353 research outputs found

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    Nield v. Pocatello Health Services Clerk\u27s Record v. 3 Dckt. 38823

    Get PDF
    https://digitalcommons.law.uidaho.edu/idaho_supreme_court_record_briefs/5006/thumbnail.jp

    Systems for Noninvasive Assessment of Biomechanical Load in the Lower Limb

    Get PDF
    Every move you makeā€”and, yes, every step you takeā€”is the result of action at a joint, and so proper joint function is pivotal to the way we explore and interact with the world around us. Unfortunately, joint function is often disrupted by injuries, chronic disorders, or neurological deficits, which can, in turn, disrupt quality of life. Many forms of joint dysfunction derive from adverse biomechanical loading conditionsā€”that is, the forces and torques to which our limbs are subjectedā€”and, thus, techniques for monitoring these loads during daily life may improve our understanding of how injuries and disorders arise and progressā€”and, most importantly, how best to treat them. The standard methods for assessing these loading conditions, however, are almost all benchtop-bound and confined to laboratories or clinics, so their utility in at-home or ambulatory settingsā€”where they may be most impactfulā€”is limited. In an attempt to address this void, in this work, we present three novel techniques for extracting information related to joint loading using a synthesis of noninvasive / wearable sensing and machine learning. First, we detail the development of an adjustable-stiffness ankle exoskeleton with multimodal sensing capabilities and use it to explore how humans interact with external elastic loading of the ankle during walking. Then, in an attempt to peer ā€œunder the skin,ā€ we develop a novel form-factor for capturing joint soundsā€” the skin-surface vibrations produced by articulating structures internal to the jointā€”and demonstrate that these noninvasive measurements can be used to discriminate levels of axial loading at the knee. Finally, taking the concept of joint acoustics one step further, we introduce a new, active acoustics-based technique whereby the tensile loading of a particular tissueā€”the Achilles tendonā€”can be estimated by measuring the tissueā€™s mechanical response to a burst vibration on the skin surface. Using this approach, we are able to assess this loading state (and, by association, the net moment at the ankle) reliably across several activities of daily life, and, through a proof-of-concept study, we demonstrate how the technique can effectively translate to a fully wearable device. Collectively, the efforts reported in this thesis represent a novel, multi-path approach to assessing biomechanical loading states in the lower limb and the effects thereof. These tools and insights may serve as a basis for future development of wearable, accessible technologies for monitoring joint load during daily life, thereby reducing injury risk, tracking disease progress, assessing the efficacy of treatment, and accelerating recovery.Ph.D

    Use of stance control knee-ankle-foot orthoses : a review of the literature

    Get PDF
    The use of stance control orthotic knee joints are becoming increasingly popular as unlike locked knee-ankle-foot orthoses, these joints allow the limb to swing freely in swing phase while providing stance phase stability, thus aiming to promote a more physiological and energy efficient gait. It is of paramount importance that all aspects of this technology is monitored and evaluated as the demand for evidence based practice and cost effective rehabilitation increases. A robust and thorough literature review was conducted to retrieve all articles which evaluated the use of stance control orthotic knee joints. All relevant databases were searched, including The Knowledge Network, ProQuest, Web of Knowledge, RECAL Legacy, PubMed and Engineering Village. Papers were selected for review if they addressed the use and effectiveness of commercially available stance control orthotic knee joints and included participant(s) trialling the SCKAFO. A total of 11 publications were reviewed and the following questions were developed and answered according to the best available evidence: 1. The effect SCKAFO (stance control knee-ankle-foot orthoses) systems have on kinetic and kinematic gait parameters 2. The effect SCKAFO systems have on the temporal and spatial parameters of gait 3. The effect SCKAFO systems have on the cardiopulmonary and metabolic cost of walking. 4. The effect SCKAFO systems have on muscle power/generation 5. Patientā€™s perceptions/ compliance of SCKAFO systems Although current research is limited and lacks in methodological quality the evidence available does, on a whole, indicate a positive benefit in the use of SCKAFOs. This is with respect to increased knee flexion during swing phase resulting in sufficient ground clearance, decreased compensatory movements to facilitate swing phase clearance and improved temporal and spatial gait parameters. With the right methodological approach, the benefits of using a SCKAFO system can be evidenced and the research more effectively converted into clinical practice

    The effect of prefabricated wrist-hand orthoses on performing activities of daily living

