
Parallel Parsing Made Practical

Alessandro Barenghi1 , Stefano Crespi Reghizzi2 , Dino Mandrioli,
Federica Panella, Matteo Pradella2

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano

Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
e-mail: name.surname@polimi.it

Abstract

The property of local parsability allows to parse inputs through inspecting only a bounded-length
string around the current token. This in turn enables the construction of a scalable, data-parallel
parsing algorithm, which is presented in this work. Such an algorithm is easily amenable to be
automatically generated via a parser generator tool, which was realized, and is also presented in
the following. Furthermore, to complete the framework of a parallel input analysis, a parallel
scanner can also combined with the parser. To prove the practicality of a parallel lexing and
parsing approach, we report the results of the adaptation of JSON and Lua to a form fit for parallel
parsing (i.e. an operator-precedence grammar) through simple grammar changes and scanning
transformations. The approach is validated with performance figures from both high performance
and embedded multicore platforms, obtained analyzing real-world inputs as a test-bench. The
results show that our approach matches or dominates the performances of production-grade LR
parsers in sequential execution, and achieves significant speedups and good scaling on multi-
core machines. The work is concluded by a broad and critical survey of the past work on parallel
parsing and future directions on the integration with semantic analysis and incremental parsing.

Keywords: Parallel parsing algorithms, syntax analysis, parallel parser, operator precedence
grammar

1. Introduction

The current evolution of computing platforms led to the increase in the number of computing
cores being the only way to increase their performances, beyond the power and frequency wall.
As a consequence, the only way to cope with the ever increasing amount of data to be processed
is to fully exploit the exposed parallelism whenever possible.

Parsing algorithms are used in all sorts of applications, with web browsing, text processing,
compilation, and natural language processing being some of the most common application do-
mains. However, in addition to being ubiquitous, they are also a significant exception to the
above trend towards the exploitation of parallel architectures: the current state of the art reports

1Contact Author: reachable at Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Phone
+39 02 2399 3476, e-mail: alessandro.barenghi@polimi.it

2Also with CNR IEIIT.
Preprint submitted to Science of Computer Programming August 28, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55254223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

no practically fruitful effort in this direction, save for an ad-hoc work tackling the parsing of
HTML5 [52]. Open literature offers several historical proposals of parallel parsing algorithms,
which however had no follow-up, let alone application, despite the growing amount of data which
need to be processed, which has grown to such a pressing need that hardware accelerators have
been developed to tackle it [39]. We refer the reader to Section 7 for a fairly comprehensive and
critical analysis of the literature on this topic.

The most likely reason for this lack of practical parallel parsers is the intrinsically sequential
nature of the classical deterministic (LR and LL) algorithms. For instance, assume to parse the
language L = L∗1, where L1 is {1anbn | n ≥ 1} ∪ {0anb2n | n ≥ 1} through a determin-
istic shift-reduce parallel algorithm. Intuitively, it would be natural to map the parsing of each
substring candidate to belonging to L1 into a separate computation, henceforth called worker,
and then to collect the partial results to decide whether the global sentence belongs to L or not.
However, since the substrings belonging to L1 can be arbitrarily long, any random or fixed policy
to split the input into substrings is likely to be far from optimal; it may even be impossible to
determine whether ab or abb groups are to be reduced in case a substring contains no 0s or 1s.

To cope with these issues, two straightforward approaches were pursued in the literature:
speculative computations [42] or pre-scanning [40]. The former approach non-deterministically
(speculatively) performs the parsing computation for all the possible cases: in our example, it
carries on two parsing processes depending on whether the current substring is of type 1anbn or
0anb2n, and discards the results of the incorrect computation as soon as possible. This approach,
despite being effective, is not quite efficient: the computational effort of the parsing can be dou-
bled or more, depending on the degree of nondeterminism. The latter approach involves a first
lightweight scanning of the input to determine the viable splitting points: in the aforementioned
example it would look for occurrences of 0 and 1 and split the input right before them. How-
ever, this approach introduces an overhead for the preliminary scanning which could require a
pre-scanning over the whole input string. Summing up, the first approach may require an compu-
tational overhead to cope with the nondeterminism which is potentially more significant than the
benefits provided by the parallelism, while the latter implies an O(n) worst-case preprocessing
which, in case of simple languages, may take as much as a sequential parsing process.

The key point to overcome these impasses was our renewed interest in the “old-fashioned”
operator precedence grammars (OPGs) invented by R. Floyd in his pioneering work [22] which
laid the foundations of deterministic bottom-up parsing. After their first application in compiler
construction, such grammars have been abandoned due to the advent of more powerful grammars,
in terms of generative power, namely LR grammars. LR grammars [35, 36] enable efficient,
sequential parsing and generate all deterministic languages whereas OPGs do not. Nevertheless,
we maintain the generative power of OPGs is quite adequate to formalize most languages of
practical interest (Sections 4 and 6 discuss this issue) and we note that, thanks to their simplicity
– and the simplicity and efficiency of their parsing algorithms – they are still used in compiler
construction [29], the most notable example being the GNU Compiler Collection gcc, which
actually employs an OP parser to handle expression parsing in C.

In this paper, we exploit the local parsing properties of OPGs to construct a non-speculative
parallel parser. Intuitively, a language is locally parsable if, by inspecting a substring of bounded
length, an (e.g., bottom-up) algorithm can deterministically decide whether the substring contains
the right-hand-side of a production and can unequivocally replace it with the corresponding left-
hand side. Local parsability is the key property that enables data-parallel parsing of isolated
parts of the input so that their partial results can be recombined in a global syntax tree without
backtracking: in other words, all the isolated partial syntax trees of a valid text are final.

2

In the following, we will present a systematic approach to exploit the local parsability of
OPGs, providing a publicly available parser generator tool, and the results of an experimental
campaign highlighting the speed-ups achievable w.r.t. popular sequential parsers, such as those
generated by GNU Bison [2]. We chose as practical test-benches for our approach the JavaScript
Object Notation (JSON) data description language, which offers a real-world validation for large
input files, and the Lua programming language, to gauge how a language far richer than a data
description language performs with the parallel lexing and parsing. We show that the minor
theoretical limitations in terms of generative power of OPGs do not significantly affect the ap-
plicability of the approach: the changes needed to adapt the original BNF of the source language
to OPG constraints are obtained in an original way by augmenting, and parallelizing as well, the
initial phase of lexical analysis (or scanning).

The paper is organized as follows: Section 2 provides the theoretical foundations of OPGs,
and their local parsability property, together with a parallel parsing algorithm. Section 3 provides
our methodology for parallel lexical analysis, while Section 4 describes how we adapted the
JSON and Lua languages to OP-based parsing. Section 5 describes the architecture of our parser
generator, and Section 6 presents the results of the benchmark campaign. Section 7 compares
our approach to previous research on parallel parsers, while Section 8 presents our conclusions
and possible further research directions3.

2. Parallel Parsing Theory for OP Grammars

In this section we develop a theory supporting the parallel parsing of OPLs. After summa-
rizing their basic definitions and properties, we prove that OP grammars and languages enjoy
the local parsability property, which is the key to make parsing parallel. Subsequently, we revise
the sequential parsing algorithm for OPGs so that it applies both to terminal substrings and to
partially processed ones (sentential forms). In this way, we devise a parallel procedure consisting
of two (or more) passes: at first the source string is split into chunks and each one is assigned to a
separate worker, then the outputs are recombined and either a sequential or more parallel parsing
passes are applied to them, computing the final parse tree.

2.1. Basic definitions and preliminary properties
Given a string x, its length is denoted as |x| and the i-th character in x, for 1 ≤ i ≤ |x|,

is denoted as x[i]. The symbol ε denotes the empty string. A context-free (CF) grammar G is
denoted by a 4-tuple (VT , VN , P, S), where VT is the terminal alphabet, VN is the nonterminal
alphabet, P is the production set (also known as rule set), and S is the axiom. A production in
P is denoted by A → α, where A ∈ VN , α ∈ V ∗, where V = VT ∪ VN is the set of grammar
symbols; A is called the left-hand side (l.h.s.) of the production and α the right-hand side (r.h.s.).
The symbol⇒ denotes the immediate derivation relation between two strings in V ∗ and ∗⇒ (resp.
+⇒) its reflexive and transitive (resp. transitive) closure. L(G) denotes the language generated
by G. For all omitted usual definitions of formal language concepts, we refer the reader to any
textbook on formal languages and automata theory, e.g., [13]. We assume every grammar to be
reduced, i.e, every nonterminal is reachable from the axiom and generates some string.

3An early description of the theory of parallel parsing for OPGs has appeared in [8] but, to make the paper self-
contained, it is resumed and refined here in Section 2. On the practical side, PAPAGENO is described in the tool
paper [7].

3

S → S +A | A
A→ A×B | B
B → n | (S)

S

S

A

B

n

+ A

A

B

n

× B

(S

S

A

B

n

+ A

B

n

)

Figure 1: A grammar generating arithmetic expressions with parentheses.

The following naming convention will be adopted, unless otherwise specified: lowercase
Latin letters at the beginning of the alphabet (a, b, . . .) denote terminals, uppercase ones (A,B, . . .)
denote nonterminals; uppercase Latin letters at the end of the alphabet denote grammar symbols;
letters r, s, t, u, v, . . . denote terminal strings; and Greek letters (α, β, . . . , ω) denote strings over
V . All the strings may be empty, unless stated otherwise. In this paper it is important to distin-
guish between the terminal strings x derived by a grammar, i.e., such that S ∗⇒ x, and sentential
forms, i.e., those α ∈ V ∗ such that S ∗⇒ α.

In this initial part we will use arithmetic expressions, which are a small fraction of practically
all programming languages, as a running example to introduce and explain the basic definitions,
properties and constructions referring to OPLs.

Example 2.1. Consider the usual arithmetic expressions with parentheses, containing only addi-
tions and multiplications. Figure 1 presents a grammar and the derivation tree for the expression
n + n × (n + n). Notice that the structure of the syntax tree (uniquely) corresponding to the
input expression reflects the precedence order which drives computing the value attributed to the
expression.

Figure 2 proposes a different grammar which generates the same expressions as the grammar
of Figure 1 but would associate to the same sentence the syntax tree displayed in the right part
of the figure, corresponding to the fully parenthesized string (n + (n × (n + n))). Yet another
(ambiguous) grammar could generate both.

A string β is in Operator Form (OF) if it has no adjacent nonterminals. In an OF string α
two terminals are consecutive if they are at positions α[j], α[j + 1]; or at positions α[j], α[j + 2]
and α[j + 1] ∈ VN . A rule is in operator form if its r.h.s. is in OF; an operator grammar (OG)
contains only such rules. Both the grammars shown in Example 2.1 are OGs.

It is well known that, for every CF grammar, an equivalent OG can be obtained (see for
instance [13]). For an OG, every string β that derives from a nonterminal is in OF.

Given an OG G and a nonterminal A, the left and right terminal sets are defined as

LG(A) = {a ∈ VT | A ∗⇒ Baα} RG(A) = {a ∈ VT | A ∗⇒ αaB}

4

S → A× S | A
A→ A+B | B
B → n | (S)

S

A

A

B

n

+ B

n

× S

A

B

(S

A

A

B

n

+ B

n

)

Figure 2: A grammar generating the same arithmetic expression as that of Figure 1 and the corresponding tree where,
instead, + takes precedence over ×.

where B ∈ VN ∪ {ε}. The grammar name G will be omitted unless necessary to prevent con-
fusion. For the grammar of Figure 1 the left and right terminal sets of nonterminals S, A and B
are, respectively:

L(S) = {+,×, n, (} R(S) = {+,×, n,)}
L(A) = {×, n, (} R(A) = {×, n,)}
L(B) = {n, (} R(B) = {n,)}

The following binary operator precedence (OP) relations are defined between consecutive
terminals:

equal in precedence: a
.
= b ⇐⇒ ∃A→ αaBbβ,B ∈ VN ∪ {ε}

takes precedence: am b ⇐⇒ ∃A→ αDbβ,D ∈ VN and a ∈ RG(D)

yields precedence: al b ⇐⇒ ∃A→ αaDβ,D ∈ VN and b ∈ LG(D)

Notice that, unlike the usual arithmetic relations denoted by similar symbols, the above prece-
dence relations do not enjoy anyone of transitive, symmetric, reflexive properties.

The operator precedence matrix (OPM) M = OPM(G) is a |VT | × |VT | matrix that maps
any ordered pair (a, b) into the set Mab of OP relations holding between a and b.

Figure 3 displays the OPM associated with the grammar of Figure 1 where, for an ordered
pair (a, b), a is one of the symbols shown in the first column of the matrix and b one of those
occurring in its first line.

Definition 2.2. An OG G is an operator precedence grammar (OPG) if, and only if, M =
OPM(G) is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1.

Definition 2.3. An OPG is in Fischer normal form (FNF) [21] if and only if the axiom S does not
occur in any r.h.s.; no two rules have the same r.h.s.; no rule, possibly except one with the axiom
as the l.h.s., has ε as the r.h.s.; renaming rules, i.e., those with a single nonterminal character as
r.h.s., are those and only those with S as the l.h.s.

5

+ × () n
+ m l l m l
× m m l m l
(l l l .

= l
) m m m
n m m m

Figure 3: The OPM of the grammar in Figure 1.

