
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1988

Parallel Parsing in a Multiprocessor Environment Parallel Parsing in a Multiprocessor Environment

Dilip Sarkar
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Sarkar, Dilip, "Parallel Parsing in a Multiprocessor Environment" (1988). Retrospective Theses and
Dissertations. 5132.
https://stars.library.ucf.edu/rtd/5132

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/5132?utm_source=stars.library.ucf.edu%2Frtd%2F5132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

PARALLEL PARSING

IN A MULTIPROCESSOR ENVIRONMENT

by

DILIP SARKAR

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
the Department of Computer Science at

the University of Central Florida
Orlando, Florida

May 1988

Major Professor: Narsingh Deo

UNIVERSITY OF CENTRAL FLORIDA

OFFICE OF GRADUATE STUDIES

DISSERTATION APPROVAL

DATE: April 4, 1988

BASED ON THE CANDIDATE'S SUCCESSFUL ORAL DEFENSE, IT IS RECOM11ENDED

THAT THE DISSERTATION PREPARED BY __ D_il ip_S_ar_k_ar ________ _

ENTITLED __ P_a_r_al_le_l_P_ar_s1_·n_._g.._1_·n_a_M_u_1t 1·p_r_o_ce_s_s_o_r_E_n_v_ir_o_n_m_e_n_t ______ _

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGHREE OF Doctor of Philosophy

FROM THE DEPARTMENT OF _C_o_m_,_p_u_te_r_S_c_i_e_n_ce ___________ _

IN THE COLLEGE OF Arts and Sciences -----------------------

Department of Computer Science

Larry K. Cotrell, Graduate Coordinator
Department of Computer Science

c . Rollins, Dean
allege of Arts and Sciences

Dean of Graduate Studies

PARALLEL PARSING

IN A MULTIPROCESSOR ENVIRONMENT

Dilip Sarkar
University of Central Florida

Orlando, FL 32816, May 1988

Major Professor: Narsingh Deo

ABSTRACT

Parsing in a multiprocessor environment is considered. Two models for asyn-

chronous bottom-up parallel parsing are presented. A method for estimating speedup

in asynchronous bottom-up parallel parsing is developed, and it is used to estimate

speedup obtainable by bottom-up parallel parsing of Pascal-like languages. It is

found that bottom-up parallel parsing algorithms can attain a maximum speedup of

0 (L ½) with (L ½) processors, where L is the number of tokens in the string being

parsed. Hence, bottom-up parallel parsing technique does not yield good speedup.

A new parsing technique is proposed for parsing a class of block-structured

languages. The novelty of the technique is that it is inherently parallel. By applying

this new technique, a string of L tokens can be parsed in O (log L) time with

(L /log L) processors. The parsing algorithm uses a parenthesis-matching algorithm

developed here. The parenthesis-matching algorithm can find matching of a sequence

of parentheses in O (log L) time with (L /log L) processors. Thus, the new parsing

algorithm is cost optimal.

ii

In memory of my father, and to my brother and mother.

iii

ACKNOWLEDGEMENTS

I extend my sincere gratitude to my thesis advisor, Dr. Narsingh Deo, for his

advice and support during my dissertation research and graduate studies at the Wash

ington State University and at the University of Central Florida. I greatly appreciate

his friendship, help and cooperation.

I am also grateful to Drs. Amar Mukherjee, Ronald D. Dutton, Brian E.

Petrasko and Ratan K. Guha for their guidance during my stay at the University of

Central Florida. Special thanks are also reserved for Sajal K. Das, N. Ranganathan

and S ushil K. Prasad.

iv

Table of Contents

LIST OF TABLES .. vii
LIST OF FIGURES .. viii
LIST OF SYMBOLS ... ix
1 INTRODUCTION ... 1

1.1 Compilation 2
1.2 Parallel Compilation ... 2
1.3 Related Research ... 3
1.4 Overview of Dissertation 4

2 PREVIOUS RESEARCH .. 6
2.1 l.,exical Analysis .. 6
2.2 Parsing 7
2.3 Code Generation .. 11
2.4 Separate and Pipelined Compilation ... 12

3 BOTTOM-UP PARALLEL PARSING ... 13
3.1 Preliminaries .. 13

3.1.1 Definitions and Notations ... 14
3.1.2 Parsing Strategies .. 16

3.2 Bottom-Up Parsing Algorithms .. 18
3.2.1 Sequential Shift-Reduce Parsing .. 18
3.2.2 Parallel Shift-Reduce Parsing -- Two Models 20

3.3 An Example ... 26
3.4 Discussion .. 30

4 ESTIMATING THE SPEEDUP IN PARALLEL PARSING 34
4.1 Notations and Definitions ... 35
4.2 Parallel Shift and Reduce Times .. 36
4.3 Processor Coordination and Communication Time 42

4.3.1 Coordination and Communication Time for Model A 43
4.3.2 Coordination and Communication Time for Model B 43
4.3.3 Estimating the Average Number of Tokens 44

4.4 Nature of Speedup Function 46
4.5 Speedup for Pascal-Like Languages ... 48
4.6 Discussion ;... 50

5 SUBGRAMMARS AND PARENTHESES INSERTION .. 52

V

5.1 Minimum Number of Subgrammars ... 53
5.1.1 Definitions .. 54
5.1.2 Digraph of a CFG and Minimum Subgrammars 55
5.1.3 An Example ... 57

5.2 Parenthesis Insertion ... 64
5.2.1 Restricted Block-Structured CFGs (RBSCFGs) 65
5.2.2 Number of Parentheses to be Inserted ... 67

5.3 Discussion .. 73
6 PARENTHESIS-MATCHING AND PARSING ALGORITHMS 74

6.1 Parenthesis Matching Algorithm .. 7 5
6.1.1 An Outline ... 76
6.1.2 Parenthesis-Matching Algorithm .. 77
6.1. 3 An Example 82

6.2 Parsing Algorithm 84
6.3 Discussion .. 89

7 CONCLUSION... 91
LIST OF REFERENCES .. 93

vi

LIST OF TABLES

4.1. Syntax of Pascal-Like Languages
and Count Relations Between Terminal... 40

4.2. Average Occurrence of Some Terminals
in Pascal-Like Languages (Cohen and Kolodner 1985) 49

5.1. All Strings Generated by Subgrammar Gs .. 63

5.2. All Strings Generated by Subgrammars GE and Gr····································· 64

5.3. Insertion Table for the Grammar in Section 5.1.3 ... 71

vii

LIST OF FIGURES

3.1. A Linearly Connected Array of Processors.. 22

3.2. Five Completely Connected Processors.. 22

3.3. Subtrees Built by the Processors .. 28

3.4. Contents of Stacks of the Processors... 28

3.5. Subtree Built by P 2 After Receiving Tokens from P 3.................................. 29

3.6. Subtree Built by P 1 After Receiving Tokens from P 2.................................. 29

3.7. A Parse Tree Whose Height is Proportional to the
Length of the String Parsed.. 31

3.8. A Parse Tree Whose Height is Proportional to the
Logarithm of the Length of the String Being Parsed.................................... 33

4.1. Number of Processors vs Speedup Curves for Pascal-Like Languages........ 51

5.1. Digraph of the Context-Free Grammar in the Example 5.1.3. 59

5.2. Digraphs of Gs, Ee, and Gr·································· ·· ······································ 62

6.1. A Sequence of Parentheses and Its Search Tree.. 83

6.2.a. A Type-2 Left Parenthesis.. 86

6.2.b. A Type-3 Left Parenthesis.. 86

6.3. Predecessor of a Type-2 Parenthesis ... 86

viii

A

A· l

B

CFG

D

G

H

L

N

p

p .
l

Q

R

SE

LIST OF SYMBOLS

The set of arcs in a digraph

An arc in a digraph

(With or without an index) a nonterminal symbol

Context-free grammar

A digraph

The digraph of a grammar G

The denominator of SP A (L , q)

A grammar

The W -subgrammar for a nonterminal B and a subset W of V N

The height of a parse tree

The length of the string of tokens being parsed

The total number of nodes in a parse tree

The number of nodes in the levels 1 through h in a parse tree

The set of production rules

A processor whose index is i

The set of states

The start symbol

A sequence of balanced parentheses

ix

SP (L, q) The speedup obtained by parsing a string of length L using q processors

SP A (L , q) Speedup obtained on the Model A

SP B (L , q) Speedup obtained on the Model B

SP (q) Speedup obtained by using q processors

STKi The stack of the processor Pi

Tcq The total parallel time for processor coordination and communication

Tpq The total parallel time for parsing

Trq The total parallel time for reduce operations

Tsq The total parallel time for shift operations

V The set of all symbols in a grammar

V* The set of all strings from V

VN The set of nonterminals

VT The set of terminals

W A subset of VN

Wa A subset of the set of nodes of a digraph that makes it acyclic

WL Set of all minimal subset of M that makes D acyclic

W1 A minimal subset of the set of nodes of a digraph that makes it acyclic

W min A minimum cardinality set in WL

Wr The set of recursive nonterminals

W1 The set of recursive terminals

X

X

y

a

d

h

i

j

k

I

I (i)

I [i, j]

m

n

q

r
'

r(i)

r[i,j]

(With or without an index) a nonterminal symbol

(With or without an index) a nonterminal symbol

(With or without an index) a terminal symbol

An integer

Average degree of the nodes in a parse tree

Critical height of a parse tree

Index

Index

Index

Index

Left-hand side of the production rule i

An array to store ul

An integer

Number of parentheses in a legal sequence of parentheses

Number of times terminal ai occurs

Number of processors

Number of processors that gives maximum speedup

Number of times production rule i used to derive a string

Righi-hand side of the production i

An array to store ur

xi

s

se

t

u

ul

ur

V

w

z

r

a

y

0

p

t· l

(1)

A nonterminal symbol

(With an index) a subsequence of parentheses

(With or without an index) a terminal symbol

Time required for a reduce operation

Time required for a shift operation

Number of nonterminals in a grammar

Number of unbalanced left parentheses

Number of unbalanced right parentheses

Number of nodes in a digraph

Number of arcs in a digraph

A terminal symbol

The set of nodes in a digraph

(With or without an index) a string from V*

(With or without an index) a string from V*

(With or without an index) a string from V*

(With or without an index) a string from V*

The probability that STKi has i tokens

A state from Q

A node in a digraph

(With or without an index) a string from V*

xii

CHAPTER 1

INTRODUCTION

The demand for fast computation and the limitations on the speed of computa

tion with a single processor have motivated researchers to investigate parallel compu

tation. Today parallelism is one of the most salient themes in computer science.

Multiple Instruction Multiple Data (MIMD) machines have been in existence for

some time (Hwang and Briggs 1984, Kuck 1977). Two primary types of such

machines seem to be emerging: 1) the fixed-connection model, such as Intel's iPSC

family, and 2) the shared-memory model, such as the HEP computer. When a large

number of processors are to be connected together, the former has an advantage from

the hardware point of view, but the latter is more convenient to construct an algo

rithm on.

In the last ten years, a good deal of work has been reported on parallel algo

rithms in various application areas. Also, several parallel programming languages

have been proposed to represent parallelism. However, the amount of work that has

been reported on the problem of developing an efficient compiler to run on parallel

machines is relatively meager. If parallel compilation techniques are not developed

as parallel machines are installed, compilation will be done either on separate,

2

sequential machines or with inefficiency on parallel machines themselves. Clearly,

neither is as attractive as a parallel compiler.

1.1 Compilation

The process of translating a program written in a high-level language, such as

Pascal, Fortran, etc., into a machine language is called compilation. It is a complex

process and is completed in several phases. In this dissertation, compilation is con

sidered as a three-phase process -- lexical analysis, parsing, and code generation.

During lexical analysis characters of the source language that belong together are

grouped and each group is called a token. The output stream of tokens from the lexi

cal analyzer is input to the parser that performs syntax analysis and constructs syntax

tree-structures. A code generator uses the tree-structure to generate code for the tar

get machine. Lexical analysis, parsing, and code generation take approximately 10,

40, and 50 percent of the total compilation time, respectively. Details on compilation

can be found in Aho, Sethi, and Ullman (1986).

1.2 Parallel Compilation

Two approaches can be taken in exploiting parallelism m compilation. One

approach is pipelining of different phases on a linearly connected array of processors.

This approach can provide only a limited amount of speedup because of the limited

3

number of distinct phases in a compiler. The other approach is employing many pro

cessors in each phases of compilation. It is obvious that the two approaches are

complementary. As in sequential compilation, the output of one phase is the input to

the next phase. In the beginning of each phase, input for that phase is partitioned

and one processor works on each partition. For example, the output token-string from

the lexical analyzer is partitioned into substrings, and one processor parses one sub

string.