    Get PDF
    Wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit associated with the wrist as a result of rheumatoid changes. The common presentation of the wrist is one of flexion and radial deviation with ulnar deviation of the fingers. This wrist position Results in altered biomechanics compromising hand function during activities of daily living (ADL). A paucity of evidence exists which suggests that improvements in ADL with WHO use are very task specific. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on performing five ADLs tasks was investigated. The tasks were selected to represent common grip patterns and tests were performed with and without WHOs by right-handed, females, aged 20-50 years over a ten week period. The time taken to complete each task was recorded and a wrist goniometer, elbow goniometer and a forearm torsiometer were used to measure joint motion. Results show that, although orthoses may restrict the motion required to perform a task, participants do not use the full range of motion which the orthoses permit. The altered wrist position measured may be attributable to a modified method of performing the task or to a necessary change in grip pattern, resulting in an increased time in task performance. The effect of WHO use on ADL is task specific and may initially impede function. This could have an effect on WHO compliance if there appears to be no immediate benefits. This orthotic effect may be related to restriction of wrist motion or an inability to achieve the necessary grip patterns due to the designs of the orthoses

    The effect of prefabricated wrist-hand orthoses on grip strength

    Get PDF
    Prefabricated wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit and compromised grip strength as a result of rheumatoid changes. It is thought that an orthosis which improves wrist extension, reduces synovitis and increases the mechanical advantage of the flexor muscles will improve hand function. Previous studies report an initial reduction in grip strength with WHO use which may increase following prolonged use. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on grip strength was measured using a Jamar dynamometer. Tests were performed with and without WHOs by right-handed, female subjects, aged 20-50 years over a ten week period. During each test, a wrist goniometer and a forearm torsiometer were used to measure wrist joint position when maximum grip strength was achieved. The majority of participants achieved maximum grip strength with no orthosis at 30Ā° extension. All the orthoses reduced initial grip strength but surprisingly the restriction of wrist extension did not appear to contribute in a significant way to this. Reduction in grip must therefore also be attributable to WHO design characteristics or the quality of fit. The authors recognize the need for research into the long term effect of WHOs on grip strength. However if grip is initially adversely affected, patients may be unlikely to persevere with treatment thereby negating all therapeutic benefits. In studies investigating patient opinions on WHO use, it was a stable wrist rather than a stronger grip reported to have facilitated task performance. This may explain why orthoses that interfere with maximum grip strength can improve functional task performance. Therefore while it is important to measure grip strength, it is only one factor to be considered when evaluating the efficacy of WHOs

    Equine body weight estimation using three-dimensional images

    Get PDF
    Includes bibliographical references.2015 Summer.Accurately estimating the body weight (BW) of a horse is important in order to make appropriate management and treatment decisions. Most field equine veterinarians and experienced equine people, however, visually estimate BW because large animal scales are impractical for field use due to the weight (>80 kg), size (length >200 cm), and cost (>$1,000). There are some alternative BW estimation methods such as a weight tape or BW estimation using a combination of heart girth and body length measurements. These methods, however, have 5 - 15% or even higher margin of error. According to human studies, there is a high correlation between BW and body volume (BV). Correlation coefficient (R) between these two variables is 0.996-0.998. Our study was designed to develop methods to estimate the BW of horses by using 3D image based BV measurement. 3D imaging technology allows easy and accurate measurement of diverse indices of an object, including the volume. Recent development of Structure-light 3D scanning technology allows 3D scanning of an object as large as 3 by 3 square meter in a short time. In this study, 3D images of 22 and 11 horses were obtained by using 3D scanning (3DScan) and photogrammetry (2Dto3D), respectively. BV and trunk volume (TV) of the horses were measured from the obtained 3D images. Measurements of BW using five conventional methods (visual estimation, 2 weight tapes (Purina, Shell), estimated BW by using heart girth and body length (Carrollā€™s formula), and a large animal scale) were also conducted, and the data of body condition score (BCS), sex, coat color, and coat type of the horses were collected. Linear regression models to estimate the BW of the horse based on the volume and other independent variables were developed using regression model stepwise selection procedures (P<0.05). Variables selected in 3DScan method were BV, sex, and coat type, and, in 2Dto3D method, BV (TV) was selected. The coefficient of determination of the developed regression models were 0.95 and 0.78-0.82, respectively, and the average percent errors of the predicted BW compared to the true BW of horses were 2.07 % and 2.67 %, respectively. The accuracy of the 3DScan method was significantly more accurate than WT, Carrollā€™s formual, and VE (P<0.05). 3D image based BW measurement method had higher accuracy and convenience compared to conventional alternative BW measuring methods. Accurate and easy determination of BW using 3D images will allow for regular BW measurement in the field and allow optimal equine health management by equine stakeholders and practitioners. The 3D images obtained in this study were highly detailed. Further graphical analysis of the obtained 3D images will make it possible to use this technology on automatic evaluation of body condition score, equine conformation evaluation, breed registration, and the study of pharmacokinetics and dynamics of newly developed drugs. This research findings may also have utility for application to wild or zoo animals such as the elephant, rhinoceros, or even the tiger where hands on collection of body weight would be challenging

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    NASA Tech Briefs, Winter 1977

    Get PDF
    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences
    • ā€¦
    corecore