purpose of this study is to identify changes in campus-generated travel behavior at California Polytechnic State University based on the results of three successive campus-wide travel surveys; to evaluate alternative data sources that have the potential to supplement or replace campus travel surveys as a source of data for campus-generated greenhouse gas emissions; and to evaluate alternate methods to estimating greenhouse gas emissions from campus-generated vehicle miles traveled, depending on the presence of campus-specific information about vehicle fleet characteristics. The results of successive travel surveys suggest that the campus population has become more car-dependent over time. Comparison of survey results with data collected from automating traffic counting devices and mobile device data suggest that surveys that are limited to members of the campus community are likely to undercount campus-generated vehicle miles traveled by excluding infrequent, but potentially long, trips by campus visitors. Finally, we find that using campus-specific information on the model years of vehicles used to commute to campus yields higher estimates of campus-generated greenhouse gas emissions, relative to average regional emissions rates

    SaferCross: Enhancing Pedestrian Safety Using Embedded Sensors of Smartphone

    Get PDF
    The number of pedestrian accidents continues to keep climbing. Distraction from smartphone is one of the biggest causes for pedestrian fatalities. In this paper, we develop SaferCross, a mobile system based on the embedded sensors of smartphone to improve pedestrian safety by preventing distraction from smartphone. SaferCross adopts a holistic approach by identifying and developing essential system components that are missing in existing systems and integrating the system components into a "fully-functioning" mobile system for pedestrian safety. Specifically, we create algorithms for improving the accuracy and energy efficiency of pedestrian positioning, effectiveness of phone activity detection, and real-time risk assessment. We demonstrate that SaferCross, through systematic integration of the developed algorithms, performs situation awareness effectively and provides a timely warning to the pedestrian based on the information obtained from smartphone sensors and Direct Wi-Fi-based peer-to-peer communication with approaching cars. Extensive experiments are conducted in a department parking lot for both component-level and integrated testing. The results demonstrate that the energy efficiency and positioning accuracy of SaferCross are improved by 52% and 72% on average compared with existing solutions with missing support for positioning accuracy and energy efficiency, and the phone-viewing event detection accuracy is over 90%. The integrated test results show that SaferCross alerts the pedestrian timely with an average error of 1.6sec in comparison with the ground truth data, which can be easily compensated by configuring the system to fire an alert message a couple of seconds early.Comment: Published in IEEE Access, 202

    Multi-Criteria Evaluation in Support of the Decision-Making Process in Highway Construction Projects

    Get PDF
    The decision-making process in highway construction projects identifies and selects the optimal alternative based on the user requirements and evaluation criteria. The current practice of the decision-making process does not consider all construction impacts in an integrated decision-making process. This dissertation developed a multi-criteria evaluation framework to support the decision-making process in highway construction projects. In addition to the construction cost and mobility impacts, reliability, safety, and emission impacts are assessed at different evaluation levels and used as inputs to the decision-making process. Two levels of analysis, referred to as the planning level and operation level, are proposed in this research to provide input to a Multi-Criteria Decision-Making (MCDM) process that considers user prioritization of the assessed criteria. The planning level analysis provides faster and less detailed assessments of the inputs to the MCDM utilizing analytical tools, mainly in a spreadsheet format. The second level of analysis produces more detailed inputs to the MCDM and utilizes a combination of mesoscopic simulation-based dynamic traffic assignment tool, and microscopic simulation tool, combined with other utilities. The outputs generated from the two levels of analysis are used as inputs to a decision-making process based on present worth analysis and the Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) MCDM method and the results are compared
    corecore