1.3 Related Research

Lexical analysis in logarithmic time can be done cost efficiently by the existing

parallel algorithm of Mickunas and Schell (1978). However, cost-efficient parallel

parsing algorithms have to be designed. Existing parallel bottom-up parsing algo

rithms of Mickunas and Schell (1978), and Fischer (1975) are direct extensions of

existing sequential bottom-up parsing algorithms. In these algorithms, the input

token-string is partitioned at regular intervals, and each processor is assigned to parse

one partition. Occasionally processors exchange information. The main drawback of

these algorithms is that the minimum parsing time is proportional to the height of the

parse tree (Cohen, Hickey, and Katcoff 1982). Thus, the speedup dependents on the

structure of the parse tree of the input string. For example, when the parse tree is

very skewed, very little speedup is obtained. Performance evaluation of these algo-

4

rithms by simulation has hardly explained the question of speedup. An analytical

method to determine speedup would be more desirable.

A cost-effective parallel parsing algorithm with logarithmic-time complexity has

to be designed. If syntax-directed partitioning of input token-string is done, parallel

parsing can be performed very fast. However, a parallel algorithm for syntax-directed

partitioning of input string is not known. This dissertation provides some solutions to

the problems pointed out in this section.

1.4 Overview of Dissertation

Chapter 2 presents a survey of previous work related to parallel compilation.

Chapter 3 is devoted to parallelizing existing sequential parsing algorithms. Two

models for asynchronous bottom-up parallel parsing are presented. These models are

adaptations to existing sequential bottom-up parsing algorithms for a linearly con

nected array of processors and a completely connected network of processors. Also, it

is illustrated that the speedup obtained by parallel parsing on these models depen

dents on the structure of the parse tree of the input string.

A method for estimating speedup in asynchronous bottom-up parallel parsing is

presented in Chapter 4. To estimate th·e speedup, the probability of occurrence of

each terminal in a language is used. The method developed is used to estimate

5

speedup for Pascal-like languages. It is observed that the bottom-up parallel parsing

techniques do not achieve "good" speedup for Pascal-like languages.

In Chapters 5 and 6, a new parsing technique is developed. The novelty of this

technique is that it is inherently parallel. Chapter 6 presents a parallel parenthesis

matching algorithm and a parallel parsing algorithm. The parallel parsing algorithm

uses the parenthesis-matching algorithm and a parenthesis insertion table.

A method for constructing a parenthesis insertion table is described in Chapter

5. Strings generated by a finite set of finite-subgrammars of a given context-free

grammar are used to construct the parenthesis insertion table. To define a finite set of

finite subgrammars for a grammar the digraph of the grammar is used.

CHAPTER 2

PREVIOUS RESEARCH

This chapter is devoted to a brief survey of previous work related to parallel

compilation and separate compilation. The work on lexical analysis, parsing, code

generation, and separate and pipelined compilation is reviewed. Before presenting

the review, a description of the most commonly used Parallel Random Access

Memory (PRAM) model of parallel computation will be described.

In PRAM, many processors can access a shared memory. Restrictions on type of

simultaneous read from and write into a memory cell by more than one processor

divide PRAMs into three classes:· 1) Concurrent Read Concurrent Write (CRCW)

PRAM: simultaneous reads from and writes into a memory cell by more than one

processor are allowed, 2) Concurrent Read Exclusive Write (CREW) PRAM: simul-

taneous reads into a memory cell by many processors are allowed but not simultane-

ous writes, 3) Exclusive Read Exclusive Write (EREW) PRAM: neither simultaneous

reads nor simultaneous writes are allowed.

2 .1 Lexical Analysis

Soon after the advent of vector computers, Lincoln (1970) proposed techniques

for performing lexical analysis of Fortran-like languages using vector operations.

6

7

Subsequently, Zosel (1973) also used the same vector-operation method for lexical

analysis. Donegon and Katzke (1975) presented an algorithm for lexical analysis

utilizing the vector instruction set of the CDC STAR-100. Mickunas and Schell

(1978) proposed a two-pass parallel lexical analyzer for regular lexical languages. In

their algorithm, the input string is divided into substrings of approximately equal

lengths and lexical analysis is performed on each substring in parallel. The algorithm

achieves linear speedup if the number of processors is less than or equal to

(L I log L).

2.2 Parsing

Very little literature exists pertaining to parallel parsing on either vector or on

MIMD machines. Lincoln (1970) realized the need for parallel parsing and proposed

some techniques for parsing Fortran-like languages on vector machines. Subsequent

work extending Lincoln's idea is reported by Zosel (1973). Ellis (1971) presented

two algorithms for parallel parsing of Fortran-like languages. He considered two

data organizations - vertical and horizontal. In a vertical data organization each

processor processes one statement and obtains speedup via inter-statement parallel

ism, whereas in a horizontal data organization many processors operate on all tokens

of a statement simultaneously to take the advantage of intra-statement parallelism.

8

Donegon and Katzke (197 5) described parsing techniques that can exploit the vector

instruction set of the CDC ST AR-100 machine.

Fischer (1975) laid the foundation for non-serial bottom-up parsing. In his

method, the input string is divided into segments and each processor parses one seg

ment from left to right. The parsing is necessarily nondeterministic in the sense that

several stacks may have to be kept by each processor. This is because a processor

(with exception to the left-most one) does not know the state of its left neighbor

when that neighbor finishes scanning its segment. The grammar of the language

being parsed, however, is deterministic.

Fischer's algorithm is synchronous. This means that at each point in the parsing,

each processor tries to perform the same operation. Only after all the processors

have finished this operation can they proceed to the next one. A parser may perform

three operations:

l. Shift: Push an input symbol onto a stack.

2. Reduce: Replace a right-hand side of a production rule on the top of the

stack by its left-hand side.

3. Merge: Combine the stacks of two neighboring processors and let the left

processor proceed with parsing while the right processor becomes inactive.

Fischer's main concern was to prove the correctness of a variety of bottom-up

parsing techniques using this synchronous model of parallel parsing. The results of

9

simulating the model by Fischer indicate that substantial gain in speedup could be

attained when several processors are used. However, the speedup is input dependent.

The work of Cohen, Hickey and Katcoff (1982) was of theoretical interest. They

determined upper bounds for the speedup attainable by bottom-up synchronous pars

ing as suggested by Fischer. The two basic operations each processor performs are

shift and reduce. The time spent for merge operations is neglected in determining the

upper bounds. Cohen and Kolodner (1985) have proposed a model for bottom-up

parallel parsing using asynchronous processors. The model is based on an extension

of shift-reduce parsers which are able to merge the information they keep on their

stacks. The main objective of their work was to provide estimates of the speedup

attainable when using the proposed model. Their simulation results, applicable to the

parallel parsing of programs written in Pascal-like languages, show how speedup

varies with the number of processors for different ratios of the times to shift, reduce,

and merge.

Mickunas and Schell (1978) extended the LR parsing technique (Aho, Denning,

and Ullman 1972; Aho, Sethi, and Ullman 1986; Knuth 1965) for multiple proces-

sors environment. In their method, p~ocessors can start parsing at different arbitrary

places in the input string. The algorithm is very similar to the error-recovery algo

rithm of Mickunas and Modry (1978). The approach is based on two simple tactics:

10

1. Whenever a shift-reduce or reduce-reduce conflict is encountered, the parser

transmits its stack symbols to its left neighbor, alters its parsing state, and

resumes parsing.

2. If a reduction is indicated but the stack lacks the required information, the

parser performs as much reduction as possible and transmits to its left

neighbor the information enabling it to complete the reduction.

With this strategy a reduction may ripple through a number of parsing processes

' before it is completed. The main focus of Mickunas and Schell' s work is to show

how the shift-reduce table can be computed when the parsers operate in parallel. The

paper is not concerned with the analysis of the speedup gains obtained by using

parallel parsers. The authors, however, made a brief reference to the fact that parsing

may require time proportional to the height of the derivation tree. This corresponds to

one of the coarse estimates in the already mentioned work of Cohen, Hickey and

Katcoff (1982).

Ligett, McCluskey and Mc Keeman (1982) also extended LR parsing algorithms

and measured their performances experimentally. The speedup they obtained is

linearly proportional to the number of processors if the size of the input to a proces

sor is not "too small." Loka (1984) proposed a two-processor parallel-parser, one pro

cessor starting at the left end of the input string proceeds to the right as in LR pars

ing, while the other processor starting at the right end of the string moves towards

the left. However, more work has to be done before the idea can be implemented.

2 .3 Code Generation

11

In compilation parsing is not an end unto itself. Rather it is closely connected

to another phase of compilation - code generation. Code generation in a multipro

cessing environment is almost an unexplored area. Ellis (1971) introduced an elemen

tary idea of code generation in parallel for arithmetic expressions. Fischer (197 5)

developed a parallel algorithm to generate three-address intermediate codes from a

given infix arithmetic expression. Krohn (197 5) showed how code can be generated

for Fortran-like languages utilizing the vector instruction set of the CDC STAR-100

machine. In his method object code is generated in parallel for three classes of state

ments: those statements not containing arithmetic expressions (such as DO), arith

metic expressions, and statements containing arithmetic expressions (such as IF).

Each class of statements is processed using a sequence of vector transformations.

Several passes through the same set of vector instructions are required, as the syntac

tical tree is built for an arithmetic expression. At each level, registers are assigned

and the generated code is merged into the output stream. Schell (1979) extended the

parallel parsing technique of Mickunas and Schell (1978) by using attribute grammar

for code generation in a multiprocessor environment. However, they did not address

the question of speedup and efficiency.

Dekel and Sahni (1983) considered the translation of infix arithmetic expressions

12

into their postfix or syntax-tree forms on EREW PRAMs. Their algorithm is a paral

lel version of the classical method which uses an explicit stack and operator weights

to perform the translation. They have shown how to translate an infix string of

length L using L processors in O (log2 L) time. Bar-On and Vishkin (1985) reduced

the time complexity for this problem using a more powerful model of computation,

CREW-PRAM. They have shown that the computation tree form of the arithmetic

expression of length L can be generated in O (log L) time using (L /log L) proces-

sors.

2 .4 Separate and Pipelined Compilation

Baer and Ellis (1977) have shown that by modeling an existing sequential com

piler we gain an understanding of modifications necessary to transform the sequential

structure into a pipeline of processes. They have evaluated a pipelined compiler

through simulation. Lipkie (1979) considered the compilation of Pascal-like pro

grams using multiple independent processors. He dealt with two kinds of con

currency: one in which processors separately compile procedures of comparable size,

the other in which processors simultaneously execute the various passes of a

multiple-pass compiler (e.g., lexical analysis, parsing, etc.). However, the speedup

dependents on the number of procedures the program has and size of the procedures.

CHAPTER 3

BOTTOM-UP PARALLEL PARSING

Two methods for designing parallel algorithms for a problem are: 1) transform

ing an existing sequential algorithm into a parallel algorithm keeping the basic stra

tegy of the sequential algorithm unaltered, and 2) finding a new technique that is

inherently parallel in nature. It is obvious that the latter method produces a new

sequential algorithm. In the past, first method has been used for designing parallel

bottom-up parsing algorithms.

In Section 3.1, definitions are presented and notations are introduced. Some

sequential algorithms amenable to parallelization are also surveyed. Section 3.2

introduces the sequential shift-reduce parsing and presents two models for parallel

bottom-up shift-reduce parsing. Section 3.3 illustrates the parallel parsing technique

on a linear array of three processors (Model A). Section 3.4 concludes the chapter,

discussing the best-case and the worst-case performances of the algorithms.

3 .1 Preliminaries

In this section, we recall some standard definitions, introduce some notations,

and present some sequential parsing strategies that might be considered for adapta-

13

-

14

tion to parallel parsing.

3.1.1 Definitions and Notations

The definitions and notations used in this chapter are conventional and are sirni-

lar to those found in Aho, Denning, and Ullman (1972), Aho and Ullman (1972), and

Gray and Harrison (1972). A context-free grammar (CFG) is a quadruple, G =

< VN, Vr, P, R > where,

V N is a finite nonempty set of nonterminal symbols,

V r is a finite set of terminal symbols, and V N n Vr = 0, an empty set,

P is a finite set of production rules of the forms := a, such thats e VN and

a e V* , V* is the set of all strings from V = V N u V r; s is called the left part

and a is called the right part of the production,

R is a special symbol, R e V N and is called the start symbol.

The set of strings generated by a grammar G is called the language of G and is

denoted by L (G). The language generated by a context-free grammar is called a

context-free language. For co1, co2, y, 8 e V* we say that co2 is "directly derived

from" co 1, denoted by "co1 ➔ co2" if and only if there exist (s := a e P),

(co1 = ys 8), and (co2 = yao). It is said that "co1 ➔ coz" is a direct derivation. If 8 e

V*r, then the direct derivation co1 ➔ co2 is called rightmost. If

a ➔ a ➔ a ➔ a then l·t is said that a0 derives a,. T_he sequence of 0 1 · · · r-1 r

--

15

derivations is called a derivation of a, from a0. If all derivations used in a derivation

are rightmost, then the derivation is called right derivation or canonical derivation.

A right parse is the reverse of a sequence of productions applied in a rightmost

derivation. Similarly, left derivation and left parse are defined. Left parses are pro

duced by top-down parsers, and right parses are produced by bottom-up parsers.