S → A | B
A→ A+B | B +B
B → B × n | n

n + ×
n m m
+ l m l
× =̇

S

A

B

n

+ B

B

n

× n

(a) (b) (c)

Figure 4: (a) OP grammar in FNF generating arithmetic expressions without parentheses, (b) its precedence matrix, (c) a
sample syntax tree.

Working with OPGs in FNF removes ambiguity without affecting generality and allows us to
simplify the parsing algorithm, without impairing the effectiveness and improving the efficiency
of the tools that implement it.

Intuitively, an OPG parser is driven by precedence relations as outlined in the following.

• The source string s is enclosed between a pair 〈#,#〉, where the special symbol # /∈ VT
is used for end-marks; by convention, # yields precedence to every terminal character and
every terminal character takes precedence over #. Moreover it holds that #

.
= #; thus all

r.h.s.s in a sentential form will be enclosed within a pair l, m.

• Consider a rule A → β, whose r.h.s. β occurs in a sentential form and is going to be
reduced to A. Then β is “enclosed” between the pair l, m, and relation .

= holds between
every two consecutive terminal symbols of β. More formally, if there exists a derivation
S
∗⇒ αAγ ⇒ αβγ then it must hold that α = α′a, γ = bγ′, β = N1c1N2c2 . . . cn−1Nn,

with Ni ∈ VN ∪ {ε}, ci .
= ci+1, 1 ≤ i < n, a l c1, cn−1 m b. Note also that a and/or

b may be #. Observe that nonterminals are “transparent” in OP parsing, i.e., they are not
considered when evaluating the precedence relations between consecutive terminals.

Continuing our running example to illustrate the properties of OPGs and of the parsing algo-
rithms operating on them, Figure 4 reports: a simplified version of the grammar of Figure 1 of
arithmetic expressions without parentheses (a); its OPM (b) with the relations with # taken as
implicit; and the derivation tree of string n + n × n (c). Note that in the syntax tree the second
occurrence of terminal n is enclosed by the relations + l n and n m × and can be reduced un-
equivocally to nonterminal B, thanks to the fact that G has no repeated r.h.s. Similarly the r.h.s.

6

B×n, in the context 〈+,#〉 with +l× and nm#, is deterministically reduced to nonterminal
B. For a detailed description of sequential OP parsing see, e.g., [29].

As previously stated, OPGs do not have the power to generate all the deterministic languages:
this is practically embodied in the presence of a precedence conflict in the grammar OPM . For
instance, there is no way to generate the language L = {anban | n ≥ 1} without introduc-
ing in the OPM the conflict |Maa| > 1. Indeed, matching n requires (at least) the conflicting
precedences: a l a and a m a, because a here has intuitively both the roles of open and closed
parenthesis. Despite this theoretical limitation, early experience, including our own, has shown
that many real programming languages can be generated by OPGs.

2.2. Local parsability property and its exploitation for parallel parsing

Intuitively, a language L generated by a CF grammar G is locally parsable if, for every
sentential form, the r.h.s. of a production to be reduced can be uniquely determined through
inspecting only a bounded context of the r.h.s. For instance, the language L = {an0 bn} ∪
{an1 b2n} generated by the grammar S → A | B; A→ aAb | a0b; B → aBbb | a1bb, is locally
parsable because the “separators” {0, 1} allow to decide the r.h.s. to be reduced. By contrast,
L = {0 anbn} ∪ {1 anb2n}, though being deterministic and generated by the LR grammar S →
0A | 1B; A→ aAb | ab; B → aBbb | abb, is not locally parsable since there is no way to decide
whether to reduce a substring ab to A or abb to B without inspecting the first character of the
string, which may be arbitrarily far away. The concept of local parsability has been formalized
in the literature in similar ways; we adopt the definition of bounded-context CF grammar [23].

Definition 2.4. LetG be a CF grammar and h ≥ 1. G is a locally parsable (or bounded context)
grammar with bound h, iff for every rule A→ α of G, whenever

#hS#h ∗⇒ ζ = βγAδη ⇒ βγαδη
∗⇒ x (1)

with |γ| = |δ| = h, any other derivation #hS#h ∗⇒ ϑγαδφ where h, γ, α, δ are the same as
before, can be obtained exclusively by using the same rule A→ α to obtain α.

Thus, h specifies the length of the left and right neighborhood, i.e., the surrounding context,
needed to make sure that string α must be reduced to nonterminal A. Floyd proved that, be-
sides being decidable for any given value of h, the local parsability property implies that G is
deterministically parsable (therefore also unambiguous).

Theorem 2.5. Every OPG in FNF is locally parsable with bound 1.

Proof. Consider the step βγAδη ⇒ βγαδη of derivation (1), with |γ| = |δ| = 1. Then, neces-
sarily γ, δ ∈ VT ∪ {#}, γl the first terminal of α, and the last terminal of α mδ; only .

= occur
within α. Then, whenever a string γαδ occurs in a sentential form of G, the same precedence
relations hold between its terminals since G’s OPM is conflict-free; thus α is the r.h.s. of some
rule and, since G is in FNF, no other rule can produce α in a sentential form within the context
(γ, δ).

Although there exist contrived examples of locally parsable languages with bound 1 that
cannot be generated by an OPG, such as the above language {anban | n ≥ 1}, they are of no
practical relevance when taking into account real world programming language. The following
corollary establishes the basis for parallelizing the standard OP parsing algorithm.

7

Algorithm 1 : Generalized-OP-parsing(α,head, end,S)

1. Let X = α[head] and consider the precedence relation between the top-most terminal Y
found in S and X .

2. If Y lX , push (X,l); head := head + 1.
3. If Y .

= X , push (X,
.
=); head := head + 1.

4. If X ∈ VN , push (X,⊥); head := head + 1.
5. If Y mX , consider S:

(a) If S does not contain any l then push (X,m); head := head + 1.
(b) Else, let S be (X0, p0)(X1, p1) . . . (Xi−1, pi−1)(Xi,l) . . . (Xn, pn) where
∀j, i < j ≤ n, pj 6= l.

i. if Xi−1 ∈ VN (hence pi−1 = ⊥), and there exist a rule A → Xi−1Xi . . . Xn

replace (Xi−1, pi−1)(Xi,l) . . . (Xn, pn) in S with (A,⊥);
ii. if Xi−1 ∈ VT ∪ {#}, and ∃A: A→ Xi . . . Xn ∈ R,

replace (Xi,l) . . . (Xn, pn) in S with (A,⊥);
iii. otherwise start an error recovery procedure.

6. If (head < end) or (head = end and S 6= (a,⊥)(B,⊥)), for any B ∈ VN , repeat from
step (1);
else return S.

Corollary 2.6. For every substring a δ b of a sentential form γ a δ b η, there exists a unique
string α, called the irreducible string, deriving δ such that S ∗⇒ γ aα b η

∗⇒ γ a δ b η, and
the precedence relations between the consecutive terminals of aαb do not contain the pattern
l (

.
=)
∗m. Therefore there exists a factorization aαb = ζθ into two possibly empty factors such

that the left factor does not contain l and the right factor does not contain m.

Proof. Consider the substring aδb: any r.h.s. contained therein is preceded by l and followed
by m, and we reduce it to its l.h.s. Then we iterate the procedure until no pair l . . .m (with
possibly .

= in between) exist. At this point, necessarily, the condition of the corollary has been
reached.

The parsing algorithm. To allow its use in parallel parsing, we generalize the traditional OPG
parsing algorithm in order to analyze strings that may include nonterminals: such strings must
begin and end with terminals or with #, and are in OF. This generalization is needed in the parallel
setting in order to parse internal text segments, and is reported in Algorithm 1. Algorithm 1 uses
a stack S containing symbols that are pairs of type (X, p), where X ∈ VT ∪ VN and p is one
of the precedence symbols {l, .=,m} or is undefined, denoted by ⊥. The second component
encodes the precedence relation found between two consecutive terminals – thus, it is always
p =⊥ if X is nonterminal. To drop the precedence symbols when not needed, we introduce the
projection on the first component, defined and denoted by (X, p)|1 = X . As a convention, we
assume that the stack grows rightwards. We define a handle as a candidate r.h.s., i.e. a portion of
a string in OF included within a pair l, m and with =̇ between consecutive terminals.

The algorithm takes as input the string α = α[1]α[2] . . . α[m], m ≥ 3 to be parsed: α is
in OF and has the form α ∈ (VT ∪ {#})V ∗(VT ∪ {#}). It also receives as input parameters
two pointers, head and end, to elements of α pointing to the second and last element of α,
respectively. The last parameter taken is the parsing stack S, initialized with α[1] on top of it.

8

Remarks

• We will see that initially the algorithm is applied to a terminal input string that is a substring
of the input text. Therefore it will be α = asb, with a, b ∈ (VT ∪ {#}), s ∈ V ∗T and the
stack S = (a,⊥), consequentially in this case the condition in step (4) will not be met.

• We note that Algorithm 1 behaves as a traditional sequential OP parser when α = #s#
and S = (#,⊥). In this case the input is accepted if, and only if, the algorithm halts
having read the whole input and S = (#,⊥)(S,⊥).

• If the initial stack – disregarding precedence symbols – S|1 is irreducible (more precisely
it has the form aαb of Corollary 2.6), then the same property will hold for S upon algo-
rithm termination (unless an error occurs); in other words the property of Corollary 2.6 is
an invariant w.r.t. the algorithm execution. As a particular case, this is true when the initial
stack is the singleton (a,⊥). In fact, the creation of a reduction handle at runtime can only
happen if a m is going to be pushed on the stack when a l is already in it. However, Al-
gorithm 1 is designed to perform a reduction in such cases thus eliminating the possibility
of an non-reduced handle sitting on the stack.

• An error is detected either whenever an handle does not match any of the valid r.h.s., or
if no precedence relation holds between two consecutive terminals. In these cases then an
appropriate error recovery strategy can be started.

We will now describe the parallel parsing strategy mapping the computation on multiple
workers and recombining their results to obtain the full parse of the input. We chose to use
the term worker to denote the independent unit of processing in an abstract way from the cho-
sen architecture. In principle it could even be a virtual process mapped into a mono-processor
architecture, though in this case obviously there would be no benefit in terms of speed-up.

Let k be the number of available workers: the input source string is split into k substrings
in an arbitrary fashion. We note that, despite there is no functional constraint concerning the
splitting of the input token stream, this freedom is not incompatible with profitable heuristics for
choosing the substrings, e.g., based on suitable pre-processing during lexical analysis.

Algorithm 1 is applied to each substring, obtaining a partial parse, which (thanks to the local
parsability property) is a correct portion of the complete parse tree. Since OP parsing needs a
look-ahead/look-back of one character to evaluate the precedence relations between consecutive
terminals, when the source string is split, we leave a 1-character overlap between consecutive
substrings.

For the sake of clarity, we will detail this procedure by means of an example. Consider the
grammar of Figure 4, assume that k = 3, and segment the source text: # n + n + n × n ×
n + n × n + n # into:

#

1︷ ︸︸ ︷
n + n +

2︷ ︸︸ ︷
n × n × n + n

3︷ ︸︸ ︷
× n + n#

where the unmarked symbols + and n are shared by the adjacent segments, and are used for
look-ahead and look-back. After each parser has processed its segment, the partial trees and the
stacks are shown in Fig. 5.

Thanks to Corollary 2.6, after a sequential step the stack contents S of each worker can
be split into two parts SL and SR, such that SL does not contain l relations, and SR does

9

tree 1 tree 2 tree 3

A

B B

n + n +

B

B

B

+ n × n × n + n

B

n × n + n

(#,⊥)(A,⊥)(+,l) (+,⊥)(B,⊥)(+,m)(n,l) (n,⊥)(×,m)(n,
.
=)(+,m)(B,⊥)(#,m)

S1 S2 S3
Figure 5: Partial trees and corresponding stacks after the first parallel pass on text n+ n+ n× n× n+ n× n+ n

not contain m relations (in case of several .= between the last m and the first l, the separation
between the two parts is arbitrary). Notice either one of SL or SR may be empty. In our example,
SL1 and SR3 are empty, while the workers produce the stacks:

(#,⊥) (A,⊥) (+,l) S1 = SR1
SL
1︷ ︸︸ ︷

(+,⊥)(B,⊥)(+,m)

SR
2︷ ︸︸ ︷

(n,l) S2
(n,⊥) (×,m) (n,

.
=) (+,m) (B,⊥) (#,m) S3 = SL3

To prepare the input for the next pass, we could simply concatenate the outputs, i.e., the
stack contents delivered by the workers of the first pass, erase their precedence components by
applying the |1 projection, iterating the same schema as in the first pass, i.e. splitting the obtained
string again into k′ ≤ k chunks to be assigned to k′ workers. Instead we propose an heuristic
approach aiming at maximizing the chance to produce a complete sub-tree or at least to include
a fairly large one as soon as possible. Intuitively, we try to achieve such a goal by pairing strings
containing l – at the left – with others containing m – at the right.

Figure 6 depicts the construction of the initial configuration of the stacks and inputs for pass
two. Let W and W ′ be consecutive workers of the previous pass, and let their bipartite stacks
be SL SR and S ′L S ′R. We define the stack initialization function as Scombine (SL, SR) =
(a,⊥) SR where a is the top symbol of SL Note that the precedence value listed with a, becomes
undefined since in the new stack a is not preceded by a terminal. The input string initialization
function is defined as αcombine(S ′L) := α′, where α′ is the suffix of S ′L|1 without its first
symbol (which is already on the top of SR).

