1,240 research outputs found

    Parallel Parsing in a Multiprocessor Environment

    Get PDF
    Parsing in a multiprocessor environment is considered. Two models for asynchronous bottom-up parallel parsing are presented. A method for estimating speedup in asynchronous bottom-up parallel parsing is developed, and it is used to estimate speedup obtainable by bottom-up parallel parsing of Pascal-like languages. It is found that bottom-up parallel parsing algorithms can attain a maximum speedup of 0 (L1/2) with (L1/2) processors, where L is the number of tokens in the string being parsed. Hence, bottom-up parallel parsing technique does not yield good speedup. A new parsing technique is proposed for parsing a class of block-structured languages. The novelty of the technique is that it is inherently parallel. By applying this new technique, a string of L tokens can be parsed in O (log L) time with (L /log L) processors. The parsing algorithm uses a parenthesis-matching algorithm developed here. The parenthesis-matching algorithm can find matching of a sequence of parentheses in O (log L) time with (L /log L) processors. Thus, the new parsing algorithm is cost optimal

    Evaluating Speedup in Parallel Compilers

    Get PDF
    Parallel programming is prevalent in every field mainly to speed up computation. Advancements in multiprocessor technology fuel this trend toward parallel programming. However, modern compilers are still largely single threaded and do not take advantage of the machine resources available to them. There has been a lot of work done on compilers that add parallel constructs to the programs they are compiling, enabling programs to exploit parallelism at run time. Auto parallelization of loops by a compiler is one such example. Researchers have done very little work towards parallelizing the compilation process itself. The research done here focuses on parallel compilers that target computation speedup by parallelizing the process of program compilation during the lexical analysis and semantic analysis phase. Parallelization brings along with it issues like synchronization, concurrency and communication overhead. In the semantic analysis phase, these issues are of particular relevance during the construction of the symbol table. Research done on a concurrent compiler developed at the University of Toronto in 1991 proposed three techniques to address the generation of the symbol table [Seshadri91]. The goal here is to implement a parallel compiler using concepts from those techniques as references. The research done here will augment the work done formerly and measure the performance speedup obtained

    Parallel parsing made practical

    Get PDF
    The property of local parsability allows to parse inputs through inspecting only a bounded-length string around the current token. This in turn enables the construction of a scalable, data-parallel parsing algorithm, which is presented in this work. Such an algorithm is easily amenable to be automatically generated via a parser generator tool, which was realized, and is also presented in the following. Furthermore, to complete the framework of a parallel input analysis, a parallel scanner can also combined with the parser. To prove the practicality of a parallel lexing and parsing approach, we report the results of the adaptation of JSON and Lua to a form fit for parallel parsing (i.e. an operator-precedence grammar) through simple grammar changes and scanning transformations. The approach is validated with performance figures from both high performance and embedded multicore platforms, obtained analyzing real-world inputs as a test-bench. The results show that our approach matches or dominates the performances of production-grade LR parsers in sequential execution, and achieves significant speedups and good scaling on multi-core machines. The work is concluded by a broad and critical survey of the past work on parallel parsing and future directions on the integration with semantic analysis and incremental parsing
    • …
    corecore