A sentential form, ro , is a string in V* such that R derives ro using zero or

more derivation(s). The set of sentential forms for a grammar G is denoted by

SF (G). If R derives ro using zero or more rightmost derivation(s) only, then ro is a

canonical sentential form (CSF). If ro is in V*r, then it is called a sentence. If R

derives ys 8 and ys 8 ➔ ya8 = ro then a is called a reducible phrase of the sentential

form ro. The leftmost reducible phrase in a CSP is also called a handle for the sen

tential form.

Every sentence generated by an unambiguous context-free grammar, G, has

exactly one rightmost (or leftmost) derivation from the start symbol. Otherwise the

grammar is ambiguous. A grammar is reduced if every nonterminal other than the

start symbol 1) derives at least one terminal string, and 2) appears in at least one sen

tential form. We will consider only unambiguous and reduced context-free grammars.

In the subsequent sections, much attention will be given to LR grammars

(Knuth 1965) and related grammars. Intuitively, a grammar is LR (k) if, using full

left-context and k symbols of lookahead, a handle can be located in a CSP. In the

16

following subsection different parsing methods are discussed.

3.1.2 Parsing Strategies

A brief survey of parsing techniques that may be considered for adaptation to

parallel parsing is presented in this section. Two natural classes of parsing strategies

are top-down and bottom-up. Top-down methods synthesize derivation trees from

their root nodes, starting with the start symbol and constructing the tree from the top

down as the input is scanned from left to right. Recursive descent parsers are widely

known representatives of this class of parsers. The LL parsing of Knuth (1971) is

also a top-down method. Bottom-up parsers, as the name implies, construct derivation

trees from the bottom up, connecting subtrees to form new subtrees as the input is

consumed. Precedence parsing, bounded context parsing, and LR parsing belong to

this class. Top-down strategies are eliminated as they appear to be inherently unsuit-

. able for adaptation to parallel parsing (Schell 1979).

Several sequential bottom-up parsing methods have been developed. A variety

of methods, namely the precedence methods, are based on the use of relationships

between symbols. Among the precedence methods are: operator precedence (Floyd

1963), simple precedence (Wirth and Weber 1966), weak precedence (Ichbiah and

Morse 1970), and total precedence (Colmerauer 1970). Precedence parsing technique

appears to provide a natural basis for adaptation to parallel parsing. Fischer (197 5)

17

presented several variations on the precedence theme for parallel parsers. The major

drawback in using precedence technique is the inconvenience to the compiler writer

in producing grammars for them. Precedence technique requires uniquely invertible

grammars in which the right part of each production must be distinct from the right

part of any other production.

The unique invertibility requirement can be eliminated if context information is

used to determine which production to apply when right parts are identical. This

approach characterizes the mixed strategy precedence family of parsers (McKeeman,

Horning, and Wortman 1970; Aho, Denning, and Ullman 1972). Even this class of

parsing algorithms restricts the set of acceptable grammars. The bounded context

parsing technique (Eickel et al. 1963; Floyd 1964) also exhibits this problem.

LR parsing algorithms work by constructing the parse tree from the bottom up.

At every step, subtrees are connected by constructing a new node to form a bigger

subtree until the complete parse tree is obtained. One way of parallelization of these

sequential algorithms is by constructing more than one node (if exists) at each level

of the parse tree simultaneously. Because of this simplicity, the LR family of parsing

algorithms is an obvious candidate for adaptation for parallelization. Other good pro

perties of LR parsers are: The class of languages recognized by any LR parser is

exactly the class of deterministic context-free languages. LR parsers deterministically

parse in linear time. Moreover, LR parsers are efficient in practice with respect to

18

both time and space. An added benefit in using LR parsing is the so-called proper

prefix property, which allows LR parsers to detect errors at the earliest possible point

before shifting the erroneous symbol.

3.2 Bottom-Up Parsing Algorithms

The preceding discussions show that LR family of parsing algorithms is amen

able to parallelization. In this section, we briefly present the sequential shift-reduce

parsing technique and present two parallel-parsing models based on the sequential

shift-reduce parsing.

3.2.1 Sequential Shift-Reduce Parsing

Shift-reduce parsing, a technique of which LR parsing is a special case, uses a

pushdown stack -- the parse stack, a finite state control, and an input cursor, or read

head. During its operation, a shift-reduce parser can perform any of the four actions:

shift, reduce, accept, or error. For every CFG, two functions, ACTION and NEXT,

are defined to implement the finite state control. Both are defined on the domain

Q x V, where Q is the set of states of the finite state control and V is the set of

symbols of the grammar. ACTION determines the parse action to be applied for

state-symbol pair; NEXT supplies the parser's next state. Given a parser in state p

with its input curser at symbol a , there are four possibilities:

19

1. ACTION(p, a) = shift. The symbol a is shifted (pushed) onto the stack, as

is the new current state, p' = NEXT (p, a). The read head is moved to the

next token to the right side of a .

2. ACTION(p, a) = reduce i. The i -th production is applied to reduce the

stack. If i -th production is s ➔ a, then I a I symbol-state pairs are

removed from the stack, uncovering some state p". The nonterminal a is

placed onto the stack, followed by the new state, p' = NEXT(p, a).

3. ACTION(p, a) = accept. The parser halts and accepts the input.

4. ACTION(p, a) = error. In this simple model, the parser halts and rejects

the input. In practice, error recovery might be attempted.

At the beginning, the initial state is placed onto the top of the stack and the read

head is placed to the leftmost token of the input string. The action of a shift-reduce

parser is uniquely determined by its current state, which is on the top of the stack,

and by the next input symbol to be examined.

The sequential shift-reduce parsers are canonical in that the sequence of produc

tions that they apply in deriving their operations is exactly the sequence applied in a

right (or canonical) parse. Further, the configurations of the parser are directly

related to the canonical sentential forms produced by the right parse. Parallel shift

reduce parsers presented in this section are non-canonical, and the shift-reduce algo

rithm is modified accordingly.

20

3.2.2 Parallel Shift-Reduce Parsing -- Two Models

In this section, we introduce two parallel parsing models based on the following

assumptions:

1. A fixed number of processors are assigned at the start of parsing.

2. Parsers are started at arbitrary syntactic elements in the input string.

3. All parsers behave like classical shift-reduce parsers in that they consume

inputs from left to right and do not backtrack on the input.

4. Each parser has its own pushdown stack, a finite state control, and an input

cursor.

5. All parsers execute asynchronously.

6. There exist some direct or indirect channels between the pairs of parsers via

which information can be passed.

The parsing models have a simple basis: each parser shifts and reduces using its

own input segment, occasionally transmitting symbols to some other parser. Any

symbols coming from other parsers are treated as extensions to the parser's input.

The transmission mechanism will be discussed in the next subsections. As our algo

rithms cannot be implemented on presently available machines, implementation

details of the algorithms will be avoided and the basic models only will be presented.

21

Model A. Let there be q processors P 1, P 2, ... , P q arranged in a linear array, such

that processor Pi is directly connected with processor Pi+I and Pi-I (see Figure 3.1).

A processor P j is called a predecessor of the processor Pk if j < k and processor Pk

is referred to as a successor of Pj. Thus, processor Pi has (i - 1) predecessors and

(q - i) successors. Processor P 1 has no predecessor and processor P q has no succes

sor. Every processor Pi has a stack, which is referred to as STKi .

The given input string of length L is divided into approximately q equal parts.

The i th processor Pi starting at token L (i - l)L I qj scans to the right for the next

synchronizing token (e.g., semi-colon, end, etc.) and initiates parsing from the next

token. A processor can be in one of the four states -- active, wait, merge-only, and

inactive.

A processor remains in the active state if it is able to perform either of the two

parse steps, namely shift or reduce, or if it is performing the stack-merge operation.

Stack-merge is the process in which a processor Pi transfers the contents of its stack

from bottom to the stack of another processor Pj until Pi encounters a stack

separator or its stack becomes empty. (Stack-separator is a special symbol used as

a marker to separate the content of the stack of a processor.) When a processor can

not reduce due to insufficient information in its stack, but has received the next syn

chronizing token, it places a stack separator on the top of the stack and continues

parsing. By placing a stack separator, a new stack is simulated.

22

Figure 3.1. A Linearly Connected Arraay of Processors.

Figure 3.2. Five Completely Connected Processors.

23

When the end processor P q has completed parsing its part of input and is left

with a nonempty stack, it enters into merge-only state. When any other processor Pi,

1 ~ i < q , has completed parsing its part and is left with a nonempty stack, it

requests a merge to its successor Pi+I and enters into wait state. In the wait state a

processor Pi may be acknowledged by the processor Pi+I or may get a request from

processor Pi-I. In the former case the state of Pi is changed to active and Pi

receives tokens from Pi+I, while in the latter case if processor Pi has a separated

stack then it cancels its merge request to the processor Pi+I · If a processor Pi is not

in wait state and receives a merge request from Pi-I, and its stack is separated, then

Pi sends acknowledgments to Pi-I· After sending an acknowledgment, processor Pi

starts stack-merge with Pi-I· Processor Pi, 1 < i < q, with nonempty stack goes to

merge-only state when its successor processor Pi+I is inactive. In merge-only state a

processor Pi waits for a merge request from its predecessor Pi- I· Processor Pi

becomes inactive if its stack is empty and Pi-I is inactive. A processor Pi in wait

state with empty stack does not acknowledge a merge request immediately but waits

for the contents of the stack of Pi+I and transfers them to Pi-I· In this model each

processor executes the following algorithm.

while not (end of input) do
shift;
if a reduction is indicated then

else

if sufficient information is in the stack then
reduce

else
place a stack separator on the top of the stack;

endif

if a merge request from the left neighbor and the stack is separated then
acknowledge the merge request;

24

transfer tokens from the bottom of the stack until a stack separator is
found;

endif;
endif;

endwhile;
if i = q then

enter into merge-only state
else

send a merge request to the right neighbor;
enter into wait state;

endif;
while not (in inactive state) do

case state of
merge-only: if a merge request from the left neighbor then

acknowledge the request;
transfer content of the stack from the bottom
to the left neighbor until stack is empty
or a stack separator is found;
if the stack is empty then

enter into inactive state;
endif;

endif;

wait: if a merge request from the left neighbor and the stack is separated then
cancel the merge requested to the right neighbor;
acknowledge the merge requested by the left neighbor;
transfer content of the stack from the bottom to the left
neighbor until a stack separator is found;
send a merge request to the right neighbor;

endif;
if the merge request is acknowledged by the right neighbor then

enter into active state;
accept information from the right neighbor;
if a reduction is indicated then

if sufficient information is in the stack then
reduce

else
place a stack separator on the top of the stack;

endif
endif;
if the right neighbor is in inactive state then

enter into merge-only state
else

send a merge request to the right neighbor;
endif

endif;
endcase

endwhile;

25

Model B. In this model every processor can communicate directly with every other

processor (see Figure 3.2). As expected, the extra cost of interprocessor interconnec-

tion provides an enhancement in parsing speed by reducing the interprocessor coordi

nation and communication time. In such a completely connected system, although

there is no predecessors and successors of a processor in strict sense, to identify each

processor and its substring we number them as in Model A and use the same terms

predecessor and successor. The processors of this model also have four states (as in

Model A), but the state transition is different in a few cases, as discussion follows.

Processor Pi+ 1 is called the immediate successor of Pi . As soon as the stack of

26

a processor becomes empty, it enters into inactive state irrespective of the state of its

immediate successor. A processor Pi knows which processor Pk is its immediate

active successor. Before a processor Pi enters into inactive state it informs its

immediate active predecessor P j the index of its immediate active successor Pk. For

example, let the immediate active successor of P 3 be P 5 and that of P 5 be P 10.

Consider the situation in which P 5 becomes inactive before P 3 and P 10. In this situa

tion, before P 5 becomes inactive it informs P 3 that P 10 is henceforth the immediate

active successor of P 3• Each processor executes an algorithm very similar to that for

each processor in Model A.

3.3 An Example

Parallel parsing on Model A is illustrated in this section. Consider the follow

ing set of productions for simple arithmetic expressions with only addition and multi

plication.

E - E+T

E - T

T ·- T*F

T - F

F := id

F := (E)

27

In these productions, boldfaced symbols are terminals. Let us illustrate the parsing of

the following expression on a linear array of three processors.

id * id + id * (id + id * id)

Since the input string (i.e., the expression) has 13 tokens, the first four tokens from

the left of the string are assigned to processor P 1; the next four tokens are assigned

to processor P 2, and the rightmost five tokens are assigned to P 3• After consuming

the input, each processor builds subtree(s) (shown in Figure 3.3) and is left with

some tokens in the stack of each processor as shown in Figure 3.4 . At this point no

processor has enough information to continue parsing, and hence P 1 requests P 2 for

information and P 2 requests P 3 for information. The processor P 3, being the boun

dary processor, enters into merge-only state, while P 1 and P 2 enter into wait state

after passing merge requests to P 2 and P 3, respectively. After receiving the merge

request from P 2, P 3 transfers information from its stack to P 2 starting at the bottom

of its stack. On receiving this additional information, P 2 continues parsing and builds

the parse subtree as shown in Figure 3.5. At the end of possible last reduction, it

enters into merge-only state and transfers the contents of its stack to P 1. After

transferring information to P 1, processor P 2 becomes inactive. Finally, P 1 completes

parsing, building the subtree shown in Figure 3.6.