Note that, in case S ′L (or, symmetrically, SR) is empty, SR is simply concatenated with S ′R
and the output of the following worker, say S ′′L S ′′R is used to complete the construction of the
new pair (S, u). Another notable exception where the aforementioned stack composition strategy
cannot be applied as-is is the SL component of the leftmost worker’s output (symmetrically, the
SR component of the rightmost one), as it will always be empty. As a consequence, the initial
stack of the new input for the leftmost worker will be SR1 (concatenated with SR2 if SL2 is empty).

10

First Pass
Results

Second Pass
Initialization

No here No here

No here

No here

No here

No here

Figure 6: Preparation of the initial stack and input string for the next parsing phase of a worker: the stack is S and the
input string is α′.

The complete parallel parsing schema is summarized by Algorithm 2, which provides a com-
plete schema for parallel parsing a generic string β by means of k workers.

Algorithm 2 : Parallel-parsing(β, k)

1. Split the input string β into k substrings: #β1β2 . . . βk#.
2. Launch k instances of Algorithm 1, where, for each 1 ≤ i ≤ k, the parameters are S =

(a,⊥), α = aβib, head = |β1β2 . . . βi−1| + 1, end = |β1β2 . . . βi| + 1; a is the last
symbol of βi−1, and b the first of βi+1. Conventionally β0 = βk+1 = #. The result of
this pass are k′ ≤ k pairs of stacks SLi SRi , as specified above.

3. Repeat:

(a) For each adjacent non-empty stack pair SLi SRi and SLi+1SRi+1, launch an instance
of Algorithm 1, with S = Scombine(SLi ,SRi), α = αcombine(SLi+1), head = 1,
end = |α|.

(b) Until either we have a single reduced stack S ′ or the computation is aborted and some
error recovery action is taken.

4. Return S ′.

Remark
Algorithm 2 is just a “core formulation” obviously amenable to several variations and improve-
ments. The most relevant one concerns the number of passes of parallel parsing: employing
many workers when the whole input size is small enough to be assigned to a single worker may
obviously incur in performance penalties due to the worker spawning overhead. For instance,
whenever the source string exhibits a fairly balanced structure (e.g., many functions of compara-
ble size) it is likely for the first pass to produce fairly short stacks suitable to be concatenated into
a unique string. By contrast, the partition feeding the first pass may generate chunks which do
not correspond to large sub-trees of the complete syntax tree. In this case, the construction of the
new chunks by pairing SR sides with SL ones should increase – if not maximize – the number
of handles belonging to the same chunk, and therefore the number of reductions performed by
the second – and possible subsequent – passes. Relying on our experience, we note that no more

11

than two parallel passes are needed to produce a small enough input for the final pass.

Algorithm Complexity
In terms of asymptotic complexity, the requirements that we state for a positive evaluation

of the whole approach are: a best-case linear speedup w.r.t. the number of processors and a
worst-case complexity not exceeding the one of a fully sequential parsing.

By inspecting Algorithm 1 and Algorithm 2, it is clear that the total number of elementary
operations (shifts and reductions) isO(n) since no reduction is performed more than once exactly
like the sequential case. Indeed, some terminal symbol could be shifted more than once during
the various passes, but this occurs only for the few of them which have not been reduced by the
previous passes, and for a number of times that does not exceed the number of passes.

To achieve a worst case parsing time not exceeding the sequential parsing, it is essential that
the combination of stacks Si and Si+1, inside step (3)(a) of Algorithm 2, takesO(1) time (hence
overallO(k) for k workers). A possible technique to achieve this goal consists in storing, during
the execution of Algorithm 2, a marker that keeps track of the separation between SL and SR.
Such a marker can be initialized at the position where the first l sign is detected and then updated
every time a reduction is applied that removes the sign and a new element is shifted on the stack
as a consequence of a new l relation.

For instance, in the case of S2 in Figure 5, the marker is initialized at the position of the first
+ symbol and remains there after the three reductions B ⇒ n, B ⇒ B × n, B ⇒ B × n since
+ln and +l×. When the second + (the third of the whole string) is shifted (without removing
the previous one as the m between the two + is not matched by a corresponding l at its left), it
is moved to the position of the second + as + l n, where it marks the beginning of SR2 .

These operations require O(1) time regardless of the stacks being implemented by means
of arrays or by means of more flexible linked lists; thus, they do not affect the overall O(n)
complexity of the whole algorithm.

It is then clear that the ideal linear speed-up w.r.t. the number of processors will be most
representative of the actual one whenever most of the parsing is done during the first pass. By
contrast, the worst case occurs when either only l relations or m relations are present in the
whole input; this is the case of regular languages respectively generated, e.g., by a left-linear or
by a right-linear grammar. In such cases, only one worker (respectively the leftmost or rightmost
one) performs useful parsing whereas the others leave their input unaffected. The second pass
would produce a unique string – of length (k − 1)/k · n – which would be parsed sequentially.

3. Parallelization of Lexical Analysis

Lexical analysis takes place before parsing and translation, and it is a common belief that
it is a fairly easy and less time consuming job compared with the following phases. While this
may be true in other settings, we report that lexical and syntax analysis for operator precedence
languages often require comparable effort. Thus the gain in performing parallel parsing alone
would be small without coupling it with parallel lexical analysis and preprocessing. Furthermore,
apart from a few idiosyncrasies of some languages – which tend to go unused by programmers –
lexical analysis is even better suited for parallel execution. However, to achieve this goal a few
non-trivial technical difficulties must be tackled.

In this section we present a fairly general schema for parallelizing lexical analysis, which can
be applied to most programming languages. A distinguishing feature of our lexical analysis is

12

that it produces a stream of tokens which, rather than being compatible with the original BNF of
the source language, is ready to be parsed according to an “OP version” of the official grammar,
thus yielding an advantage from both a performance, and an adaptation to OP parsing point
of view. Typically such a preprocessing allows for disambiguating some terminals which are
overloaded in the language and would induce conflicting relations in the operator precedence
matrix: depending on the context in which they occur, the lexer can associate them to distinct
token classes, so that the resulting string of tokens can be parsed according to the OP version of
the syntactic grammar. Note that such a disambiguation is complementary to the usual operations
performed in the lexing phase to cope with the presence of ambiguities in the lexical grammar
(as, e.g., in the presence of reserved words and identifiers corresponding to the same lexical
pattern). However, this is hidden from the user who does not have to worry about the internal
format.

We now provide the definitions required to describe lexical analysis parallelization.
The lexicon of the language is described by a lexical grammar, which assumes as terminal

alphabet the characters present in the input stream. Often, a lexical syntax can be analyzed by
means of a finite state machine (FSM) as opposed to a pushdown one, which is reserved for
parsing. In this work we will tackle both a language where this assumption holds (JSON), and
one where it does not (Lua) in Section 4, and will describe the issues in generalizing the approach
in Section 8.

We adopt the following conventions to distinguish terminal and nonterminal symbols of syn-
tactic and lexical grammars: terminals of syntactic grammars and nonterminals of lexical gram-
mars are in boldface font: nnn,sss. . . , nonterminals of syntactic grammars are denoted by capital
letters: A,B. . . , and terminals of lexical grammars are in monospace font: if,+. . . . We also
introduce some basic terminology (as in, e.g., [1]) which tailors some general terms to the scope
of this section.

Definition 3.1.

• A lexeme is a sequence of characters corresponding to a valid sentence of the lexicon
grammar (e.g., a built-in identifier, a reserved keyword, an operator). Its form depends on
the lexical part of the language definition, and it can be typically recognized by a FSM.

• A string is a lexeme built as a sequence of characters enclosed within a pair of delimiters,
typically either single or double quotes. It cannot contain any other delimiters of the same
kind without proper escaping (e.g. prefixing them with a \ character). Strings may contain
control characters (e.g. newlines).

• A token is a pair 〈token-name, semantic value〉 resulting from the analysis of a sequence
of characters matching the form of a valid lexeme (token-name denotes a nonterminal of
the lexical grammar, and there is a finite number thereof). Sample token instances are
〈LPAREN, (〉, or 〈STRING, "yesterday I ate too much"〉. Since the focus of
this work is the lexical and syntactic analysis of a text, from now on we will identify the
token with the first element of the pair.

• A comment is a sequence of characters delimited by special symbols according to language
dependent rules, and does not correspond to a lexeme. A comment should be matched and
discarded during the lexing process. Many languages use different markers for single-line
and multi-line comments.

13

The goal of lexical analysis (lexer) is to recognize the lexemes in the source character stream
and generate a sequence of tokens, removing the comments. The lexical grammar, in spite of
the fact that it typically defines a regular language, may be not locally parsable in its immediate
form and in most cases is ambiguous. Yet, lexical analysis can be made suitable for parallel
execution and, given the typical “flat structure” of programming language lexicon, is a more
natural candidate for efficient parallelization than parsing, which has to deal with the nesting of
syntactic structures, as in fact it happened in practice (see the discussion in Section 7). To achieve
this goal, however, two issues must be addressed. First of all, splitting the source text randomly
into chunks to be processed by parallel workers may split a lexeme across different segments.
Thus, the results produced by lexers working on adjacent chunks will have to be reconciled to
cope with this issue.

The second issue concerns the occurrence of very long comment sections, possibly longer
than the chunk assigned to a single worker. It is commonplace among some programmers to
comment portions of obsolete or temporary code, effectively preventing the lexer from knowing
if it is analyzing a portion of a comment or not, in the case of lack of comment delimiters
in its chunk. This is further exacerbated by the fact that some languages adopt some exotic
syntactic rules for comment and/or string delimiters in general. For instance, in Lua strings can
be delimited either by quotes or by opening and closing symbols of unbounded number of forms.

To cope with this problem, we accept a minimum amount of nondeterminism during the
lexing phase only. We run several speculative computations for each worker, corresponding
to the different states of the lexing machine which are legitimate on the splitting point of the
input stream. If the worker is able to remove the ambiguity during the analysis of its chunk, the
incorrect computation(s) are halted and only the correct one proceeds. We will show that the
number of language dependent simultaneous computations, never exceeds 3 in our case.

Therefore, every worker will produce several candidate token lists for its chunk. Any disam-
biguation that cannot be performed during the single worker analysis is done when the partial
token lists are joined into a single one. For instance, assume that a worker w reaches a given state
sk after analyzing completing the lexical analysis of its input chunk. If there is a computation
starting with sk among the ones performed by the worker acting on the input chunk after the one
assigned to w, the corresponding candidate token list is merged with the output of w.

We now illustrate our approach to parallel lexical analysis in a similar way to the path fol-
lowed in the case of parsing: we first revise normal sequential lexers to make them suitable to
work on partial chunks and to produce partial outputs to be later integrated; then we will show
how a parallel lexer splits the source code into chunks, assigns them to different workers, and
reassembles their partial outputs. We will also make use of a running example to better illustrate
the various steps of our algorithms.

Example 3.2. Consider the grammar generating arithmetic expressions presented in Figure 4,
extended to allow also for operations on strings. The resulting OPG is depicted in Figure 7(b),
whereas the lexical grammar is reported in Figure 7(a), with nnn denoting an identifier and sss a
literal string; Figure 7(c) depicts a FSM recognizing tokens and comments compatible with the
lexical grammar; to keep its appearance easily understandable we restricted its description to
the recognition of these fundamental elements of the lexicon; however, its extension to cope with
a whole chunk consisting of a sequence of such elements, possibly broken at the boundaries of
the chunk, is conceptually straightforward.

The lexical grammar specifies two formats for strings: single-line ones are delimited by
single-quotes ’ ’, multi-line ones delimited by a pair of triple-double-quotes """ """. The

14

inputinputinput → elementelementelement | inputinputinput elementelementelement
elementelementelement → | tokentokentoken | commentcommentcomment
tokentokentoken → nnn | sss | +++ | ×××
nnn → letterletterletter (letterletterletter | digitdigitdigit)∗

sss → ’(\\.|[ˆ\\’\n])∗’ |
"""(charcharchar|"charcharchar|""charcharchar)∗"""

+++ → +
××× → ×
letterletterletter → [a–zA–Z]
digitdigitdigit → [0–9]
charcharchar → \\.|[ˆ\\"]
commentcommentcomment → /* ([ˆ*] | *+[ˆ/*])∗*

+/ |
// .∗\n

(a)

S → A
S → B
A→ A+++B
A→ B+++B
B → B×××nnn
B → B××× sss
B → nnn
B → sss

(b)

q0 q5

q15

q6

q3

q2

q1

q16

q17

q4

q7

q8

q12

q9

q13

q10 q11

q14

q18 q19 q20

q21 q22

a| . . . |z|A| . . . |Z|

’

"

+

×

/

a| . . . |z|A| . . . |Z| |0 . . . |9

[ˆ\\’\n]

\
’
.

" "

[ˆ\\"\n]

\

"

"

"

. [ˆ\\"\n]

"

[ˆ\\"\n]

" "

*

/

[ˆ*]
*

[ˆ/*]

/

*

\n
.