T T E T

/I"' I I /I"
T * F F T T * F

I I I I I I
F id id F F id

I I I
id id id

Subtree built Subtrees built Subtree built

by p by
1 p2 by P-

3

Figure 3.3. Subtrees Built by the Processors.

+
E

Stack of P
1

E
(
*

T

Stack of P
2

)
T
+

Stack of P
3

Figure 3.4. Contents of Stacks of the Processors.

28

T

/1\
T * F

/I'
(E)

/1\
E + T

Figure 3.5 Subtree Built by P
2

After

Receiving Tokens from P
3

E

/1"'-
E + T

Figure 3.6. Subtree Built by ~ After

Receiving Tokens from P_
2

.

29

30

3 .4 Discussion

In this chapter two models for parallel parsing on multiprocessor systems have

been proposed. One parser runs on each processor. One model is for an array of

linearly connected processors. The other model is for a completely connected net

work of processors. It is expected that parallel parsing on these models will reduce

parsing time. However, parsing on these models will take time at least equal to the

height of the parse tree. The following two examples illustrate that 1) in the worst

case, a parse tree might have a height proportional to the length of input and 2) in

the best case, a parse tree might have a height proportional to the logarithm of the

length of input.

Let us consider the following grammar:

E E +TI id

T T *TI id

The length of the string corresponding to the parse tree shown in Figure 3.7

can be expressed in terms of the height of the parse tree as:

L = 2(H - 2) + 1 = 2H - 3

E

/I".
E + T

/1"" I
E + T id

/ I
• id

•
•

/
E

/i"\
E + T

I I
id id

Figure 3.7. A Parse Tree Whose Height is
Proportional to the Length of the String Parsed.

31

32

where L is the length of the string and H is the height of the parse tree. Thus,

minimum parsing time on any of the models is O (L). On the other hand, a parse

tree may have a height proportional to the logarithm of the length of the string it

represents. For example, the length of the string corresponding to the parse tree

shown in Figure 3.8 is O (log L). Thus, minimum parsing time is O (log L). There

fore, average parsing time on the proposed parsing models would be a better measure

of performance for them. In the next chapter, a method for estimating speedup

obtainable by bottom-up parallel parsing is developed. It is also shown that neither

of the models yields a "good" speedup. Since, even the completely connected net

work of processors · fails to yield "good" performance, no other models are con

sidered.

E

E + T

/\ I\
E

id

+ T T * T

id id id

Figure 3.8. A Parse Tree Whose Height is
Proportional to the Logarithm of the Length of
the String Being Parsed.

33

CHAPTER 4

ESTIMATING THE SPEEDUP IN PARALLEL PARSING

One measure of performance for a parallel algorithm is the speedup that is

obtained by using the parallel algorithm. The speedup is defined as the ratio of the

execution time of the best known sequential algorithm to the execution time of the

parallel algorithm. The performances of the two parsing models presented in the pre

vious chapter are input dependent. There is a wide gap between the worst-case per

formance and the best-case performance. Schell (1979), and Cohen, Hickey, and

Katcoff (1982) also observed that speedups obtained by parallel bottom-up parsing

algorithms are input dependent. Thus, to get a better understanding of the perfor

mances of these algorithms, Cohen and Kolodner (1985) simulated a parallel

bottom-up parsing model. Their simulation results, applicable for Pascal-like

languages, show that estimated speedup depends on the number of processors used

and the length of the input string. However, this simulation results do not provide

any functional relation among the number of processors used, the length of the input

string, and the estimated speedup.

In this chapter a method for estimating the speedup obtainable by parallel

bottom-up parsing algorithms is developed. In order to develop this method, the total

34

35

parallel parsing time is divided into three constituent parts: parallel shift time, paral

lel reduce time, and parallel coordination and communication time. Using the set of

production rules and probabilities of occurrences of terminal symbols of the grammar

of a language, parallel shift and reduce times are expressed as a function of the

number of processors used and the length of the input string. Parallel coordination

and communication time is also expressed as a function of the number of processors

and the length of the input string. Finally, the total parallel parsing time obtained by

adding these three times is used to get an expression for the estimated speedup.

In Section 4.1, different notations are introduced and necessary definitions are

presented. Section 4.2 estimates parallel shift and reduce time. Section 4.3 is

devoted to estimating coordination and communication time for two parsing models

presented in Chapter 3. Section 4.4 investigates the nature of speedup curves for

parallel parsing on these two models. Section 4.5 illustrates the use of the method by

estimating the speedup obtained by parallel bottom-up parsing of Pascal-like

languages. Section 4.6 discusses the results.

4 .1 Notations and Definitions

Let T be the total parallel time for parsing a string of length L using q propq

cessors. Let the total parallel parsing time Tpq be divided into three constituent parts

- parallel shift time, parallel reduce time, and parallel coordination and communica-

36

tion time. (Pushing an input token onto a stack is called a shift operation. Replacing

the right-hand side of a production rule on the top of a stack by its left-hand side is

called a reduce operation.) Let Tsq, T,q, and Tcq denote parallel shift time, parallel

reduce time, and parallel coordination and communication time, respectively.

Thus, the total time to parse in parallel, Tpq can be expressed as

Since the coordination and communication time is zero in case of a single pro-

cessor, the total parse time TP 1 with a single processor is

The speedup obtained with q processors is defined as:

Tpl
SP(q) = -

Tpq

4.2 Parallel Shift and Reduce Times

(4.1)

It is assumed that the parse tree has a critical level h such that for levels 1

(root) to h the number of nodes at each level is smaller than the number of proces

sors, and all processors are not utilized while the parse tree is being constructed in

these levels. The number of nodes at levels (h + 1) and higher are such that q

37

processors work simultaneously and independently with negligible coordination and

communication. From level h to level one, processor coordination and communica-

tion time is significant. Thus, we consider coordination and communication time,

Tcq, for this part only.

Let the estimated number of nodes in an average parse tree of a string of length

L be N and the estimated number of internal nodes in critical levels 1 through h of

the parse tree be Ne. The number of shift operations is the length L of the input

string, which is also the number of leaves in the parse tree. The number of reduce

operations is (N - L), the number of internal nodes in the parse tree. If t, and ts be

the average reduce and shift times, respectively, (for one operation), then we can

express the total parse time TP 1 with a single processor as:

TP 1 = (N - L) t, + L ts

In parallel parsing shift operations are executed in parallel and independently.

L t
Thus, Tsq = __ s__ The reduce operations corresponding to the internal nodes below

q

level h are executed almost independently and in parallel (as the number of nodes at

(N-L-N)t
d . C r . f

each level exceeds the number of processors) an reqmres ------- umts o
q

time. The internal nodes at levels 1 through h require h units of reduction time

(Cohen, Hickey, and Katcoff 1982) in addition to the processor coordination and

communication time Tcq . Therefore,

and

(N - L - Ne) t,
T,q = ------- + h t,

q

(N - L - Ne) t, L ts
Tpq = ------- + -- + h t, + Tcq

q q

38

Substituting TP 1 and Tpq into equation (4.1) we get the expression for the speedup

with q processors as:

(N - L) t, + L ts
SP(q)=-----------

((N - L - Ne) t, + L ts)lq + h t, + Tcq
(4.2)

The number of nodes, N, depends on the length of the string and the grammar. The

level h depends on the number of processors and the garmmar. The processor coordi-

nation and communication time, Tcq, depends on the number of processors as well as

on the processor interconnection topology. First we estimate N, Ne and h. Then,

Tcq will be estimated for both the models introduced in Chapter 3.

Consider a deterministic, context-free language with m production rules and u

nonterminals. Let the production rules be numbered as 1, 2, . . . , m. In derivation

of a string of length L, let i -th production rule be used ri times. Then we can

express the number of internal nodes in the parse tree as:

39

m

N -L = I,ri (4.3)
i=l

Cohen and Roth (1978) developed a method for evaluating ri in terms of occurrences

of (m - u) terminals a 1, a 2, ... , am-u. Using this method, the number of uses of

each production in terms of the occurrences of the terminals if, else, case, while,

repeat, ;, +, *, > and () for a Pascal-like language is shown in Table 4.1, where na.
I

is the number of times terminal ai occurs. If the frequency of occurrence of terminals

is known, we can estimate N - L. Two methods were described by Cohen and Roth

(1978) to determine the average frequency of terminals. Using these techniques, we

can approximate the number of internal nodes as a function of L, as follows:

N -L = k' L

where k' depends on the grammar. Therefore, we can write

N =k L

where k = k' + 1. Hence, the average number of sons of an internal node is

d=N-1=
N -L

k - 1/L
k - l

(4.4)

40

TABLE 4.1

SYNTAX OF PASCAL-LIKE LANGUAGE AND COUNT RELATIONS BETWEEN TERMINALS

RULE NO.

i
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

RULE

p := s

S := S; I

S := I

I:= id f- E

I := if B then S fi

I := if B then S

else S fi

I := while B do S od

I := repeat S until B

I·-.- case E of S end

E := E + T

E := T

T := T * F

T :=F

F := id

F := (E)

B := E b0P E

NUMBER OF USES IN A SUCCESSFUL PARSE

r-i
1

n. ,

n if + nelse + nwhile + n,epeat + ncase + 1

n; + nelse + I

n if - nelse

nwhile

n,epeat

n; + nelse + ncase + n () + 2nbop + 1

41

The average number of sons for the internal nodes at levels 1 through h is also

assumed to be d. Assuming that level h has exactly q internal nodes, we can write

from which we get

(4.5)

Similarly, Nc, the number of nodes at levels 1 through h, can be expressed in

terms of q and d as follows:

that is,
d q - l

NC = d - l (4.6)

Since now it is evident that speedup is also a function of L, the length of the

input string, we will write SP (L, q) instead of SP (q). Substituting from (4.4), (4.5),

and (4.6) into (4.2) we get expression for the speedup as:

k' L t, + L ts
SP (L, q) = -----------------

(k' L - (d q - l)) t + L t
(d - 1) , s ___ ____;, _______ + (logd(q_) + 1) t, + Tcq

q

(4.7)

42

In the next section, we estimate the coordination and communication time Tcq

for Model A and Model B and derive expressions for the speedup for Pascal-like

languages.

4.3 Processor Coordination and Communication Time

Cohen, Hickey, and Katcoff (1982) showed that the upper bound for speedup

for parallel bottom-up parsing increases monotonically with the number of processors

and reaches a limiting value. Beyond this critical number of processors no further

speedup is obtained. In obtaining these results, Cohen, Hickey, and Katcoff

neglected the processor coordination and communication time. Furthermore, they

conjectured that the average speedup curve for strings of a given length would be of

the same shape as their maximum speedup curves.

We show that the Cohen-Hickey-Katcoff conjecture holds for Model B; but for

Model A we get an expression for speedup which is close to the simulation result

obtained by Cohen and Kolodner (1985), but quite different from the speedup conjec

tured by Cohen, Hickey, and Katcoff (1982).

The processor coordination and communication time depends on processor inter

connection topology of the model used for parallel parsing. We determine the value

of Tcq for each of the two models and then substitute them to get the expression for

the speedups.

43

4.3.1 Coordination and Communication Time for Model A

In Model A the average coordination and communication time Tcq is determined

by the average number of tokens left in STKq and the number of processors, q . For

a merge request to travel from P 1 to P q' it takes (q - 1) units of time, and for the

first token to reach P 1 it takes (q - 1) units of time, where the unit of time is the

period required by two adjacent processors to exchange a message or datum. If k 1 is

the average number of tokens in processor P q's stack (when it enters into merge-only

state) then the next (k 1 - 1) tokens can be passed to P 1 in the next (k 1 - 1) units of

time using pipelining. This gives:

Tcq = 2(q - 1) + (k 1 - 1)

4.3.2 Coordination and Communication Time for Model B

In this model every processor can communicate with every other processor

directly. Hence, to collect all irreducible tokens from P q in h reduction steps, P 1

may need (h - 1) requests and k 1 data transfers. Hence,

44

Next we estimate k i, the average number of tokens left on a stack.

4.3.3 Estimating the Average Number of Tokens

Let µi be the number of tokens left on STKi when Pi completes parsing its part

of the input. We define,

µ
Then, k 1 = ~)pr(i) (4.8)

i=l

where pr(i) is the probability that at least one stack has i tokens and no stack has

more than i tokens.

Assuming that a processor may have any number of tokens between one and µ

with equal probability of J_, we derive an expression for pr(i). The probability that
µ

STK 1 has µ tokens when P 1 completes parsing the input to it is J_. The probability
µ

that STK 1 has fewer than µ tokens but STK 2 has µ tokens is (1 - J_)__!_. Similarly,
µ µ

the probability that (q - 1) stacks have fewer than µ tokens and STKq has µ tokens

is given by:

(1 - __!_)q-1 ..!_
µ µ

45

The probability that at least one stack has µ tokens is:

1 1 1 1 1 pr(µ)= - + (1 - -)- + ... + (1 _ -)q-1_
µ µ µ µ µ

or, pr(µ)= 1 - (1 - l._)q
µ

Similarly we get,

1 1 pr(µ - 1) = (1 - -)q(l - (1 - -)q),
µ µ

and in general,

pr(µ - i) = (1 - l._ iq (1 - (1 - l._)q) ,
µ µ

for i E i 1, 2, . . . , µ - lr

and

pr(l) = 1 - f pr(i) = (1 - l._)Cµ-l)q
i=2 µ

Substitution of pr(i) in equation (4.8) gives

1 µ-2 1 · 1
k1 = (1 - (1 - -)q):~:(µ - i)(l - -)zq + (1 - -)Cµ-l)q

µ i=O µ µ

= µ - (µ + 1)(1 - ¼)µ)q _ 2(µ - 2)(1 - ¾)(µ-l)q + (2µ - 3)(1 - ¾)µq

1 - (1 - _!_)q
µ

46

In practical situations µ ~ 2, and if the number of processors is large, then we

can approximate k 1 by

(1 - _!_)q

k1 = µ- ----'--µ __
1 - (1 - _!_)q

µ

L L L
When µ = - , then we get k 1 = - - 2 .

q q q

In the rest of the chapter this expression for k 1 is used.

4.4 Nature of Speedup Function

The expression for average speedup for Model A is

(k' L - (d q - l)) t + L t
(d - 1) r s L L

--------- + (logd(q) + 1) (
7

+ 2(q -1) +- - - - 1
q q q2

(4.9)

The general shape of the speedup curve for a given length L of the string with vary

ing number of processors can be obtained as follows.

47

The numerator in SP A (L, q) does not depend on the number of processors.

Hence, we consider only the denominator. Let the denominator be denoted by DSPA.

Taking the first derivative of DSP A with respect to q and equating this to zero (after

removing those terms that asymptotically go to zero), the expression for q is

q = ((k' t, + ts + l)L 12)112 = q O (say)

Substituting q O in the second derivative of DSP A (with respect to q), an expression

with a positive value is obtained. Therefore, q O is the number of processors which

parse a string of length L in a minimum time. The speedup increases with the

number of processors to a maximum and then decreases.

Similarly, the expression for speedup for Model B is given by

SPB(L, q) =

k' L t, + L ts

(k' L - (d q - l)) t + L t
(d - 1) ' s L L ___ ___,;... _ ___,;... ____ + (logd(q) + 1) t, + - -

2
- 1

q q q

(4.10)

It can be shown that SPB (L, q) increases to a maximum value monotonically,

then it remains constant. Unlike SPA (L, q), SPB (L, q) does not decrease as the

number of processors is increased beyond the critical number.-

48

4.5 Speedup for Pascal-like Languages

To find the speedup for Pascal-like languages, we calculate N, estimated

number of nodes, and d, estimated degree in the parse tree, from Table 4.1 as fol

lows:

16
N -L = ~>i

i=l

= Sn; + 2nif + 5nelse + 2nwhile + 5ncase + 3n + 4n O + 4n> + 2n* + 6 (4.11)

Using this expression and the frequency of occurrence of each terminal given

in Cohen and Kolodner (1985) and shown in Table 4.2, we get

N = 2.4175 L

d = 1.70547

Substituting these values of N and d in equations (4.9) and (4.10), we get

(1.4175 L - (1.7047 q - I)) tr + L ts
(0.7047) · L L

--------'-------- + (log1.704iq) + 1) tr + 2_(q - I)+ - - -
2

- 1
q q q

and,

49

TABLE 4.2

AVERAGE OCCURRENCE OF SO:ME TERMINALS
IN PASCAL-LIKE LANGUAGES (COHEN AND KOLODNER 1985)

TERMINALS FREQUENCY OF OCCURRENCE

(EVERY 100 TERMINALS)

id 60

f-- 6

if 2

else 0.9

while 0.1

repeat 0.05

case 0.15

() 6.6

'
12

+ 4.6

* 4.6

bop 4.6

50

(1.4175 L - (l.7047 q - l)) t + L t
(0.7047) r s L L

+ (logi.704/q) + 1) tr + - - - - 1
q q q2

Figure 4.1 shows the speedup curves with tr = ts = 1 and L = 1000. The dotted curve

presents the speedup obtained by simulation in Cohen and Kolodner (1985).

4 .6 Discussion

A method for estimating the speedup for asynchronous, bottom-up, parallel pars

ing has been presented. To develop this method, a few assumptions about the nature

of the parse tree were made. Thus, the expressions may not give exact speedup, but

the closeness of the estimated speedup using the method developed here and the

simulation result of Cohen and Kolodner (1985) indicates that the assumptions are

realistic, and that the significant parameters have been taken into account.

Study of the nature of speedup curves has shown that the maximum speedup is

obtained when O (L 112) processors are used. For O (L 112) processor a speedup of

0 (L 112) is obtained. Therefore, the parallel bottom-up parsing technique is not very

parallel, i.e., it cannot produce even an average-case O ((log L l)-time parallel algo

rithm for any constant k. Hence, a faster and better algorithm has to be designed

from scratch. In the next two chapters, we develop an entirely new parallel parsing

technique for a class of block-structured languages.

Speedup

50

Model B

40

30

Simulation

20

- - - - ---
....

10

15 30 45 60 75
Number of Processors

Figure 4.1 Number of Processors vs Speedup ·Curves
for Pascal-Like Languages.

51

--

CHAPTER 5

SUBGRAMMARS AND PARENTHESIS INSERTION

In the last chapter it was established that parallelization of existing sequential

bottom-up parsing algorithms fails to yield even a "good" estimated speedup. Thus,

fast parallel parsing algorithms have to be designed from scratch. To this end, Bac

celli and Fleury (1982) took a new and radically different approach. They proposed

sequential lexical analysis and syntax-directed partitioning of the input string by a

host processor, and concurrent parsing of these substrings by other processors. In

their method, once the input has been partitioned, the processors can proceed with

parsing without any further communication among themselves. However, a serious

limitation of their algorithm is that the input string is partitioned sequentially, and

thus partitioning requires a linear time. Also, in their method a substring may be

very long, resulting in an unbalanced work load on different processors and a long

concurrent parsing time.

In this chapter and in the following chapter, a new parallel parsing technique is

presented. In this technique, parsing is completed in two phases. The first phase per

forms a syntax-directed partitioning of the input string in parallel. The second phase

constructs the parse tree (also in parallel). Consequently, the syntax directed parti-

52

53

tioning technique of Baccelli and Fleury is different from ours in two ways: 1) our

method is inherently parallel and 2) our method produces substrings each of whose

length is bounded by a constant which is determined by the grammar. The present

chapter develops the theoretical basis for the parallel parsing algorithm presented in

the next chapter.

In Section 5.1 a method is proposed to define minimum subgrammars of a

context-free grammar (with a finite or infinite language) such that the language gen

erated by each of these subgrammars is finite and the length of every string is also

finite. It may be worth mentioning that the union of languages of the subgrammars

do not give the language of the original language. Section 5.2.1 identifies a class of

block-structured languages that has fast parsing algorithms. Section 5.2.2 describes

how to determine the number of parentheses to be inserted into the string to be

parsed such that a syntax-directed partitioning of the input is achieved. Section 5.3

summarizes the results.

5.1 Minimum Number of Subgrammars

In this section, after recalling the definitions of subgrammars and digraphs, we

develop a method to define minimum number of subgrammars of a CFG such that

each of them generates a finite language. This set of subgrammars will be called

minimum subgrammars.

54

5 .1.1 Definitions

Following Baccelli and Fleury (1982), we define subgrammars of a context-free

grammar G = <VN, Vr, P, R >. For the i-th production (s := a E P), let the left

side of i be defined as / (i) = s, and the right side of i be denoted as r (i) = a; for

B E V N, let PR (B) = {i I (i E P) and (/ (i) = B)}.

Consider a subset W c V N. For B e W the W -subgrammar GB generated by

B is defined as GB = <VNB, VTB, PB, RB>, where RB is a new symbol,

RB E V, V = (VNuVT); PB= (u {RB := r(i)}) u ({PR(X) IX E VN - w
i e PR (B)

and B => aX P, such that a, Pe V* }); VNB = {I (i) I i e PB }, and

VTB = Wu {a I (a e Vr) and B => aa p, such that a, p e V* }.

A digraph D (I', A) consists of a set of nodes r = { -c1, -c2, ... , 'tv} and a set

say that there is an arc from node 'tj to node 'tk. A directed path from a node 'ti to

node 'tj is an alternating sequence of nodes and arcs, beginning with some node 'ti

and ending with some node 'tj such that each arc is oriented from the node preceding

it to the node following it. A directed path is called a cycle if it starts and ends in

the same node. A digraph is acyclic if it has no cycle, otherwise it is called cyclic.

For other graph theoretic terms the reader is referred to Deo (1974).

55

5.1.2 Digraph of a CFG and Minimum Subgrammars

Given a context-free grammar G, we can draw a digraph De with a node for

each si E VN and a directed arc from si to sj if and only if there exists a production

J3, YE V*, and sj E VN. Now the subgrammar Gs can be redefined

as:

where,

RB and VTB are as defined earlier and

V NB = { Rs } U { X I X '# B , and in De there exists a directed path from node

B to node X without going through a node Y e W } , and

Ps = U { Rs := r(q)} U {PR (X) IX E VNB }.
q E PR(B)

By this new definition of subgrammars, the digraph De
8

of a subgrammar Gs is

a subgraph of De which includes the node B and the nodes reachable from B , via a

directed path in De, without going through any X E W and the directed arcs that

connect these nodes.

From De if we choose a set of nodes Wa such that their removal makes the

remaining digraph acyclic, then the digraph De
8

of the subgrammar Gs, B E Wa is

acyclic. Thus, the language generated by Gs is finite (Hopcroft and Ullman 1979).

For a given context-free grammar G there exists a constant such that the length of

56

each of the strings generated by the subgrammars is bounded by the constant. Also,

the number of strings generated by the subgrammars is bounded by a constant. Thus,

The language generated by a subgrammar GB is finite (and hence the length of every

string in this language is finite), where B e Wa such that removal of the nodes in

Wa makes De acyclic.

Let Wz c VN be the set of nodes in De of the context-free grammar G such

that removal of the nodes in W1 from De makes it acyclic but removal of the nodes

in any proper subset of W1 does not make it acyclic. Let WL be the set of all such

W1, and W min be a minimum cardinality set in WL. The subgrammars corresponding

to the set W min will be called minimum subgrammars of G. Thus, the language

generated by a grammar that belongs to the set of minimum subgrammars is finite

(and hence the length of every string in this language is finite).

Determination of minimum subgrammars involves the computation of the set

W min from De which is known to be an NP-complete problem (Krishnamoorthy and

Deo 1979). Therefore, computation of W min may be very expensive. However, since

for a given grammar the computation of W min is done once for all, it may be worth

spending a long time if it is practical. Otherwise, we can use a suboptimal set W1

computed using some heuristic.

57

5.1.3 An Example

We conclude this section with an example of a grammar G of a Pascal-like

language for which we draw the digraph, define minimum subgrammars, and

enumerate the strings of these subgrammars. G is defined as:

G = <VN, Vy, P, S>,

where,

VN = {S, /, B, E, T, F} ,

Vy = { ; , +-- , aend , if, then , else , fi , while , do , od , repeat , rend , until ,

case , of, end, ±, ~, _{, l, Qaµ_, id } (All terminals are underlined.)

S is the start symbol.

P:

1 s := s .i. I

2 s := /

3 / := id +-- E aend --

4 I:= if B then s fi

5 / := if B then s else s fi

6 I:= while B do s od

7 I:= repeat s until B rend

58

8 / := case E of s end

9 B - E -2.ap__ E

10 E :=E + T -

11 E :=T

12 T :=T * F

13 T :=F

14 F - id

15 F - l E l

The digraph corresponding to this grammar G is shown in Figure 5.1. Clearly,

if the nodes S , E , and T are removed, the digraph becomes acyclic. As each of

these nodes has a self-loop, addition of any one of these nodes makes it cyclic. Thus,

the set W min = { S, E, T } . The minimum subgrammars, Gs, GE, Gr, are as fol-

lows:

where,

V NS = { Rs , I, B }

Figure 5.1. Digraph of the Context-Free Grammar
in the Example 5.1.3.

59

60

Vrs = { ; , +- , aend , then , else , fi , while , do , od , repeat , until , rend ,

Ps:

1 Rs:= s ..!.. I -

2 Rs :=I

3 I:= id +- E aend - -

4 I:= if B then s fi

5 I:= if B then s else s fi

6 I:= while B do s od - -

7 I:= repeat s until B rend - --

8 I:= case E of s end -- -

9 B - E ~ E -

where,

. VNE = { RE }

VTE = { E , .± , T }

61

1 RE := E + T

and Gr = <VNT, V17 , Pr, Ry>,

where,

VNT = { Ry, F }

V IT = { id ' .L l , E ' T ' ~ }

Pr:

1 Ry - T * F -

2 Ry :=F

3 F - id

4 F - i. E l -

Gs, GE, and Gr respectively generate twelve, two, and four strings with the

longest string of length eleven, three, and five. The strings are shown in Tables 5.1

and 5.2. Digraphs corresponding to the subgrammars Gs, GE, and Gr are shown in

Figure 5.2.