(c)
Figure 7: Lexical (a) and syntactic (b) grammars of arithmetic expressions without parentheses, extended to deal also
with strings, and a FSM recognizing tokens and comments of the lexical grammar (c). In figures (a) and (c), metasymbols
used in regular expressions are in red while the terminals of the lexical grammar in black; symbol stands for any control
character (whitespace, newline, etc.).

15

lexicon also allows for introducing both single-line and multi-line comments with a C-like syntax:
a multi-line comment is delimited by /* and */, while a single-line comment begins with //.

In our running example we will refer to the sample code snippet in Figure 8.

var + x /* This is a multi-line comment that
contains part of an arithmetic expressi|on:|
var + ’string*/×/*’ //and this is an embedded single-line comment
+ ’6’ × */ y +| """a multi-line string interrupted here|
× timesToConcat + """+a//-(5×b)""" × id
+ z

Figure 8: Sample string generated by the grammars of arithmetic expressions in Figure 7.

If such a complete code snippet were supplied to the FSM of Figure 7(c), the output produced
by the lexer would be (for completeness we include also the semantic components of the tokens):
〈nnn,var〉 〈+++ +〉 〈nnn,x〉 〈×××,×〉 〈nnn,y〉 〈+++,+〉 〈sss,a multi-line string interrupted
here ×timesToConcat + 〉 〈+++,+〉 〈nnn,a〉 〈+++,+〉 〈nnn,z〉.

Our goal is to obtain the same result by splitting the job among several workers: in our
example we will use three of them.

Source character stream partitioning . First, the input stream is split into segments of equal
size; most likely, however, such a ”blind” split may break a lexeme, typically an identifier which
normally is not very long; thus, it is often sufficient to consider a look-ahead/look-back of a
few characters to find a lexeme separator (i.e. a white-space): in such cases the splitting point
may be conveniently set right after it and the boundaries of the chunks are updated trying to
avoid splitting any token in the middle. For instance, in our example of Figure 8, the original
ending points are denoted by | (red); by analyzing a bounded context in the neighborhood of the
split points we identify the occurrence of two newline characters, and update the splitting points
moving them to the positions denoted by | (blue). In general it cannot be known a priori how
far is the end of lexeme from a given point; thus, the length of the search should be stated on
the basis of some, possibly language dependent, heuristic criteria and should not exceed a few
characters in any case.

Assuming that such a separator is found, the possible ambiguity of the starting state of the
lexer reduces either to the beginning of a lexeme, a position within a string, or to a position within
a comment. If the search of a separator within a bounded context of the start of the segment is
not conclusive, the initial state can also correspond to an internal point of a non-string lexeme. In
the worst case, i.e., when a non-string lexeme is cut by the splitting, the worker will need to carry
on 4 computations at once. However, we report that no such cases took place in our experimental
evaluation.

In our example the worker assigned to the first chunk is deterministic and begins its analysis
in the initial state of the FSM of Figure 7(c); The second and third workers, instead must carry
over three simultaneous computations each, starting at the beginning of a token, or inside a
multi-line string or inside a comment; thus, the corresponding starting state of the FSM are,
respectively, q0 or q7 or q18 (or q19).

Parallel lexical analysis. Once assigned to a given chunk, each worker carries on a computation
for each possible alternative initial state of the lexing machine. Most likely, during this phase,

16

some disambiguation among the open alternatives in the lexical analysis may occur: this happens
a) if a worker meets a character forbidden in some of the active states, thus aborting the erro-
neous computations; b) if a sequence of characters causes the recognition of a lexeme on more
than one computation, thus collapsing them into a single one. Although this collapse is quite
uncommon, we will provide an example thereof when detailing the parallel lexing strategy for
the Lua language.

Below we give an abstract version of the algorithm executed by each worker on the assigned
chunk.

• Let M be the FSM recognizing the language generated by the lexical grammar; let Σ
denote its alphabet, Q its set of states, ∆ : Q × Σ → Q its transition function, q0 its
initial state and F its set of accepting states. We assume, as usual, that when an accepting
state is reached a lexeme in the input string is recognized and its semantic value is output.
The transition function ∆ can be partial: we use symbol ⊥ to denote an undefined value
thereof. ∆∗ denotes the reflexive and transitive closure of ∆.

• Let N be the number of concurrent computations of M and let s be the N -tuple of states
currently reached along each of the N computations of M : the undefined state value ⊥ is
used to denote that the computation has been interrupted because of an error in the input
string, while a value i (1 ≤ i ≤ N) is used to denote that the computation has been merged
with computation i.

• Let b be a N -tuple of strings where bj , for 1 ≤ j ≤ N , contains the partial semantic value
of the token currently under recognition along the j − th computation of M .

• Let T be a N -tuple of lists of tokens.

Example 3.2 (continued). Going back to our running example, the worker scanning the first
chunk performs only one computation, whose initial state is the initial state the FSM of Figure
7(c). The worker returns the tokens nnn+++nnn and finishes in a state specifying the presence of a non
terminated comment. The choice of a newline separator as the ending character of the chunks
excludes the possibility that their initial portion belongs to a single-line string.

The second and third chunk are scanned along three simultaneous computations starting at
the beginning of a token or inside a multi-line string or inside a comment, respectively. In the case
of the second worker, the first of the three computations generates a list of tokens nnn+++ sss+++ sss ×××
before being aborted due to the occurrence of the unexpected end of a comment */. Along
the second computation a multi-line string is recognized, and the computation is aborted after
reading the word multi-line. The third computation detects the end of a comment */ and
produces a list of tokens×××nnn+++. The run ends in a state denoting the presence of a non-terminated
string, while the prefix which has been read is stored to allow for a possible concatenation with
the suffix in the following chunk.

Finally, the third worker carries on three simultaneous computations: the first and second
one end in a final state, generating as a list of tokens respectively×××nnn+++sss××× nnn+++nnn and sss+++nnn+++nnn.
The third one does not collect any token and ends in a state which signals the presence of a
non-terminated comment.

17

Algorithm 3 : Sequential-lexing(γ, s)

1. Initialization: head := 1; end := |γ|; X = γ[head].
The strings in b and the lists in T are set to empty and s is the N -tuple of initial states.

2. For each state sj (1 ≤ j ≤ N) such that sj ∈ Q:
(a) If sj = sk for a k such that 1 ≤ k < j then merge computations j and k, by setting

sj := k and joining the end of list T j to the end of list T k.
(b) Else, let q := ∆(sj , X).

i. If q 6= ⊥
A. If, while in state sj ,M is not reading a whitespace character outside a string

or a comment, set bj := bjX .
B. sj := q.

ii. Else
A. If sj ∈ F and bj 6= ε then append bj to T j and set sj := ∆(q0, X) and

bj := X .
B. Else sj := ⊥.

3. head := head+ 1.
4. If head ≤ end repeat from step 2, else return the tuple s (where each state sj = i (1 ≤
i ≤ N is updated to sj := si) and the tuple T of lists of tokens.

List joining phase . Once the various workers have processed their chunks in parallel their par-
tial outputs must be integrated into a unique sequence of tokens to be supplied (after further
partitioning) to the parallel parsing phase. This job can be done in a similar way to the case of
parsing, with two important differences:

• Whereas each worker in the parsing phase delivers just one output, in general parallel lex-
ers will produce several candidate outputs among which the integration phase will choose
the right one.

• Whereas after a first parsing pass further parsing is applied, possibly in more than one pass,
the partial outputs of the parallel lexical analysis need only to be selected and integrated
without further analysis.

The integration of the partial outputs is carried over sequentially. Since the leftmost worker W1

performs a deterministic computation, its final state is the correct initial one for the following
worker W2. The correct list among the ones produced by its right neighbor is thus selected
by matching the final state of the first worker against one of the members of s2. In case no
match occurs, an error is signaled and error recovery strategies are enacted. The output of the
following workers is handled similarly during the whole list joining phase, which has linear
complexity in the number of workers h. If the lexical grammar of the language is not regular,
some additional actions may be required. From our experience this case is quite uncommon in
practical programming languages, and does not affect significantly the efficiency of the whole
process; nevertheless we will deal with the noticeable exception of Lua.

Algorithm Parallel-lexing summarizes the coordination of the activities of the various se-
quential lexers.

Thus, the overall complexity of the parallel lexing phase is O(n/h) +O(h).

18

Algorithm 4 : Parallel-lexing(δ, h)

1. Split the input string δ into h substrings of equal length.
2. Scan a fixed length context of the ending points of the substrings to check whether any lex-

eme is broken. If a bounded look-ahead/look-back does not suffice to determine whether
the boundaries of a substring are inside a lexeme, move the substring boundary so as to re-
duce as much as possible the ambiguity on the starting state for its analysis. (The bound for
the look-ahead/look-back and the special character to seek in this search are heuristically
chosen in a language-dependent way).

3. Let δ1δ2 . . . δh be the resulting substrings and, for each 1 ≤ i ≤ h, let si be a tuple of
states of M , such that from each state sji (1 ≤ j ≤ |si|) the scanning of substring δi can
start.

4. Launch h instances of Algorithm 3 (sequential lexing), where, for each 1 ≤ i ≤ h, the
parameters are γ = δi, s = si. The results of this pass are h tuples q1, q2 . . . qh of states of
M such that, for each 1 ≤ i ≤ h, 1 ≤ j ≤ |qi|, qji = ∆∗(sji , δi), and h tuples T1, T2 . . . Th
of lists of tokens built along the corresponding computations, where, for each 1 ≤ i ≤ h,
|Ti| = |si|.

5. Build a unique list T of tokens by choosing exactly one list from each tuple Ti (1 ≤ i ≤ h)
and concatenating them. The selection is performed sequentially, starting from the result
of the instance that processed the leftmost substring, as its computation is unambiguous
(in fact, |s1| = 1).

6. Return the list T of tokens.

Example 3.2 (continued). In the case of our running example, after each worker has completed
the scanning of its character stream segment, the last step of the algorithm builds a single list
of tokens from those generated for each chunk, eliminating the initial ambiguity on the start
state of the lexical analysis. The partial list of the first worker is concatenated with the token
list generated by the second worker along the computation starting from inside a comment. The
resulting list is then concatenated with the one produced by the last worker along its second
computation, updating also the semantic value of the string split across the second and third
chunks.

The complete list of tokens returned to be processed by the parsing workers, together with
their semantic values provided for clarity, is the same as it would have been produced by a
single sequential lexer, i.e., 〈nnn,var〉 〈+++,+〉 〈nnn,x〉 〈×××,×〉 〈nnn,y〉 〈+++,+〉 〈sss,a multi-line
string interrupted here ×timesToConcat + 〉 〈+++,+〉 〈nnn,a〉 〈+++,+〉 〈nnn,z〉.

We now detail how we tailored the above general schema to JSON and Lua.

3.1. The case of JSON

JSON (JavaScript Object Notation) is a data description language, described in the Internet
Engineering Task Force document RFC4627 [50], and based on a subset of JavaScript. JSON
is widely employed in web applications, where it is progressively superseding XML as a more
efficient and compact format for serializing and exchanging structured data.

JSON source code is not intended to be written or read by humans, but rather to be processed
by machines. Consequently the JSON grammar lacks some of the typical lexical features of
programming languages such as comments and does not mandate a code indentation style as

19

some programming languages do, e.g. Python. Our purpose in selecting JSON as our first case
study is to prove the practicality of parallel parsing, providing a realistic benchmark for speedups.
In particular, with JSON representing a valid data description language alternative to XML in an
ever increasing amount of scenarios, the average size of the JSON files to be processed is already
sizeable and increasing. We now detail the steps of the algorithmic schema Parallel-lexing,
tailoring it to the lexical features of JSON.

Source character stream partitioning. The lexemes in the input stream are separated by white-
space characters, i.e. spaces, tabulator characters and newlines. Thus, we split the input stream
on white-space characters, which occur reasonably frequently. This choice has a drawback since
spaces and tabulators are also allowed within strings, so that a string could be split across two
chunks. An alternative choice is to break chunks only in correspondence of newline characters,
since JSON strings are constrained to be single-line. However, automatically generated JSON
code may lack newline characters, making this alternative choice unpractical. Thus, we choose to
use white-spaces as chunk separators and accept the consequent limited ambiguity of the lexing.
Since the JSON grammar includes only strings as arbitrary length lexemes, the ambiguity for
each chunk reduces to two possible initial states only: outside a token or within a single-line
string.

Parallel lexical analysis. Each worker carries on at most two computations for a chunk, cor-
responding to the two possible starting states of the analysis. To reduce the level of ambiguity
during the lexing action, we exploit the fact that the set of characters composing the non-string
lexemes is a proper subset of the ones allowed to appear within a string. Thus if one of the
characters which can only appear inside a string is met, the lexing action assuming to be outside
a string lexeme can be stopped. To perform the token list recombination, each worker counts the
number of string delimiters symbols (double quotes) occurring in the chunk.

List joining phase. The last phase of the algorithm, which merges the token lists generated by the
lexing workers solving the initial ambiguity, i.e., determining whether or not the chunk started
within a string. This is done by checking the parity of the number of quotes read by all the
workers preceding the one in need of disambiguation.

3.2. The case of Lua

Lua is a lightweight multi-paradigm programming language widely used as a domain specific
language support engine, with a widespread use in video game development. Currently, Lua
is the leading scripting language in this application area (as reported in [19] and in [24] which
declares Lua the winner of the 2011 Game Developer Magazine Front Line Award). In particular,
it has been adopted by prominent industrial game developers such as LucasArts (Grim Fandango,
Escape from Monkey Island) and BioWare. Besides the video games programming application
area, Lua has been used in various projects (such as Celestia[10]) and since February-March
2013 has been adopted as a template scripting language on Wikipedia[15].