62

Digraph of G S

Digraph Of G E Digraph of G T

Figure 5.2. Digraph of G
8

, E G' and Gr·

63

TABLE 5.1

ALL S1RINGS GENERATED BY SUBGRAMMAR Gs

SUBGRAMMAR S1RINGS

Gs S ; id f- E aend

S ; if E bop E then S fi

S ; if E bop E then S else S fi

S ; while E b0P E do S od

S ; repeat S until E b0P E rend

S ; case E of S end

id f- E aend

if E bop E then S fi

if E b0P E then S else S fi

while E b0P E do S od

repeat S until E bop E rend

case E of S end

64

TABLE 5.2

ALL STRINGS GENERATED BY SUBGRAMMARS GE AND GT

SUBGRAMMAR STRINGS

GE T

E +T

GT id

(£)

T * id

T * (E)

5.2 Parenthesis Insertion

The motivation for defining minimum subgrammars in the previous section is to

use it for developing a method for syntax-directed partitioning of strings to be parsed.

The string will be partitioned by inserting parentheses in it. First we describe a class

of block-structured languages whose sentences can be partitioned by inserting

parentheses in the string to be partitioned. Then we describe how to determine the

65

number of parentheses to be inserted in the string to be parsed such that every

matched pair of parentheses has a syntax-directed partition of the input string. The

strings generated by the minimum subgrammars are used to find the number of left

(right) parentheses to be inserted to the right (left) of a terminal. The technique is

illustrated with the example used in Section 5.1.3. In the following discussions, by

parentheses we mean those parentheses which are inserted in the string in order to

partition it.

5.2.1 Restricted Block-Structured CFGs (RBSCFGs)

In the rest of the dissertation we consider those CFGs that satisfy the following

four constraints and show that the languages they generate can be parsed in O (log L)

time.

1. For every production s := a, a has no two or more consecutive nonter

minals in it.

2. A terminal !i.. is on the immediate left (right) of one and only one nontermi

nal s i, but a nonterminal s i may be on the immediate left (right) of more

than one terminal in the same production and / or different productions.

3. The set of productions contains one or more of the following five types of

productions:

Let W, = { si I si := si !.i._ sj E P or si := sj !.i._ si e P } and

wt = { !.i.__ I Si := Si !.i._ Sj E p or Si := Sj !.i._ Si E p } .

Clearly, W, k W min and Wt k Vy.

a. Recursive Productions

(left recursive) and

(right recursive)

for s i e W,; s j E V N; i '# j; and !.i._ E Vy.

b. Unit Production

c. Block Structured Production

66

si := begin a end ; for si e (VN - W,); a e v* and satisfy the

Constraint 1; and begin , end E Vy.

d. Nonrecursive Production

si :=sj !.i._sk; fori '#j '#k '#i;sj , sk E VN;si e (VN -W,) andsi

is on the right of a block-structured production; and !.i._ E Vy.

e. Terminal Production

Si := !.i._; for !.i._ E Vy - wt and Si E (VN - W,).

4. Every cycle in the digraph of a grammar has at least one self-loop-free node.

67

This property can be verified by showing that the digraph becomes acyclic

when all the self-loop-free nodes and the self-loops are removed from it.

We denote this class of CFGs by RBSCFGs and the class of languages they

generate by RBSCFLs. The languages of the minimum subgrammars of a RBSCFG

have the property that two nonterminals (in a RBSCFG) are always separated by

one or more terminals, and that on the immediate left (right) of every terminal there

is a unique nonterminal. Exploiting these properties, a method to determine the

number of parentheses to be inserted on the left (right) of each terminal is described

in the next subsection. The grammar in Example 5.1.3 belongs to RBSCFG. It is

clear from the grammar in Example 5.1.3 that a language in RBSCFL can include all

essential constructs (e.g., assignment, loop, and conditional statements) for describ

ing any computation (Kernighan and Plauger 74).

5 .2.2 Number of Parentheses to Be Inserted

In the following discussions, we assume that all recursive productions are left

recursive. This assumption simplifies the presentation without loss of generality, as

the right recursive productions can be treated almost identically.

Let SUBL (G) be the set of strings generated by a set of minimum subgrammars

of G. For a string a e SUBL (G) and a symbol z in a, let right (z, a) (/ef t (z, a))

be the symbol immediately right (left) of z. If z is the right (left) most symbol in

68

a, right (z, a) (left (z, a)) is the null symbol.

We state two rules, one for !.i_ e Wt and the other for !)_ e (Vy - Wt), to

determine (from SUBL (G)) the number of parentheses to be inserted to the left and

right of every terminal for a correct syntax-directed partitioning.

Rule 1 (for recursive terminals). If the string ai e SUBL (G) and ai has !.i__ e Wr,

then left (!i_ , ai) e W,; and right (!.i1. ai) satisfies one of the following three:

(i) right(!i_, ai) e Vy,

(ii) right (!i_ , ai) e (W min - W,), or

(iii) right (!i_ , ai) e W,.

For Cases (i) and (ii) we insert one left parenthesis to the right and one right

parenthesis to the left of !i_ ; and enclose ai within one pair of parentheses.

Remark 1: This insertion of parentheses separates two matched pairs of

parentheses by !i_ . The pair on the left of !i_ encloses si, si e W, , and the pair

on the right of !i_ encloses a string which is either a single terminal or a block

structured string that does not contain any !.i_ e Wt. Because in the production

si := si !i_ sj, if sj e W, then sj e Vysi' and right (!i_ , ai) e W, which is

a contradiction that either right(!i_, ai) e Vy or

right (!i_ , ai) e (W min - W,). Thus, the string ai for Cases (i) and (ii) has to

be enclosed in one pair of parentheses for correct partitioning.

69

For Case (iii) ai = si !i_ sj and we insert (m + 1) left (right) parentheses to the

right (left) of !.i_ when strings generated by Gs. have to be enclosed in m pairs of
J

parentheses for correct syntax-directed partitioning. We also enclose ai in (m + 1)

pairs of parentheses.

hence (in D c) s i and s j have self-loops, and there is a directed arc from s i to

s j; but there is no directed arc from s j to s i (because of Constraint 4), although

there may be a longer directed path from sj to si. Thus, for a correct syntax

directed partitioning, the string generated by Gs· must be enclosed in (m + 1)
I

pairs of parentheses.

Rule 2 (for nonrecursive terminals). We consider ai e SUBL (G) such that ai does

not contain !i_ e Wt. In this case we enclose every si e W, in (m + 1) pairs of

parentheses if the string generated by G si must be enclosed in m pairs of parentheses

for correct syntax-directed partitioning. We also enclose every si e (W min - W,) in

one pair of parentheses.

Using these two rules we insert parentheses into every string ai e SUBL (G)

and count the number of left (right) parentheses to the right (left) of every terminal in

Vy. These are the number of parentheses to be inserted to the left (right) of the ter

minals. For example, when we consider the minimum subgrammars in the illustra-

70

tion of Section 5.1.3, we get the values in Table 5.3. For every grammar in

RBSCFG, we can compute a similar table, which will be called the insertion table.

Let Mi = { £t_ I £t_ e Wt, and there are i right (left) parentheses on the left

(right) of £t_ in the insertion table}. If R e W,, R := R !i_ sk, and !i._ e Mi, then we

enclose the string to be parsed in (i + 1) pairs of parentheses. Otherwise, we enclose

the string in one pair of parentheses. In the following discussions, when we refer to

the insertion of parentheses, it is implied that the string is enclosed in an appropriate

pair of parentheses.

Theorem 1. If parentheses are inserted using the insertion table (determined by the

preceding two rules), then every string, ai, in a matched pair of parentheses either

belongs to SUBL (G) such that ai does not contain any symbol !i_ , !i_ e Wt, or is of

the form sj !i_ sj !i_ . .. sj !i_ sj such that si := si !i_ sj is a production in the gram-

mar.

Proof. We prove the theorem by showing that:

(1) Rule 1 determines the correct number of parentheses for every !i._ e Wt, and

(2) If Rule 1 determines the correct number of parentheses for every !i._ e Wt, then

Rule 2 does so for every !i._ e (V r - Wt).

71

TABLE 5.3

INSERTION TABLE FOR Tiffi GRAMMAR IN SECTION 5.1.3

TERMINAL NUMBER OF RIGHT PARENTHESES NUMBER OF LEFT PARENTHESES
TO BE INSERTED ON THE LEFT TO BE INSERTED ON THE RIGHT

'
1 1

id 0 0

f- 0 3

aend 3 0

if 0 3

bop 3 3

then 3 2

fi 2 0

else 2 2

while 0 3

do 3 2

od 2 0

repeat 0 2

until 2 3

rend 3 0

case 0 3

of 3 2

end 2 0

+ 2 2

* 1 1

(0 3

) 3 0

72

(1) For every !i_ , !i_ E Mi, Rule 1 determines the correct number of parentheses

(see Remark 1). It is important to note that M 1 '# 0 if and only if W, '# 0 (by Con

straint 4).

Induction Hypothesis. Assume that for every !)_ E Mi, 1 ~ i ~ k, Rule 1 deter

mines the correct number of parentheses.

Induction Step. To show that Rule 1 determines the correct number of parentheses

for every !i.±1. E Mi+l, 1 ~ i ~ k.

Let si, si+I E W, and !L±.1 E Mi+l such that si+l := si+l !i.±1. si is a production

m the grammar. The string generated from si+l is of the form si
1

!.i.±1. si
2

!.i.±1.

... si , where si ., j > 1, are the strings generated from si.
m J

By Remark 2 si := si !i_ si-I, !i_ E Mi, is a production in the grammar and the

string generated from si is correctly nested if it is enclosed in i pairs of parentheses.

When we insert (i + 1) left (right) parentheses to the right (left) of !i..±1. , the string

generated from si is enclosed in (i + 1) pairs of parentheses. Thus, by the induction

hypothesis, the outermost pair of parentheses encloses an alternating sequence of s i

and !i_ (when the contents of the next higher level of nested pairs are replaced by si).

Therefore, Rule 1 determines the correct number of parentheses for every !i..±1.

73

(2) Let a e SUBL (G) and a has no !i._ e Wt in it. Every nonterminal si in a is

enclosed by a distinct pair of terminals (by Constraints 1 and 2), say !L and !L . If

si e W, and si := si !i_ sj, !i_ e Mi, is a production in the grammar then we have

enclosed si in (i + 1) pairs of parentheses. Thus, the string generated by si is prop

erly nested. If s i e (W min - W,), then in the insertion table we have one left (right)

parenthesis to the right (left) of !1J.i:J:. Thus, the string generated from si is enclosed in

one pair of parentheses which is the correct nesting for the string. Hence the

theorem.

5.3 Discussion

We have developed a method to define subgrammars of a CFG such that each

subgrammar generates a finite language. A class of block-structured, context-free

languages, which allows a fast syntax-directed partitioning of any sentence, has been

identified. Syntax-directed partitioning is done by inserting parentheses from a table

into the sentence to be partitioned. A method to construct a parenthesis insertion

table has been developed. In the next chapter the syntax-directed partitioning tech

nique will be used to develop a O (log L)-time parallel parsing algorithm for the

class of languages described in this chapter.

CHAPTER 6

PARENTHESIS-MATCHING AND PARSING ALGORITHMS

A method for constructing a parenthesis insertion table has been developed in

the previous chapter. When parentheses are inserted into the string to be parsed

using this parenthesis insertion table, each matched pair of the parentheses contains a

substring that represents a subtree of the parse tree, that is, each matched pair of

parentheses contains a syntax-directed partition of the input string. Also, these

parentheses can be inserted efficiently in parallel. However, for finding the syntax

directed partitions, the matched pairs of parentheses are to be known. In this chapter

we present a parallel parenthesis matching algorithm. The algorithm can find the

matching for all parentheses of a sequence of n parentheses in O (log n) time using

O (n /log n)-processor CREW PRAM. Finally, we present the new parallel parsing

algorithm. The parsing algorithm uses our parallel parenthesis-matching algorithm as

a subroutine. Section 6.1 presents a parallel parenthesis-matching algorithm. In Sec

tion 6.2, a parallel parsing algorithm is presented.

74

75

6.1 Parenthesis Matching Algorithm

In this section, we consider the parenthesis-matching problem. The problem is to

find the matching parenthesis for each parenthesis in a given "legal" sequence of n

parentheses. By "legal" it is meant that every parenthesis has its matching parenthesis

in the sequence. It is easy to construct an O (n)-time sequential algorithm for the

problem. Bar-On and Vishkin (1985) have proposed an O (log n)-time parallel

parenthesis-matching algorithm and used it to design an optimal parallel algorithm for

generation of computation tree forms. To design the algorithm for parallel generation

of computation tree form, they have adopted the parenthesis-insertion technique of

Knuth (1962). Their O (log n)-time parallel algorithm on a (n /log n)-processor

CREW-PRAM is an improvement over Dekel and Sahni's (1983) algorithm for con

struction of computation tree forms of arithmetic expressions on an EREW-PRAM.