Lua is a full fledged programming language and exhibits some of the syntactic “liberalities”
that are fairly typical in various modern programming languages. We stress that the point of
employing Lua as benchmark is to show that a richer grammar does not adversely impact on
the performance gains obtainable through parsing it in parallel. In particular, the one of its key
peculiarities is that the lexical grammar of Lua, unlike most programming languages, is not a

20

regular one. This is due to a non regular syntax for strings and comments, which requires ad-hoc
solutions when tailoring the schema for parallel lexical analysis.

In Lua, strings may be delimited by the so called long brackets, in addition to the usual
single and double quotes. An opening long bracket is defined by the character pattern [=n[,
with the corresponding closing long bracket being]=n]. The pair of long brackets must have
the same number n ≥ 0 of = characters to be recognized as a syntactically valid pair. Opening
and closing long brackets can be nested, but a valid pair of long brackets cannot contain a closing
long bracket of the same type.

Similarly, comments can be single-line or multi-line. Single-line comments start with a dou-
ble hyphen (--) and extend until the end of the line. Multi-line comments have a syntax similar
to strings, as they begin with an opening long bracket, preceded by a double hyphen, and end at
the corresponding closing long bracket. Strings and comments can be arbitrarily nested, except
that they cannot properly contain other comments or strings delimited by brackets with the same
number of = symbols, lest an ambiguity on closing long brackets should arise.

Lua’s complex syntax for multi-line strings and comments may lead to an intolerable source
of ambiguity when different chunks of the input character stream are scanned in parallel. In
particular, the arbitrary length marker defined as a delimiter for multi-line strings and comments
results in an infinite number of possible delimiters for these constructs. Since there is no way to
discern via a fixed look-ahead/look-back analysis which of these delimiters, if any, is enclosing
the stream chunk to be analyzed by a lexer, the possible number of starting states and token lists
generated along the corresponding computations on the segment could potentially be infinite. A
lexing worker, thus, cannot carry on distinct runs for all the possible alternatives for the starting
point of the analysis.

To deal with multi-line strings and comments in Lua, we introduce a few constraints on
the source programs that can be processed by the schema. To bound the possible degrees of
ambiguity in the lexical analysis, we forbid the non-regular syntax for string delimiters: we
require that opening and closing long brackets that delimit multi-line strings has n = 0 characters
= in the patterns [=n[and]=n], i.e., we admit only the [[and]] as string delimiters. Instead,
we do not restrict the syntax to specify comments, so that they can be delimited by long brackets
with an arbitrary number of = signs between the brackets, retaining also the non regular constraint
on the number of = characters. This choice is consistent with the common use for multi-line
comments, as a container of legacy code, which in turn mandates the need to specify a different
comment delimiter from the ones already in use in the enclosed portion of text. Furthermore, to
limit the complexity deriving from the possible arbitrary nesting of strings and comments, we
assume that multi-line comments are always ended by a newline, so that they cannot end inside
a single-line string or comment.

Given these constraints on the lexical grammar of Lua, which we have verified to match
widely employed programming practices, we now detail the steps in the algorithm Parallel-lexing
left open in the general schema.

Source character stream partitioning. The partitioning of the source character stream for Lua
has been operated by employing the newline characters as effective splitting points. This choice
is justified by Lua being a programming language which is expected to be written and read by
humans, and thus endowed with proper indentation. Given the hypotheses made on the source
form, the possible open ambiguities concern whether the lexing worker is acting on characters
belonging to a non-string lexeme, a string, or a comment.

21

Parallel lexical analysis. Each worker, save for the first one, starts with the initial ambiguity of
being either at the beginning of a proper lexeme, or within a multi-line comment, or within a
multi-line string. The worker carries on two computations: one of them handles simultaneously
the first two possibilities, while the other deals with the third one.

The workers starting as if they are at the beginning of a lexeme, or in a multi-line comment,
process their chunk along a single computation both matching the lexemes and keeping track of
all the comment marker positions it encounters in a list. Whenever they find a closing multi-line
comment symbol, they go back to the state where the beginning of a lexeme should be matched,
keeping track of the comment-closing point. The position of the delimiters of multi-line com-
ments is used in the last phase, to find which portions of the token stream should be kept and
which ones should be discarded. The workers must deal with two possible causes of ambiguity:

I) Closing a multi-line comment within a string. The closing symbol of a multi-line com-
ment may occur within a multi-line string beginning in the same chunk. In this case it is not
possible to determine whether the closing symbol ends a construct started in a previous chunk
or belongs to the contents of the current string. To solve this, the worker keeps tokenizing the
character stream, until a closing string symbol is met. The worker memorizes the position of the
closing string token, allowing for the identification of the string end during recombination.

II) Closing a multi-line string within a comment. A second ambiguity may appear, con-
versely, when the ending symbol of a multi-line string which began in the same chunk occurs
within a single-line comment or a single-line string (delimited by quotes) and the worker can-
not ascertain whether the closing delimiter represents the end of a previously interrupted string.
The worker has to start two simultaneous computations, collecting the following tokens into two
corresponding lists. The two computations can be possibly merged again into a single one when
–and if– the ambiguity can be solved.

The workers can also reduce the two initial computations to a single one, eliminating the
ambiguity, either when an error occurs in one of the two runs and the corresponding execution
is aborted or when the worker reads a symbol with an overloaded semantics (as, e.g.,]]). In
particular, a sequence of two closing square brackets]] may represent either the end of a multi-
line comment, or the end of a multi-line string or two lexemes used to index a table (e.g., the
two closed brackets in a[b[i]]). If this sequence occurs, the worker may continue the scan-
ning along the first computation only, since the following characters of the chunk lie necessarily
outside of such comments or strings, and may only start a new lexeme or belong to another type
of multi-line comment; thus, the two possibilities are handled by a single computation, as stated
above.

List joining phase. Starting from the first chunk, the list of delimiters produced by each worker
is scanned, matching open and closed markers of multi-line strings or comments. The actual
starting state of the analysis for each chunk is thus identified by checking the presence of possible
open delimiters in previous segments, and the final token list is built by concatenating the portions
of token lists generated along the correct computations on the chunks.

Example 3.3. Consider again the grammar of arithmetic expressions in Figure 7, extended with
the possibility of employing the multi-line string and comment definitions of Lua, including the
restrictions required to apply our parallel lexing schema. Consider the following source code
chunk, which gets assigned to a worker for lexing:

x + [[a string]] × [[this
string may end here]=]

22

y + [[another string]] + z

The worker scans the chunk along two computations, Ctoken and Cstring, corresponding to
the hypotheses of starting at the beginning of a token or inside a multi-line string respectively.
Ctoken generates deterministically the partial list of tokens nnn +++ sss ×××. Subsequently, while it’s
matching the contents of a multi-line string beginning upon the [[delimiter, it detects the closing
comment symbol]=] and memorizes its position for recombination. Upon the recognition of
]=], the worker needs to manage the possibility of the]=] symbol being an actual end of a
comment which began on a previous chunk. To this end, Ctoken computation diverges on two
paths: Ctoken−1 resumes the computation from the state corresponding to the beginning of a
token and moves on, while Ctoken−2 scans the segment following the closing comment symbol as
if contained the interior of the string. Upon matching the]] delimiter, Ctoken−1 has recognized
the tokensnnn+++sss and annotates the presence of the matched]] symbol, whileCtoken−2 completes
the string recognition and merges back with Ctoken−1 yielding the initial computation Ctoken.
Ctoken then recognizes the last tokens +++nnn.

The second computation Cstring, on the other hand, scans the segment until the first]] (on
the first line of the chunk) is encountered, collecting the characters as they were a portion of a
string token, and is merged with the ongoing computation Ctoken−1 from that point on.

After analyzing the code chunk, information from the previous chunks is employed to deter-
mine whether Ctoken or Cstring has performed the correct computation, and discard the incor-
rectly lexed tokens accordingly.

4. Adapting Grammars to Parallel Parsing

Almost no grammar in its original user-oriented BNF is immediately ready to be used as an
input for a general-purpose deterministic parser generator. For instance, to be suitable for a clas-
sical top-down parser such as LL ones, a grammar must avoid left-recursive derivations such as
A
∗⇒ Aα, which must be automatically transformed into right-recursive ones. Typically, official

technical language definitions do not even comply with the requirements of an LR(k) grammar,
as their syntax specification exhibits shift/reduce or reduce/reduce conflicts that require a refac-
toring of the grammar so that it can be properly handled by parser generation tools. Even worse,
most modern programming languages tend to be highly – perhaps too much – liberal towards the
users and allow for overloading some symbols, e.g. parentheses, and/or using different symbols
as aliases, e.g. ‘;’ and newline. Among those, it is also well known the extreme case of Perl
whose parsing has been proved undecidable [33]. Thus, it is common practice and need, before
building a compiler front-end for any new language, to carefully redesign its grammar to make it
well-suited for the chosen deterministic parsing algorithm.

Such a preliminary work is needed as well to exploit an algorithm based on operator prece-
dence. In our experience, the effort required to transform the official language specification of
a technical language in OP form exceeds, but is comparable with, the one necessary to apply a
standard LR or LALR-based parsing algorithm such as those used by Bison. We do not believe
that such an increased difficulty hides a real impossibility due to the lesser theoretical generative
power of OPGs w.r.t. LR ones: so far we did not find in real programming languages features
preventing a language from being generated by an OPG, such as the ones reported in Section 2.

A drawback of the proposed approach is that the readability of the OP compliant grammar is
lower than the one of the LL and LR ones. However, the programmer employing the language

23

S→ OBJECT
OBJECT→ { } | {MEMBERS }
MEMBERS→ PAIR | PAIR, MEMBERS
PAIR→ STRING : VALUE
VALUE→ STRING | number | OBJECT | ARRAY | bool
STRING→ “ ” | “ CHARS ”
ARRAY→ [] | [ELEMENTS]
ELEMENTS→ VALUE | VALUE, ELEMENTS
CHARS→ CHAR | CHAR CHARS CHARS→ char | char CHARS
CHAR→ char

Figure 9: Official JSON grammar. The productions for nonterminals CHARS and CHAR (highlighted in red) are replaced
by the one highlighted in green to transform the grammar in OP form.

targeted by the syntax analyzer will not need to be aware of the employed parsing strategy, and
thus of the actual grammar employed by the syntactic analyzer.

In this section we show how we managed the two languages we employed as case studies,
i.e., JSON and Lua. Both have been treated with ad-hoc techniques and it turned out that the
adaptation to OP form was trivial in the case of JSON, while it required more effort (a few man-
days) in the case of Lua; other attempts – e.g., with JavaScript – generated more problems and
suggested to resort to a more systematic and fully automated approach. We note that OPGs are
already available in the literature for other programming languages, with considerable syntactic
richness, such as ALGOL 68 and Prolog [22, 17].

4.1. The case of JSON
The official JSON syntactic grammar, reported in Figure 9, can be trivially transformed into

operator precedence form. The only required modification is the one replacing the productions
of the CHARS and CHAR nonterminals, to generate a sequence of printable alphanumeric char-
acters, with a plain right-recursive rule.

4.2. The case of Lua
Tackling the transformation of the Lua grammar in OP form has proven more challenging

than with JSON. As it happens for other standard technical definitions of classical program-
ming languages, Lua’s syntactic grammar (defined in the official reference manual [44] is not
expressed in LR form. Concerning its transformation in OP form, the significant issues to be
dealt with are the following ones:

1. The language statement terminator ; is optional and can be replaced by either a white-
space and/or a newline character.

2. Function definitions and calls allow one or more newline characters to appear between the
function name and the parameter list. For instance:

a = b + c
(print or io.write)("done")

is to be interpreted as

a = b + c(print or io.write)("done")

24

3. Functions are first-class citizens in Lua, thus they can be returned as the result of a call
to another function. This feature, in combination with the possibility of employing an
in-place defined table as the single parameter passed to a function, allows to write the
following code snippet:

i = SecOrderFunct{A=3,B=25}
("hazelnut","strawberry")

where SecOrderFunct is a call to a second order function. The resulting first order function
is subsequently invoked with the hazelnut and strawberry strings as parameters.

To deal with the above issues, we imposed the following constraints on the sources to be parsed
(besides the lexicon restrictions described in Section 3.2), following what we have observed to
be the best programming practices in Lua.

1. Multiple statements on the same line must be separated by a ; character.
2. Comments between statements must be preceded and/or followed by a newline.
3. Multi-line comments are always followed by a newline.
4. We forbid the presence of newline characters between the in-place table declaration of a

function parameter, and the parameter lists of the possible lower-order functions returned
as the result. This prevents the programmer from using the same code indentation of the
example at point 3. Possible ways to reformat are:

i = SecOrderFunct{A=3,B=25}("hazelnut","strawberry")

and

i = SecOrderFunct{A=3,B=25}("hazelnut",
"strawberry")

We emphasize that, in the whole set of real world code-bases examined for regression test-
ing purposes, no violation of these constraints has been found. Moreover, the aforementioned
constraints stand well within the common best practices in programming, allowing a better read-
ability of the source code.

Provided the aforementioned constraints are respected by the source code, it is possible to
solve all the remaining issues to allow OP parsing of Lua by means of a proper token rebelling
done during the lexing phase. The transformations applied by our Parallel-lexing algorithm are:

Token Disambiguation. The overloading of various tokens is disambiguated by emitting spe-
cialized tokens during the lexing phase. For instance, separate tokens are emitted for:

1. ; used as a separator between statements or as a separator between fields in a table
2. = within assignment statements or in the initialization of table fields
3. The round parentheses enclosing a function parameter list and all the others
4. The classical ambiguity between unary and binary minus

It is easy to verify that translations (3) and (4) can be performed by a finite state automaton.
Transformations (1) and (2), instead, need a stack to distinguish whether the innermost context
where the symbols occur is a statement or a table; such an ad-hoc stack managing is fully inte-
grated with our Parallel-lexing algorithm, and does not incur in a significant performance penalty
as the lexical grammar of Lua is not regular anyways.

Semicolon Insertion When a newline is employed as a separator between a token that ends a
25

statement, i.e, an element of the set S = {nil,false,true, a number, a string,..., },),],
name,end} and (, name or any other initial keyword for a statement, (i.e. break,if,do,
while,local,for,function, repeat,::,goto) we replace the newline with a semi-
colon: in this way all statements are separated by a semicolon. Note that this substitution does
not add a semicolon between the closing parenthesis of a function parameter list and the begin-
ning of the function body. We also insert a semicolon between the elements of these two sets
whenever they are separated by a comment.

Thanks to these transformations, the output produced by our enriched Parallel-lexing algo-
rithm is fully compatible with the operator precedence constraints. We were thus able to define
an OPG which matches the Lua programs with the above restrictions (for completeness the OPG
of Lua is reported in the Appendix). One more step is necessary, however, to enable the paral-
lel parsing algorithm described in Section 2: the grammar must be not only an OPG but must
also be in Fischer normal form. This last step is performed by the well-known algorithms to
eliminate renaming rules and repeated r.h.s. While the previous transformations did not affect
significantly the size of the original Lua grammar, in this case the total number of nonterminals
and productions increased, respectively, from 38 nonterminals and 144 rules to 49 nonterminals
and 8547 rules. However, this increase in the size of the grammar is perfectly tolerable from the
point of view of the memory fingerprint of a modern system and does not affect at all neither the
run-time efficiency nor the end programmer (since she can fully ignore the new syntax grammar).
This last transformation does not significantly alter the shape of the abstract syntax tree (AST)
corresponding to a language sentence, save for the compression caused by the elimination of the
renaming rules.

As a summary of the actions taken to obtain OPG grammars for both Lua and JSON we can
state that performing this step for JSON was trivial, as only one rule modification was required
(see Figure 9). Lua, on the other hand, proved to be in need of intervention not only to obtain an
OPG description, but also to have an LR(1) one that could be provided as an input to Bison. The
developer effort required to transform the reference Lua grammar in LR(1) form was comparable,
if a bit smaller, than the one required to obtain its OPG. We note that the actual LR(1) Lua
grammar, ready to be employed in Bison, is constituted of 143 productions, with the resulting
LALR pilot automaton being 243 states wide, which is in itself quite a sizable one.

5. PAPAGENO Toolchain

Here we describe the general architecture of the PArallel PArser GENeratOr (PAPAGENO)
toolchain for parallel operator precedence language analysis, in which we implemented the al-
gorithms described in previous sections. PAPAGENO is an open source project available under
GNU General Public License and it is written in ANSI/ISO C and Python: the codebase can be
downloaded at [43].

The PAPAGENO toolchain provides an automatic parallel parser generator that converts a
specification of a syntactic grammar into an implementation of the operator precedence parallel
parsing algorithm described in Section 2. The generated parallel parsers can be complemented
with parallel scanners, hence obtaining a complete parallel lexer and parser library. For the li-
brary we have chosen C as implementation language, because it permits strict control over the
computation process and memory management. For the sake of portability, all the C code gener-
ated by PAPAGENO employs fixed-size types standardized in the C99 standard; furthermore, it
relies exclusively on the standard C runtime and a POSIX-compliant thread library, thus avoiding

26

Syntactic
Grammar

Specification

Operator
Form

Grammar
Specification

Reentrant
Scanner

Generator
(Flex)

Lexical
Grammar

Specification

Is it operator
precedence?

Lexical
Analysis

Enrichment

Renaming
rules and
repeated

r.h.s.
removal

Parallel
Parser

Generation

Lexer-Parser
Interface

Parallel
Scanner

Grammar
Dependent

Parser
Portion

Grammar
Independent

Parser
Portion

C Compiler
Parser
Binary
Library

Yes

No

Figure 10: Typical usage of the PAPAGENO toolchain. The human operator stages are marked in green, while the
PAPAGENO automated staged are marked in blue.

any architecture-specific optimization. The generated lexers and parsers have been run success-
fully on x86, x86 64, ARMv5 and ARMv7 based-platforms with no code modifications.

First, we detail the stages of PAPAGENO’s workflow for parallel source analysis from the
end-user standpoint. Second, we describe the design choices and optimization techniques which
proved crucial in exploiting the parallelism exposed by the lexing and parsing algorithms.

5.1. Architecture of PAPAGENO toolchain

The architecture is depicted in Figure 10. The input of the process contains the specifications
of the lexical and syntactic grammars of the target language. If the syntactic grammar of the
language is not in operator precedence (OP) form, the tool notifies the inconsistency in the input
specification and the user is given proper diagnostics pointing out the rules where precedence
conflicts or adjacent nonterminals occur. The user has thus to modify the grammar: a convenient
approach to eliminate precedence conflicts consists in enriching the lexical analysis stage with
proper transformations, as insertions or renaming of tokens. In Section 4 we described how to
adapt into a form suitable for parallel parsing the two case study grammars of JSON and Lua.

Then PAPAGENO automatically eliminates from the OP grammar both the repeated r.h.s.
rules and the renaming rules. At last, the C code of a parallel parser is generated.

The parallel parser generator in PAPAGENO has been designed as a replacement for the
classical GNU Bison generator and adopts the same basic syntax conventions, allowing an easy
porting of the grammar descriptions available in Bison-compliant format. The generated parallel
parser is logically split into two parts, as shown in Figure 10: a language independent support
library, and a language dependent parser code portion. This choice was made to allow for easy
extensions and possibly further architecture dependent optimizations of the language indepen-
dent portion, while retaining the automated code generation feature.

The parsing process is invoked by means of a function call, where the developer may specify
at runtime the input stream to be analyzed and the number of workers to be employed to perform
the analysis. Each worker is mapped to a single POSIX thread, belonging to a thread pool
initialized at the beginning of the parsing process.

The developer can choose between two parallel parsing strategies in the generated code. In
the first strategy, after a first execution of the parallel parsing algorithm, the recombination of the
partial stacks is assigned to a single worker which operates in sequential mode. In the second
strategy, instead, the first parallel pass of the parsing algorithm is followed by parallel recom-
bination of the partially parsed substrings along the lines described in the general Algorithm 2:

27

the number of initial workers is reduced by at least two, and each of the remaining workers has
to recombine two partial parsing stacks generated in the first pass (the number of threads can be
reduced even further if the part SL or SR of some partial stacks is empty). This recombination
process is iterated until a single thread is left to complete the parsing. The second strategy aims
at exploiting the parallelism offered by particularly deep parsing trees. We anticipate that in our
case studies the input exhibits a regular or shallow tree structure, causing the difference in pars-
ing time between the two strategies to be small. As stated in Section 2, we feel that quite seldom
more than two recombination passes will be advantageous.

The PAPAGENO generated parsers can be naturally combined with either a sequential Flex
generated scanner, or a parallel scanner resulting from the implementation of our algorithmic
schema described in Section 3. Unlike the generation of a parallel parser, which is fully auto-
matic, the phase of parallel lexer generation currently requires some interaction with the user.

In particular, the programmer is expected to provide the specification of the grammar in
the Flex input format for reentrant lexers, write the code managing the input character stream
splitting, and the one handling the token list recombinations. The input splitting code performs
the actual chunking, possibly employing a fixed-width search window as described in Section 3,
and inputs the data into the Flex-generated scanners. The multiple working states of the scanner
are mapped onto the multi-state lexer features offered by Flex, requiring from the programmer
the definition of the language-specific transitions from one state to the other. At the end of the
parallel lexing process, the information on the multiple lexer is exploited by the code written by
the programmer to perform the constant-time recombination of the token lists produced by the
parallel lexers.

Finally, once the parallel scanner is obtained, as a combination of the output of Flex and the
user’s lexer-parser interface, it is possible to compile all the sources generated by the toolchain,
resulting in a complete binary lexing and parsing library.

5.2. Optimization Techniques

The internal architecture of PAPAGENO relies on carefully designed implementation strate-
gies and data structures, which play a fundamental role to obtain high performances of parallel
lexers and parsers. In the following, we recall the well-known bottlenecks preventing efficient
parallelization and present the solutions adopted in our tool to cope with them.

Two commonplace issues in achieving practical parallelism are 1) the data representation and
handling geared towards efficient memory use, and 2) a proper management of the synchroniza-
tion issues, typically minimizing the use of locks. Thanks to the computationally lightweight
parsing algorithm devised for OP grammars, and the minimal requirement for synchronization
actions, issue 2) is less important for us, and memory management and memory allocation local-
ity was found to be the crucial issue. Therefore, we start from a discussion of issue 1) and con-
clude with the synchronization requirements and thread orchestration performed by PAPAGENO
generated parsers.

We describe several simple yet effective memory optimizations.

• First, we encoded terminal and nonterminal symbols as word-sized integers, taking care
of employing one bit of the encoding to distinguish terminal from non-. By default, the
most significant bit is used; however PAPAGENO allows to choose its position at parser
generation time to allow room for further information packing. Such information packing
does not prevent the definition of large target languages, as the architecture word length
in modern devices is at least 32 bit, and 64 bit for most of them. Adopting this technique,

28

we can do without a look-up table to check whether a symbol on the parsing stack is a
terminal or non-.

• A second optimization towards improved data locality comes from the observation that
the precedence relation between may take one out of four values (l, .=,m,⊥). Using a
bit-packed representation of the precedence matrix, we obtain significant savings for large
matrices (which occur in large languages), and, moreover, we manage to fit entirely the
matrix in the highest level caches, thus significantly improving the average memory access
latency.

• Furthermore, in order to avoid serialization among the workers upon the system calls for
dynamic memory allocation, we adopt a memory pooling strategy for each thread, wrap-
ping every call to the malloc function. This strategy has also the advantage of reducing
memory fragmentation, since the memory allocation is done in large contiguous segments.
To evaluate the memory needed for pre-allocation during parsing, we estimate the number
of nodes of the parsing tree by computing the average branching factor of the AST as the
average length of the r.h.s. of the productions. Then, the parallel parser generator ini-
tially pre-allocates half of the guessed size of the AST and augments the memory pool of a
worker by one fifth of this quantity, every time the thread requires more memory. A similar
memory pooling strategy is employed in the lexing phase, in order to avoid serialization
among the lexing threads in need for memory to allocate the token lists.

• One of the most computationally intensive parts of OP parsers is the matching of a produc-
tion right-hand-side (r.h.s) against the ones present in the grammar. By representing the
r.h.s.’s as a prefix tree (trie), it becomes possible to find the corresponding left-hand side
in linear time with respect to the length of the longest r.h.s. of the grammar. Furthermore,
to optimize the size and the access time to the trie, we followed the technique described
in [25], that represents the structure as an array, storing the pointers to the elements of the
trie within the same vector. To take advantage of the trie compression provided by this
technique, we assume an upper bound of 216 for the total number of terminal and non-
terminal symbols, which clearly does not affect applicability for any common language.
The vectorized trie is fully precomputed by PAPAGENO, and is included in the generated
parser as a constant vector.

For the synchronization and locking issues in OP-based parallel parsing, we used rather
straightforward techniques.

• Since each parallel worker performs the parsing action on separate tokenized input chunks,
it is completely independent from the other workers, and there is no need for any synchro-
nization or communication between them. This in turn allows the proposed strategy to
scale easily even in the cases where the inter-worker communication has a high cost, e.g.
whenever the input is so large that they have to be run on different hosts.

• Similarly, all the lexers act independently on the input, without need of communication or
synchronization while performing the lexing actions.

• The requirement for enforced synchronizations is only present in the following two cases:
i) a single barrier-type synchronization point is required between the end of the lexing
phase, and the beginning of the parsing one whenever the lexical grammar requires a

29

Table 1: Total text analysis times of the JSON test-bench files, for both the server and mobile platform.

Elapsed Time [ms]
Input Size Server Mobile

Lexing Parsing Total Lexing Parsing Total

2.7 kiB 0.6 1.8 2.4 0.8 1.8 2.6
30 kiB 2.7 5.1 7.8 2.8 5.6 8.4
80 kiB 7.7 15.4 23.1 8.3 18.0 26.3
150 kiB 15.0 37.4 52.4 24.8 69.0 93.8
1.6 MiB 98.4 255.0 353.4 153.1 431.1 584.2
10 MiB 588.1 1584.7 2172.8 1033.6 2665.3 3698.9
75 MiB 3462.6 8892.2 12354.8 - - -

constant-time chunk combination action to be performed by the lexer; ii) synchronizations
are required to enforce data consistency if the user desires to perform multiple parallel
parsing recombination passes, instead of a single one.