The motivation behind their construction of computation tree forms in logarithmic

time is the logarithmic-time arithmetic expression evaluation algorithms of Brent

(1975) and Miller and Reif (1985). They have sho~n that if the computation tree of

an arithmetic expression is given, the expression can be evaluated in O (log n)-time

using n processors, even if the height of the computation tree is greater than log n .

76

6.1.1 An Outline

To construct an O (log n)-time parallel parenthesis-matching algorithm, Bar-On

and Vishkin observed that: (1) each of the (n I log n) processors assigned to a sub

string of length log n can find the pairs of matching parentheses in its subsequence

in O (log n) time; (2) after this local parenthesis matching, each processor is left with

an unmatched sequence of parentheses of the form)) ...)((... (; finally, (3) from

the remaining sequence of parentheses, if matching for the leftmost left and rightmost

right parentheses can be found in O (log n) time, the matchings for all other

parentheses can also be found in O (log n) time. Then, they proposed an algorithm to

find the matching of a parenthesis in O (log n) time. They used a binary tree to com

pute the nesting level of each parenthesis and used these nesting levels to construct a

variant of a balanced binary search tree. Finally, they proposed a search procedure to

find the matching of a given parenthesis in O (log n) time.

In the following subsection, we propose a simple and elegant optimal algorithm

to find the matching of a parenthesis in O (log n) time. We also use a variant of a

binary search tree. However, we do not compute the nesting level of each

parenthesis. We observe that if the number of unmatched left parentheses and the

number of unmatched right parentheses in each of the two adjacent substrings are

known, we can compute the number of unmatched left parentheses and unmatched

right parentheses in the string obtained by concatenating these two strings. Using the

77

technique of concatenating two strings recursively, we build a binary tree. This

binary tree is used as the search tree to find the match for each parenthesis.

In Section 6.1.2, we present a procedure to construct the search tree and a pro

cedure to find the matching of a parenthesis. Section 6.1.3 illustrates the algorithm

with an example.

6.1.2 Parenthesis Matching Algorithm

Let SE be a legal sequence of balanced parentheses stored in a linear array. Let

se 1 and se 2 be two arbitrary consecutive subsequences in SE . A right parenthesis in

se 2 without a matching parenthesis in se 2 must have its matching parenthesis in the

substring to the left of the substring se 2. Similarly, a left parenthesis in se 1 without a

matching parenthesis in se 1 must have its matching parenthesis in the substring to the

right of substring se 1. Let ur 1 (respectively ur 2) be the number of right parentheses

in se 1 (respectively in se 2) that do not have their matching parentheses in se 1

(respectively in se 2), and let ul 1 (respectively ul 2) be the number of left parentheses

in e 1 (respectively in se 2) that do not have their matching parentheses in se 1 (respec

tively in se 2). In the concatenated string se = se 1se 2, the number of right parenthesis

ur is given by

ur = ur 1

78

Thus, the concatenated string se must have ur 1 + ur 2 - min(ul 1, ur 2) right

parentheses whose matching parentheses are in the substring to the left of se . Simi

larly, se must have ul 1 + uf 2 - min(ul i, ur2) right parentheses whose matching

parentheses are in the string to the left of se.

We utilize this observation to construct the i-th level of a balanced binary

search tree in a bottom-up fashion using values of urx and ulx at every node x · at

(i - l)th level of the tree (the leaf nodes are at the zero level of the tree). To find the

match of a parenthesis, we search on this binary search tree. Each parenthesis in the

sequence SE is a leaf-node in the tree. We label a node of the binary tree by an

ordered pair <i , j > of nonnegative integers, where the first integer represents the

level of the node (from the bottom) and the second represents its position from the

left in that level. Nodes <i - 1, 2} - 1> and <i - 1, 2}> are then the left and the

right children of the node <i, }>. We also use two arrays, r[i, j] and / [i, j], to

store the values at nodes <i ' j >' 0 $; i < r log2 n l and 1 $; j $; i. If the parenthesis at

position j (in string SE) is a right (respectively left) parenthesis, then I [0, j] = 0

(respectively l [0, j] = 1) and r [0, j] = 1 (respectively r [0, j] = 0). The search tree

for a given balanced sequence of parentheses is shown in Figure 6.1. The algorithm

for construction of the binary search tree is as follows.

CONSTRUCTION OF THE BINARY TREE:

Input: A legal sequence of n parentheses stored in a linear array.

Output: A binary search tree of height I log2 n 7.

Step 1: {Initialization -- for all j do in parallel }

Step 2:

if there is a right parenthesis at position j then
r [0, j] := 1

else
r [O, j] := O;

endif
if there is a left parenthesis at position j then

l [O, j] := 1
else

l [0, j] := O;
endif

for i := 1 to flog2 n l do
for j := 1 to iflogz nl - i do { in parallel}

r [i, j] := r [i - 1, 2j - l] + r [i - 1, 2}] -
min (/ [i - 1, 2j - 1], r [i - 1, 2j]);

l [i, j] := l [i - 1, 2j - 1] + / [i - 1, 2}] -
min (/ [i - 1, 2j - 1], r [i - 1, 2j]);

endfor;
endfor

79

In the following discussion, two descendants of a node in the search tree are

identified as its left child and right child; the left (respectively right) child is called

the left (respectively right) brother of the right (respectively left) child. Let us con

sider the search procedure to find the matching right parenthesis of a left parenthesis

at position x of the input string (for convenience we shall call the parenthesis at posi

tion x as parenthesis x or simply x). We search on the search tree constructed by the

80

previous procedure. Obviously, the matching right parenthesis of x is in the substring

to the right of the x. Suppose in the searching process we have arrived at a node of

the search tree such that there are c 1 unmatched left parentheses to its right in the

substring corresponding to this node. If the present node is a right child, its string

concatenates with a substring on the left side of its substring; and hence, no left

parenthesis comes to the right of x in the concatenated string, and the value of c 1

does not change. If the present node is a left child, we determine how many right

parentheses in the substring corresponding to its right brother do not have a match,

i.e., find the value of ur corresponding to its right brother. If ur ~ c 1, then the match

for x is not in the string corresponding to the right brother and we climb up to the

father of the present node. The number of left parentheses to the right of x in the

concatenated string is given by c 1 - ur + ul . Thus, c 1 is assigned c 1 - ur + ul (ul

is the number of unmatched left parentheses of its right brother). We continue to

climb towards the root of the search tree by these rules until we reach a node whose

right brother has ur unbalanced right parentheses such that ur > c 1. At this point we

know that the matching parenthesis for x is in the substring corresponding to the

right brother, and we move to the right brother and continue to climb down towards

the leaves until we reach a leaf-node which has the match for x. While we are climb

ing down towards the leaf-nodes, we test the number of unbalanced right parentheses

in the string corresponding to the left child. If ur-value of the left child is greater

81

than c 1 then move to the left subtree, otherwise c 1 := c 1 - ur + ul and move to the

right child. We continue this process until a leaf-node is reached. The formal descrip

tion of the procedure is as follows.

SEARCHING FOR THE RIGHT MATCHING PARENTHESIS;

Input: Search tree and the position of a left parenthesis in the sequence of the

parentheses.

Output: Position of the matching right parenthesis.
{ for the matching of a left parenthesis at position x }

count := O; i := O; j := x;

{present node is <i, j>}
if j is odd {i.e., present node is a left-child} then

if (count - r [i , j]) < 0 then { end of climbing towards the root}
j := j + 1; {move to the right brother}
while i # 0 do

if count - r [i - 1, 2j - 1] ~ 0 then

else

count:= count- r[i -1, 2j -1] + l[i -1, 2j -1];
i := i - 1; j := 2);

i := i - 1; j := 2j -1;
endif

endwhile { right parenthesis at location j is the match for left
parenthesis at location x }

else { update count and climb towards the root}
count := count + / [i, j + l] - r [i, j + l];
i := i + 1; j := U + 1) / 2 ;

endif
else { present node is a right child - climb towards the toot}

i := i + 1; J := J I 2;
endif

82

A similar procedure for searching the match of a right parenthesis can be con

structed. It is not difficult to implement these two procedures in O (log n) time using

(n I log n) processors along the line shown in Chin and Chen (1982), Vishkin

(1984), and Wyllie (1979).

6.1.3 An Example

A legal sequence of parentheses and its search tree are shown in Figure 6.1.

Construction of the search tree using the given procedure is easy. Let us illustrate the

searching procedure by searching the matching right parenthesis of the left

parenthesis at position five of the input sequence. Initially, we start at node <0, 5>

with the count value c 1 = 0. The node <0, 5> is a left node; and hence, we compare

the ur -value of its right brother, r [0, 6] with c 1 and find that c 1 is not smaller than

r [0, 6]. Therefore, c 1 is assigned c 1 - r [0, 6] + l [0, 6] (= 1) and we climb to the

node <1, 3>. We repeat similar steps and climb to the node <2, 2> with c 1-value

one. Node <2, 2> is a right child; hence we move to its father, node <3, 1>, without

changing the value of c 1. From the left child node <3, 1>, we compare the c 1 value

with the ur-value, r [3, 2] of its right brother, and find that c 1 is smaller. Therefore,

we move to right brother <3, 2>. The left child of the node <3, 2> has an ur-value

greater than c 1. Hence, we move to left child node <2, 3> and then, for similar

e 4.1

2,2 2,3

1, 4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,10 0,11 0,12

(((

Figure 6.1. A Sequence of Parentheses and Its Search Tree.
Node Labels Are Shown Next to the Nodes, and the (r, I)
Values Are Shown Within the Circles.

83

84

reasons, to node <1, 5>. At this point the c 1 value is one and comparing this value

with the ur -value of its left child, we find that c 1 is not smaller than the ur-value of

its left child. Therefore, we move to the right child node <0, 10> assigning c 1 to

c 1 - r [0, 9] + l [0, 9] where r [0, 9] and / [0, 9] are the ur -value and ul -value of the

left child of the node <1, 5>. The node <0, 10> is a leaf node, and hence the

parenthesis at position ten is the matching parenthesis for the left parenthesis at posi

tion five.

6.2 Parsing Algorithm

In this section a two-phase parallel parsing algorithm for a class of block

structured Pascal-like languages is developed. We insert parentheses in the string to

be parsed and find the match for each left (right) parenthesis using the parenthesis

matching algorithm presented earlier. One processor is assigned to constructing a

parse subtree for the string in each matched pair of parentheses, where the contents

of its next higher level of matched pairs are replaced by nonterminal symbols that

must be produced in a successful parsing. We assume that L processors are avail

able. To make the presentation concise, let us define the following three types of left

parentheses:

(i) A type-1 left parenthesis has a nonterminal immediately right to it.

85

(ii) A left parenthesis is type-2 if immediately right to it is a left parenthesis

whose right match is located immediately left to the right match of the

former left parenthesis (see Figure 6.2.a).

(iii) A type-3 left parenthesis has immediately right to it a left parenthesis

whose right match is not located immediately left to the right match of the

former left parenthesis (see Figure 6.2.b).

The predecessor of a type-2 left parenthesis is defined as follows:

(i) If two type-2 left parentheses are adjacent, the one on the right is the prede

cessor of the other.

(ii) If immediately right to a type-2 left parenthesis is a type-3 left parenthesis

then go to the right match of the type-3 parenthesis, move to the right

parenthesis immediately left to it, and find the left match of the last right

parenthesis. The latter left parenthesis is the predecessor of the type-2 left

parenthesis (see Figure 6.3).

(iii) If a type-1 parenthesis is immediately right to a type-2 parenthesis, the

type-1 left parenthesis is the predecessor of the type-2 parenthesis.

type-2 left
\

parenthesis

((

I-'-
))

matched pair --------.J I
matched pair --------....J.

Figure 6.2.a. A Type-2 Left Parenthesis.

type-3 left parenthesis
\
(())

11
matched pair I

I matched pair

Figure 6.2.b. A Type-3 Left Parenthesis.

type-2 type-3 ~ Predecessor

""' ~

{ { {)))

I I
L__ matched pair ~ matched pair

matched pair

Figure 6.3. Predecessor of a Type-2 Parenthesis.

86

87

Now we present the parallel parsing algorithm.

Phase 1. String partitioning:

Step 1: Parenthesis insertion - Assign one processor to each terminal of the string.

Every processor inserts parentheses to the left and right of the terminal

(assigned to it) using the insertion table. This takes O (1) time. The new string

obtained after insertion of the parentheses is referred to as the string in the next

steps.

Step 2: Parenthesis matching - Find the match for every parenthesis using the

parenthesis matching algorithm described earlier. This step takes O (log L) time

using (L I log L) processors.

Step 3: String partitioning - One processor is assigned to every type-1 left

parenthesis. Every processor does the following:

(a) Collects nonterminals from the right until it finds either a left

parenthesis or the right match of its own left parenthesis.

(b) If a processor finds a left parenthesis, it goes to the right match of the

left parenthesis and inserts a nonterminal in its string according to the con

text and goes to Step 3(a).

Remark 3: Insertion of nonterminal is possible due to Constraint 2. In an

implementation we can keep a reserved place for every processor. This

88

place is used to store the root of the subtree that the processor generates. A

nonterminal insertion can be done by writing the nonterminal into the

reserved place of the processor of the left parenthesis (for which nontermi

nal is inserted) and placing a pointer.

(c) If a processor finds the right match of its own left parenthesis, then it stops.

The length of the string collected by a processor is bounded by a constant.

Phase 2. Concurrent parsing:

Step 1: (a) One processor is assigned to every left parenthesis whose left termi

nal

!.i.. e Wt. It constructs a subtree taking the left son as the root of the subtree for

the string enclosed in the matched pair on the left of !.i_ and the right son as the

root of the subtree for the string enclosed in its own matched pair. The proces

sor stores the root of the subtree in the reserved place for its root. In this step

subtrees corresponding to all recursive productions are constructed.

(b) One processor is assigned to every left parenthesis that has a type-3 left

parenthesis on its left. The processor inserts one left parenthesis to the right of

its own left parenthesis and one right parenthesis to the left of the right match

of its own left parenthesis. This pair of parentheses is inserted for a unit pro

duction from a recursive nonterminal to another nonterminal.

89

Step 2: One processor is assigned to every type-1 left parenthesis, and it constructs

the subtree for the string it has collected in Step 3 of Phase 1. Subtrees

corresponding to all block-structured, nonrecursive, and terminal productions are

built here.

Step 3: One processor is assigned to every type-2 parenthesis. The processor waits

for its predecessor to complete the construction of the subtree. When the prede

cessor completes the construction of the subtree, the root of the predecessor is

the string for it. Every processor constructs a subtree corresponding to a unit

production.

6.3 Discussion

We have presented an O (log n)-time optimal parallel algorithm to find the

match of a given parenthesis in a balanced sequence of parentheses. Our algorithm is

neither a simulation nor an adaptation of any existing sequential algorithm. The algo

rithm has been designed from a simple observation.

Stack and queue lie at the heart of many sequential algorithms. These data

structures appear to be the bottleneck in the parallelization of these algorithms. Thus,

parallel algorithms for problems that have efficient sequential -algorithms with stack

and / or queue have to be designed from scratch in order to achieve appreciable

speedup. Since most practical parsing algorithms use stacks, they are not suitable for

90

direct parallelization.

We have presented an entirely new parsing algorithm which is inherently paral

lel in nature. It is neither a simulation nor an adaptation of any existing sequential

algorithm. To simplify the presentation of the algorithm, we assumed that L proces

sors are available; then each step, except the parenthesis-matching step, requires O (1)

time. Thus, if we have only (L I log L) processors, these steps can be completed in

0 (log L) time. It has been shown that parenthesis-matching can be done in O (log L)

time using (L I log L) processors. Therefore, the proposed algorithm can parse any

string of length L of a class of block-structured languages in O (log L) time using

(L I log L) processors. Hence, the algorithm is cost optimal within a multiplicative

constant.

CHAPTER 7

CONCLUSIONS

The principal contributions of this work are a technique for estimating the

speedup in parallel bottom-up parsing and a technique for parsing. The parsing tech

nique permits the design of a cost-efficient polylogarithmic-time parallel algorithm.

The two models for parallel bottom-up parsing presented here are direct parallel

ization of existing sequential bottom-up parsing algorithms. The speedup obtained by

these algorithms is input dependent. Hence, to measure the performance of these

parallel bottom-up parsing algorithms, a method for estimating the speedup obtain

able by bottom-up parallel parsing has been developed. To estimate speedup by this

method, the probabilities of occurrences of different terminal symbols in the language

and the production rules of the grammar are required. By using the developed tech

nique, the speedup obtainable by parallel bottom-up parsing of Pascal-like languages

has been studied. The study shows that maximum speedup of O (L ½) is obtained with

L ½ processors.

It is suspected that use of stack as a data structure in sequential bottom-up pars

ing algorithms is the bottleneck in parallelization of these sequential algorithms. It is

believed that sequential algorithms that use stack and / or queue as a data structure

91

92

are not parallelizable. For these problems parallel algorithms have to be designed

from scratch.

A new technique has been developed for parsing a class of block-structured

languages. The technique is inherently parallel and can parse a token-string of length

L in log L time with (L /log L) processors. The string of tokens to be parsed is par

titioned, in parallel, by inserting parentheses in the string and then by finding a match

for each parenthesis. Each partition is parsed by one processor.

There are several directions for future work. Firstly, a technique should be

developed for modifying a given language such that the modified language can be

parsed using the technique developed here. Secondly, extension of the technique for

generating codes using attribute trees could be considered, although, the extension

may not be straightforward. Other phases of compilation, such as code improvement,

should also be considered for parallelization. Future development in these areas will

lay down a solid foundation for designing a fast parallel compiler.

LIST OF REFERENCES

Aho, A. V., P. J. Denning, and J. D. Ullman. "Weak and Mixed Strategy Precedence
Parsing." J. ACM 19 (April 1972): 225-43.

Aho, A. V., and J. D. Ullman. The Theory of Parsing, Translation, and Compiling,
Vol. 1: Parsing. NJ: Prentice-Hall, 1972.

Aho, A. V., R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. MA: Addision-Wesley, 1986.

Baccelli, F., and T. Fleury. "On Parsing Arithmetic Expressions in a Multiprocess
ing Environment." Acta Informatica 17 (1982): 287-310.

Baer, J. -L., and C. S. Ellis. "Model, Design, and Evaluation of a Compiler for a
Parallel Processing Environment." IEEE Trans. Soft. Eng. SE-3 (Nov. 1977):
394-405.

Bar-On, I., and U. Vishkin. "Optimal Parallel Generation of Computation Tree
Form." ACM Trans. Prog. Lang. and Syst. 1 (April 1985): 348-57.

Brent, P. R. "The Parallel Evaluation of General Arithmetic Expressions." J. ACM 21
(April 1974): 201-6.

Chin, Y. F., and I. Chen. "Efficient Parallel Algorithms for Some Graph Problems."
Comm. ACM 25 (Mar. 1982): 659-65.

Cohen, J., T. Hickey, and J. Katcoff. "Upper Bounds for Speedup in Parallel Pars
ing." J. ACM 29 (April 1982): 408-28.

Cohen, J., and S. Kolodner. "Estimating the Speedup in Parallel Parsing." IEEE
Trans. Soft. Eng. SE-11 (Jan. 1985): 114-124.

93

94

Cohen, J., and M. S. Roth. "Analyses of Deterministic Parsing Algorithms." Comm.
ACM 21 (June 1978): 448-58.

Colmerauer, A. "Total Precedence Relations." J. ACM 17 (Jan. 1970): 14-30.

Dekel, E., and S. Sahni. "Parallel Generation of Postfix and Tree Forms." ACM
Trans. Prog. Lang. Syst. 5 (July 1983): 300-17.

Deo, N. Graph Theory with Applications to Engineering and Computer Science.
NJ: Prentice-Hall, 197 4.

Donegon, M. K., and S. W. Katzke. " Lexical Analysis and Parsing Techniques for
Vector Machine," in Proc. Conj. Prog. Lang. and Compilers for Parallel and
Vector Machines 10 (March 1975): 138-45.

Eickel, J., M. Paul, F. L. Bauer, and K. Samelson. "A Syntax-Controlled Generator
of Formal Language Processors." Comm. ACM 6 (Aug. 1963): 451-55.

Ellis, C. A. "Parallel Compiling Techniques," in Proc. ACM (1971): 508-19.

Fischer, C. N. On Parsing Context-Free Languages in Parallel Environments. Ph. D.
Dissertation, Cornell Univ., Ithaca, NY, April 1975.

Floyd, R. W. "Syntactic Analysis and Operator Precedence." J. ACM 10, (July
1963): 316-33.

Graham, S. L. "Extended Precedence Languages, Bounded Right Context Languages
and Deterministic Languages," in Proc. 11th Annual Symposium on Switching
and Automata Theory (1970): 175-80.

Gray, J. N., and M. A. Harrison. "On the Covering and Reduction Problems for
Context-Free Grammars." J. ACM 19 (Aug. 1972): 675-98.

Hopcropt, J. E., and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. MA: Addison-Wesley, 1979.

95

Hwang, K., and F. A. Briggs. Computer Architecture and Parallel Processing. NY:
McGraw-Hill, 1984.

Ichbiah, J., and S. Morse. "A Technique for Generating Almost Optimal Floyd-Evans
Productions of Precedence Grammars." Comm. ACM 13 (1970): 501-08.

Kernighan, B. W., and P. J. Plauger. The Elements of Programming Style. NY:
McGraw-Hill, 1974.

Knuth, D. E. "A History of Writing Compilers." Comput. Autom. (1962): 6-19.

Knuth, D. E. "On the Translation of Languages from Left to Right." Information and
Control 8 (1965): 607-39.

Knuth, D. E. "Top-Down Syntax Analysis." Acta Informatica l (1971): 79-110.

Krishnamoorthy, M. S., and N. Deo. "Node-Deletion NP-Complete Problems." SIAM
J. COMPUT, 8 (Nov. 1979): 619-26.

Krohn, H. E. "A Parallel Approach to Code Generation for Fortran-like Compilers,"
in Proc. Conj. Prog. Lang. and Compilers for Parallel and Vector Machines, 10
(March 1975): 146-52.

Kuck, D. J. "A Survey of Parallel Machine Organization and Programming." ACM
Comput. Surveys 9 (March 1977): 29-59.

Ligett, D., G. McCluskey, and W. M. McKeeman. "Parallel LR Parsing." Wang Insti
tute of Graduate Studies, School of Information Technology, Tech. Report TR-
82-03, July 1982.

Lincoln, N. "Parallel Programming Techniques for Compilers." SIGPLAN Notices 5
(Oct. 1970): 18-31.

Lipkie, D. E. A Compiler Design for Multiple Independent Processor Computer. Ph.
D. Dissertation, Univ. Washington, Seattle, WA, 1979.

96

Loka, R. R. "A Note on Parallel Parsing." SIGPLAN Notices 19 (Jan. 1984): 57-59.

McKeeman, W. M. "An Approach to Computer Language Design." Ph.D.
Dissertation, Stanford Univ., Stanford, California, 1966.

McKeeman, W. M., J. J. Homing, and D. B. Wortman. A Compiler Generator. NJ:
Prentice-Hall, 1970.

Mickunas, M. D., and J. A. Modry. "Automatic Error Recovery for LR-Parsers."
Comm. ACM 21 (June 1978): 459-65.

Mickunas, M. D., and R. M. Schell. "Parallel Compilation m a Multiprocessor
Environment," in Proc. ACM (1978): 241-46.

Miller, G. L., and J. H. Reif. "Parallel Tree Contraction and Its Application," in Proc.
Symposium on Foundations of Computer Science (1985): 478-89.

Schell, R. M. Methods for Constructing Parallel Compilers for Use in a Multiproces
sor Environment. Ph. D. Dissertation, Univ. Illinois, Urbana, IL, 1979.

Sarkar, D., and N. Deo. "Estimating the Speedup in Parallel Parsing," in Proc. Int.
Conf Parallel Processing (Aug. 1986): 157-63.

Vishkin, U. "An Optimal Parallel Connectivity Algorithm." Discrete Appl. Math . 9
(1984): 197-207.

Wirth, N., and H. Weber. "Eulier -- A Generalization of Algol and its Formal
Definition, Parts 1 and 2." Comm. ACM 9 (Jan. & Feb. 1966): 13-23, 89-99.

Wyllie, J. C. "The Complexity of Parallel Computation." TR 79-387, Dept. Comput.
Sci., Cornell Univ., Ithaca, NY, 1979.

Zosel, M. "A Parallel Approach to Compilation," in Proc. ACM Symposium on the
Principles of Programming Languages (1973): 59-70.

	Parallel Parsing in a Multiprocessor Environment
	STARS Citation

	PARALLEL PARSINGIN A MULTIPROCESSOR ENVIRONMENT
	002

	ABSTRACT
	004

	ACKNOWLEDGEMENTS
	005
	006

	TABLE OF CONTENTS
	007
	008

	LIST OF TABLES
	009

	LIST OF FIGURES
	010

	LIST OF SYMBOLS
	011
	012
	013
	014

	CHAPTER 1
	015
	016
	017
	018
	019

	CHAPTER 2
	020
	021
	022
	023
	024
	025
	026

	CHAPTER 3
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047

	CHAPTER 4
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065

	CHAPTER 5
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087

	CHAPTER 6
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	0100
	0101
	0102
	0103
	0104

	CHAPTER 7
	0105
	0106

	LIST OF REFERENCES
	0107
	0108
	0109
	0110