• While the first barrier synchronization cannot be subject to optimizations, the synchroniza-
tions between multiple parallel parsing recombination passes can be fruitfully organized
hierarchically. In particular, a parsing worker from the n-th pass will only need to wait
for the completion of the n− 1 pass workers producing its own input, effectively avoiding
the need of a global barrier synchronization between passes. Such a strategy allows to ef-
fectively exploit the advantages of multiple parallel passes whenever the parse tree is very
high.

6. Experimental Results

In this section, we present and discuss the experimental results of our parallel lexing and
parsing system on both JSON and Lua languages.

The benchmarks. We chose real world JSON and Lua inputs of various sizes, on which we
performed the parsing and the construction of the abstract syntax tree (AST) in memory. This
is the only semantic action associated to the parsing process. The rational is to evaluate the
computational load of the parsing process, regardless of any subsequent use of the parsed data.
Since in typical compilers the semantic actions are more computationally demanding than AST
construction, it follows that even greater performance benefits can be achieved if they can be
parallelized. In other words, our results evidence the speed-up that is achieved by parallelizing
syntax analysis and nothing else.

For JSON, the set of inputs includes a shopping list from an online shop (30kiB), the con-
figuration file of AdBlocker, a common browser plugin (80 kiB), the Gospel of John (150kiB),
a statistic data-bank (1.6MiB) on food consumption (source Italian Institute of Statistics), a file
containing statistics on n-grams present in English in Google Books (10MiB), and the index of
all the documents available on the UK Comprehensive Knowledge Archive Network (75MiB).

For Lua, benchmarks were derived, instead, from the codebase of Lucasarts’s Grim Fan-
dango, which is available together with the game. This code-base size amounts to 2.5MiB,

30

Table 2: Total text analysis times of the Lua test-bench files, for both the server and mobile platform.

Elapsed Time [ms]
Input Size Server Mobile

Lexing Parsing Total Lexing Parsing Total

7 kiB 0.9 2.2 3.1 1.0 2.3 3.3
70 kiB 5.8 9.7 15.5 7.2 12.0 19.2

700 kiB 24.6 41.7 66.3 63.5 98.2 161.7
3.5 MiB 105.8 161.0 266.8 212.8 314.5 527.3
7 MiB 203.4 313.4 516.8 424.4 602.4 1026.8

35 MiB 998.9 1559.3 2558.2 - - -

and, to obtain benchmarks of different sizes, a suitable number of compilation units have been
concatenated together. To explore the scalability of the parallel parsing approach we tested the
PAPAGENO generated analyzer with files ranging from 7 kiB to 35 MiB, with the ones larger
than the whole code-base being generated by concatenating all the files from the code-base more
than once.

Hardware platforms. To evaluate the practical speedups obtained, we used two platforms:

1. A quad-Opteron 8378 host, thus amounting to 16 physical cores (4 cores per socket): the
Opteron 8378 CPUs are endowed with independent, per CPU, L1 and L2 caches, and a
chip-wide shared L3 cache. The host runs Ubuntu Linux 14.04 (x86 64 architecture)
server and is endowed with enough RAM to contain the whole AST materialized during
the parsing process and token list. The purpose of the evaluation on this platform is to
highlight the scalability of our approach, even in the context of a multi-socket system with
a non uniform memory access.

2. An Odroid-XU Lite board, endowed with a Exynos 5 Octa SoC, which is driven by four
Cortex-A15 and four Cortex-A7 CPUs, in big.LITTLE configuration, clocked at 1.4GHz,
and 2GB of DDR3 DRAM. The platform runs a Debian 7.6 Linux (armv7l architecture),
and the main choice is to use the four Cortex-A15 CPUs, as the architectural constraint
do not allow to employ all the 8 cores simultaneously. The benchmarks run on this plat-
form are representative of the actual performance benefits obtainable on a high-end em-
bedded system, such as the ones which are increasingly more common in mobile phones
and tablets. Such platforms are typically characterized by a uniform memory access, and
limited main memory resources with respect to desktop machines.

All the executable binaries have been produced through gcc 4.9.1, employing standard re-
lease grade optimizations to obtain an efficient binary (-O3 -march=native optimization
options). All the timing results presented have been collected employing Linux real-time clock
primitives, and are the average of 50 runs to reduce measurement noise.

Purely sequential execution. Tables 1 and 2 report the absolute processing times respectively
obtained for JSON and Lua, using a purely sequential PAPAGENO lexer-parser pair: they es-
tablish a practical baseline for comparison. Notice that the absolute times for the larger files are
quite important, especially on the mobile platform. Moreover, the latter is not endowed with

31

2
4

6
8 10

12
14

16

30k
80k

150k
1.6M

10M
75M
0
1
2
3
4
5
6
7

(a) JSON: Lexing phase

2
4

6
8 10

12
14

16

7k
70k

700k
3.5M

7M
35M

0
1
2
3
4
5
6
7

(b) Lua: Lexing phase

Figure 11: Speedups achieved on the lexing for JSON and Lua, taken against a sequential lexer, depicted as a function of
the number of workers and the input size expressed in bytes.

enough memory to materialize the whole AST for the largest test cases; as a consequence the
two largest benchmarks cannot be run on it. A point worth noting is that, both in the case of
JSON, and in that of Lua, the time spent in the lexical analysis of the input is non negligible:
more specifically, it is around 30% for JSON and 40% for Lua. This result substantiates our
claim that, for OP-based parsing, the lexical analysis accounts for a non trivial amount of the text
processing time.

Parallel execution. Figure 11 shows the speedup obtained by the parallel lexer versus a sequen-
tial run of a Flex generated lexer, while Figure 12 reports the speedups of the parsing phase of
the computation, computed against a sequential run of a PAPAGENO generated parser.

Consider the results for the JSON lexing phase reported in Figure 11a: for all file sizes
≥ 80kiB, parallel lexing achieves a significant speedup over the plain sequential Flex generated
lexer. This is more evident when the file size allows all the workers to perform a significant
amount of computation.

A point worth discussing is the relatively low speedup achieved when only a few workers
are employed: in this case, the lightweight computation required by JSON lexing, together with
the possible thread migration from one CPU to the other in the NUMA machine employed,
negatively affect the performances. More in detail, a thread migration from one CPU to another
implies a significant drop in the effectiveness of the caches, as the computation is moved to a
processor where the working-set is not pre-heated in cache. By contrast, a higher load on all the
available CPUs will prevent the scheduler from moving the tasks in an attempt to equalize the
load. Although this issue can be solved pinning the threads to a specific CPU through processor
affinity settings, we chose not to perform the measurements with such a technique as it may yield
overly optimistic results with respect to running environment where CPU pinning is forbidden
(e.g. large data-centers where the computation is taking place inside virtual machines). To finish,
we note that the maximum achieved speedup is 7× in the case of a 75 MiB JSON file, cutting
down its lexing time from 12 sec. to less than two.

The lexing phase results for Lua (Figure 11b) confirm the speedups achievable through the
parallelization of the lexing stage, even in the case of a lexical grammar much more complex

32

2
4

6
8 10

12
14

16

30k
80k

150k
1.6M

10M
75M

1

2

3

4

5

(a) JSON: Parsing with sequential lexer

2
4

6
8 10

12
14

16

30k
80k

150k
1.6M

10M
75M
1

2

3

4

5

(b) JSON: Parsing with parallel lexer

2
4

6
8 10

12
14

16

7k
70k

700k
3.5M

7M
35M

1

2

3

(c) Lua: Parsing with sequential lexer

2
4

6
8 10

12
14

16

7k
70k

700k
3.5M

7M
35M

1

2

3

(d) Lua: Parsing with parallel lexer

Figure 12: Comparison of speedups achieved on the lexing and parsing phase for JSON and Lua employing either a
sequential or a parallel lexer, taken against a sequential PAPAGENO parser. The speedups are represented as a function
of the number of employed workers, and the input size in bytes

than JSON one. We know Lua parallel lexer needs to perform a non-trivial recombination at
the end of lexing, and the results show that the recombination phase does not impact adversely
performances. The reduced performance gained on the 150kiB input file is to be ascribed to low
level cache contention, as the file exceeds by a small amount the least level cache size for the
involved CPUs.

The JSON parsing phase (Figures 12a and 12b) also benefits from significant speedups (up
to 5.3×) for large files, and show how a parallel parsing approach is advantageous even in the
case of small files. In particular, Figures 12a and 12b report the speedups achieved during the
parsing phase only, for an implementation with a Flex-generated sequential lexer (Figure 12a),
and a parallel lexer (Figure 12b). Comparing two situations, we get an interesting insight on the
use of a parallel lexer. As it can be seen, combining the parallel parser with the parallel lexer, has
a positive synergistic effect, even in the case of small files, yielding effective speedups already
for the 30kiB file. This effect is to be ascribed to the L2 and L1 cache pre-heating effect caused
by having the text lexically analyzed by different independent workers. In fact, such an approach
is more likely to be fetching the data which will be parsed by a worker into the dedicated L1 and
L2 caches of the corresponding core, effectively reducing the memory pressure for the parsing

33

2
4

6
8 10

12
14

16

7k
70k

700k
3.5M

7M
35M
0

1

2

3

4

Input Size

(a) Lua - Server

2
4

6
8 10

12
14

16

30k
80k

150k
1.6M

10M
75M

1

2

3

4

5

6

7

(b) JSON - Server

2

3

4

7k
70k

700k
3.5M

7M

1

2

3

(c) Lua - Mobile

2

3

4

30k
80k

150k
1.6M

10M

2

3

4

5

(d) JSON - Mobile

Figure 13: Speedups obtained against a sequential Flex-Bison generated text analyzer on both the server and mobile
platforms. Darker lines indicate smaller input files.

action, and thus increasing the performances. As a further confirmation of this fact, we note that
the performance boost does not take place in the case of the parsing of the 150kiB file, which is
a good cache fit already with a sequential lexing process.

Concerning the Lua parsing phase, Figures 12c and 12d show how this can be effectively
parallelized, notwithstanding the much richer structure of the language. On the other hand, the
synergistic effect between parallel lexing and parsing in Lua is less evident than in JSON; we
ascribe this fact to the higher memory requirements for the Lua parsing process, which in turn
add extra pressure on the caches, preventing the pre-heating from having a significant impact.

Comparison with Flex and Bison. Since the lexers and parsers produced by Flex and Bison are
the current state-of-the-art for tool generated language processors, it is interesting to compare
in Figure 13 the performance of the parallel lexer/parser library generated with PAPAGENO,
against a text analysis library produced by Flex and Bison, selecting the LALR(1) parser gen-
eration algorithm. The results evidence, in both the server and mobile platform, a significant
speedup with respect to the state-of-the-art of tool generated parsers, for all but the smallest
test-bench files; and a good scalability of the approach. We discuss two aspects in particular:

34

2
4

6
8

10
12

14
16 7k

70k
700k

3.5M
7M

35M
0

0.25

0.5

0.75

1

(a) Lua - Sequential Lexing

2
4

6
8

10
12

14
1630k

80k
150k

1.6M
10M

75M
0

0.25

0.5

0.75

1

(b) JSON - Sequential Lexing

2
4

6
8

10
12

14
16 7k

70k
700k

3.5M
7M

35M
0

0.25

0.5

0.75

1

(c) Lua - Parallel Lexing

2
4

6
8

10
12

14
1630k

80k
150k

1.6M
10M

75M
0

0.25

0.5

0.75

1

(d) JSON - Parallel Lexing

Figure 14: Parallel code portion in both the JSON and Lua lexing/parsing process obtained as the complement to the
sequential code portion obtained via Karp-Flatt metric, plotted as a function of the number of workers, and the size of
the input expressed in bytes.

• The ability to exploit per-die caches in JSON parsing leads to significant benefits for small
texts, whenever the parsing action is contained within a single multicore CPU on the server
platform, i.e., up to 4 simultaneous workers.

• The simplicity of the OP parsing algorithm represents an effective advantage on RISC
architectures, such as the one of the ARM platform, where it is able to obtain a speedup
of up to 5.5×, as a combination of the parallel processing technique on multiple cores and
the lesser computational requirements with respect to a classic LALR(1) parser.

Amount of parallel code. We maintain that performing the lexing actions in parallel gives a
substantial advantage in terms of the actual amount of code which is executed in parallel. To
substantiate this claim, we computed the sequentially executed code portion e from our obtained
speedups according to the Karp-Flatt metric [32] as 1/s−1/p

1−1/p , with s the achieved speedup, and p
the number of involved processors. We chose to employ the Karp-Flatt metric as it is designed to
provide a concrete counterpart to Amdahl’s law, as the latter only states the maximum achievable
speedup, while assuming no interference by the operating system and runtime on which the

35

processes are run. Figure 14 depicts the portion of code which is executed in parallel, obtained as
1− e, for both JSON and Lua parsing on the server platform, with Figures 14a and 14b reporting
the serial-lexer implementation while Figures 14c and 14d report the parallel-lexer one. It is
evident that, eliminating the parallelization of the lexing action, has the effect to significantly
reduce the parallel code portion, namely around 20%-25% for JSON and 40% for Lua for all
the input sizes/number of workers combinations, where the operating system overhead is not
dominating the computation. Moreover, the parallel portion analysis additionally shows how an
input size increase determines a larger portion of the code being executed in parallel, in turn
implying that the scaling of our approach on the input size does not introduce significant system
overhead, thus allowing the user to fully reap its benefits.

Finally, it can be noticed that, for sufficiently large inputs, the overhead of spawning more
workers is negligible: this is a consequence of the absence of communication between the work-
ers, which only need to synchronize at the end of their computation. This in turn translates into
a high efficiency in scaling to high amounts of parallel threads.

7. Related Work

The literature on parallel parsing (and lexing) is vast and extends over half a century. The
valuable survey and bibliography [3] lists some two hundred publications in the period 1970 -
1994, and research has continued since, though perhaps less intensively. It is worth contrasting
this quantitative aspect with the paucity of existing realizations and, even more so, of tools for
producing parallel parsers. We omit, as less relevant to our objectives, some categories: the work
on grammar types not belonging to the context-free family, the studies based on connectionistic
or neural models of parallel computations, and the large amount of work on natural language
processing. We are left, roughly speaking, with the following categories:

1. Theoretical analysis of algorithmic complexity of parallel context-free language recogni-
tion and parsing, in the setting of abstract models of parallel computation, such as P-RAM.

2. Parallel-parser design and performance analysis for specific programming/web languages,
sometimes combined with experimentation, or, more often, simply with demonstration, on
real parallel machines.

Category 1. is mainly concerned with the asymptotic complexity of recognition/parsing algo-
rithms on abstract parallel machines. The algorithms proposed for unrestricted CF grammars
require an unrealistic number of processors: for instance Rytter’s [45] recognizer has asymptotic
worst-case time complexity O(log n), with n the input length, and requires O(n6) processors;
the numbers of processors grows to O(n8) if parsing, i.e., syntax-tree construction, is required.
Several researchers have shown that such complexity bounds can be lowered, by restricting the
language class, sometimes so much that it loses practical interest. We mention some cases, from
the simplest to the more general ones, for the recognition problem. For the input-driven (also
known as visibly pushdown) languages, the time complexity isO(log n) and “only”O(n/ log n)
processors are used [27]. The deterministic CF languages are recognized in time O(log n) on
a P-RAM machine using O(n3) processors [34]. A series of papers (e.g., [11]) have gradually
refined the complexity bounds for the case of unambiguous CF languages.

Such idealized results are, of course, not really comparable with experimental findings, as
already asserted by [3], yet they offer some interesting indications. In particular, all the subfam-
ilies of deterministic CF languages for which the theoretical complexity analysis reports a close
to linear use of processors, are included in the family of OP languages we use.

36

Such abstract complexity studies had little or no impact on practical developments, for several
reasons. First, it is known that the abstract parallel machines, such as P-RAM, poorly represent
the features of real computers, which are responsible for performance improvements or losses.
Second, asymptotic algorithmic time complexities disregard constant factors and mainly focus
on worst cases, with the consequence that they are poorly correlated with experimental rankings
of different algorithms. Last, most theoretical papers do not address the whole parsing task but
just string recognition. In the following years 1995-2013 the interest for research on the abstract
complexity of parsing algorithms has diminished, with research taking more practical directions.

The classical tabular recognition algorithms (CKY, Earley) for unrestricted CF languages
have attracted much attention, and a number of papers address their parallelization. It is known
that such parsers use a table of configurations instead of a pushdown stack, and that their time
complexity is related to the one for matrix multiplication, for which parallel algorithms have
been developed in many settings. Parallel algorithms derived from CKY or from Earley sequen-
tial parsers (s-parsers for brevity) may be pertinent to natural language processing, but have
little promise for programming/data description languages. As tabular s-parsers are significantly
slower than LR or OPG s-parsers (up to some orders of magnitude), it is extremely unlikely
that the parallelization of such a heavy computational load would result in an implementation
faster than a deterministic parallel parser. Moreover, as we are not aware of existing tabular
parallel-parser generation tools, confirmation by experiment is not possible at present.

The comparison with previous work in category 2. is more relevant and reveals the precursors
of several ideas we use in our generator. We only report on work dealing, as our own, with
deterministic CF languages.

Bottom-up parsing. Some early influential efforts, in particular [20] (described in [12]) and [42],
introduced data-parallelism for LR parsers, according to the following scheme: a number of LR
s-parsers are run on different text segments. Clearly, each s-parser (except the leftmost one) does
not know in which parser state to start, and the algorithm must spawn as many deterministic
LR s-parsers as the potential states for the given grammar; each parser works on a private stack.
When a parser terminates, either because it has completed the syntax tree of the text segment or
because the lack of information on the neighboring segments blocks further processing, the stack
is merged with the neighboring left or right stack, and the s-parser process terminates; similar
ideas occur in other papers too. However, the idea of activating multiple deterministic bottom-up
s-parsers is often counterproductive: the processes, associated to the numerous parser states of a
typical LR grammar, proliferate and reduce or nullify the speedup over sequential parsing.

Two ways of reducing process proliferation have been proposed: by controlling the points
of segmentation, and by restricting the family of languages considered. An example of the first
is in [46], so explained: “The given input string . . . is divided into approximately q equal parts.
The i-th processor starting at token . . . scans to the right for the next synchronizing token (e.g.,
semicolon, end, etc.) and initiates parsing from the next token”. If synchronizing tokens are
cleverly chosen, the number of unsuccessful parsing attempts is reduced, but there are drawbacks
to this approach: the parser is not just driven by the language grammar, but needs other language-
specific indications, to be provided by the parser designer; thus, [46] chooses the synchronizing
tokens for a Pascal-like language. Furthermore, to implement this technique, the lexer too must
be customized, to recognize the synchronizing tokens.

Similar language-dependent text segmentation policies have been later adopted by other
projects, notably by several developments for XML parsers; such projects have the important
practical goal to speed-up web page browsing, and investigate the special complexities associated

37

to parallel HTML parsing. Although they do not qualify as general purpose parsers, their prac-
tical importance deserves some words. The recent [52] paper surveys previous related research,
and describes an efficient parallel parser, Hpar, for web pages encoded in HTML5. HTML5
has a poorly formalized BNF grammar and tolerates many syntax errors. A HTML5 source
file may include a script (in JavaScript), which in turn can modify the source file; this feature
would require costly synchronization between lexing and parsing threads, which make a pipelin-
ing scheme inconvenient. Hpar splits the source file into units of comparable length, taking care
not to cut an XML tag. Each unit is parsed by an independent thread, producing a partial DOM
tree; at last, the DOM trees are merged. A complication comes from the impossibility to know
whether a unit, obtained by splitting, is part of a script, a DATA section, or a comment. The
parser uses heuristics to speculates that the unit is, say, part of a DATA section, and rolls-back if
the speculation fails. (In Section 3 we have described a similar approach to parallel lexing.) More
speculation is needed for another reason: when a unit parser finds a closing tag, say< /Table >,
it does not know if the corresponding opening tag occurred before in the preceding unit, or if it
was missing by error. The best speedup achieved (2.5× using five threads) does not scale for the
current web page sizes.

Returning to parsers purely driven by the grammar, in view of the popularity of (sequential)
LR parser generation tools like Bison, the fact that no parallel-parser generators exist is perhaps
an argument against the feasibility of efficient parallel parsers for LR grammars. This opinion
is strengthened by the fact that several authors have developed parallel parsers for language
families smaller than the deterministic CF one, but it would be too long to cover all of them, and
one example suffices. The grammars that are LR and RL (right to left) deterministic enjoy some
(not quantified) reduction in the number of initial parser states to be considered by each unit
parser. Such grammars are symmetrical with respect to scanning direction: rightwards/leftwards
processing, respectively, uses look-ahead/look-back into the text to choose legal moves. By
combining the two types of move into a bidirectional algorithm, dead-ended choices are detected
at an earlier time. We observe that Floyd’s OPGs too have the property of reversibility with
respect to the parsing direction and benefit from it for making local parsing decisions, which are
unique and guaranteed to succeed if the input text is grammatically legal.

Indeed, thanks to the local parsability property, OP languages do not incur in the penalties that
affect LR parsers; the latter, as said, need to activate multiple computations for each deterministic
unit parser, since many starting states are possible. For OP parsers, in fact, all the actions can
be deterministically taken by inspecting a bounded context (two lexemes) around the current
position, and do not depend on information coming from the neighboring unit parsers: thus, each
text unit can be processed by an OP parser instance along a single computation, without incurring
on the risk of backtrack.

To complete the topic of restricted CF language families suitable for local parsability, we
mention two papers not surpassing the preliminary proposal stage. A list of requirements for
local parsability is in [37]. The work we consider to be closest to our choice of OPGs is [41],
that uses bounded-context grammars, a grammar model [23] generalizing OPGs, which however
has been rarely considered for s-parsing.

Top-down parsing. Less effort has been spent on top-down deterministic LL parsers, possibly
because, at first glance, their being goal-oriented makes them less suitable for parsing arbitrarily
segmented text. The article [51] surveys the state-of-the art for such parsers and reports in detail
a parallel (non-experimented) algorithm that works for a subclass of LL grammars, named LLP.
Imagine that the text is segmented into substrings and on each segment a classical LL(k) s-

38

parser is applied. Similar to the LR case, each s-parser does not know the result (i.e., a stack
representing the prefix of a leftmost derivation) for parsing the substring to its left: therefore each
s-parser has to spawn as many s-parsers working on the same segment, as there are possible initial
stacks, too many to be practical. Therefore it is proposed to limit the number of possible initial
stacks by imposing a restrictive condition on LL(k) grammars. The subfamily thus obtained is
named LLP (q, k) and is based on the idea of inspecting a look-back of length q tokens as well as
the classical look-ahead of k tokens. Although not compared in the paper, LLP (q, k) grammars
look quite similar to the already mentioned bounded-context grammars. This and earlier studies
on parallel LL parsers may be theoretically interesting but do not offer any hint on practical
usability and performances.

Parallel lexing. The problem of breaking up a long string into lexemes is a classical one for
data parallel algorithms, well described in [30]. They assume, as such studies invariably do, that
each lexeme class is a regular language, therefore the sequential lexer is a deterministic finite
automaton (DFA) that makes a state transition reading a character. For a string x, the chain
of state transitions define a lexing function that maps a state p to another state q; moreover the
function for the string x · y obtained by concatenation is obtained by function composition. The
data-parallel algorithm is conceptually similar to the one for computing all partial sums of a
sequence of numbers, also known in computer arithmetic as the parallel sum prefix algorithm.
In essence, the source text is split into pieces, and the DFA transition function is applied to
each piece, taking each DFA state as a possible starting state. Then the functions obtained for
neighboring pieces are composed and the cases of mismatch are discarded. Such processing can
be formulated by means of associative matrix operations. This parallel algorithm is reported to
be optimal from a purely theoretical viewpoint, but early simulation on fine-grained architectures
with very many processing units is not conclusive. More recently, various experiments of similar
algorithms on GPGPU and on multi-core architectures have been reported. A criticism is that
such algorithms are very speculative, performing a significant amount of computation which may
be later on discarded, thus yielding fairly poor energy efficiency. Some authors have considered
the regular expression matching problem, instead of the lexing problem, and, although regular
expressions and DFA models are equivalent, the parameters that dominate the experiments may
widely differ in the two cases. An example suffices: [47] presents a notable new version of
the mentioned [30] approach. They claim that for certain practical regular expressions that are
used in network intrusion/detection systems, the size of the parallel lexer remains manageable
and not bigger than the square of the minimal DFA. Then, they are able to construct the parallel
scanner on-the-fly, i.e. delaying as much as possible the construction of the states. Clearly,
algorithm [47] is not intended as a lexer to be invoked by a parallel parser, but as a self-standing
processor for matching regular expressions – yet partially so, since it does not address the central
issue of ambiguous regular expression parsing, which fortunately does not concern our intended
applications.

Recently, [48] has experimented on the Cell Processor a parallel version of the Aho-Korasick
string matching algorithm. This work was motivated by the good performance of that algorithm
on multi-core machines for string search against large dictionaries. But a downside of that ap-
proach is that it apparently assumes that the input file can be unambiguously divided into text
segments; therefore it does not apply to the case of general programming- or data-representation
languages, since, for such languages, scanning cannot avoid an initial degree of nondeterminism
caused by the absence of a separator between tokens (as a newline) that could be identified by
inspecting a bounded portion of the segments.

39

Compared with the mentioned studies, our approach to parallel lexing in Sect. 3 addresses
further critical issues. First, the approach is suitable for more general lexical grammars that in-
volve pushdown stacks and cannot be recognized by a DFA (as the lexical grammar of Lua).
Second, our approach integrates some pre-processing steps that enhance the performance of the
following parsing stage. Furthermore, we address a complexity that made previous approaches
such as [30, 42] unpractical: splitting the input file into segments may cause ambiguity, in the
sense that the lexing function associated to a segment may return multiple values (states), de-
pending on the assumed input state. To compute such function, several workers are needed, but
in our design their number does not equal the number of states of the automaton, but is limited to
two or three, and does not critically affects performance, as attested by the experimental results
achieved by PAPAGENO.

8. Conclusion and Future Research

Research on OPGs has been abandoned a long time ago due to the advent of other grammar
families well suited for deterministic parsing and with greater generative power. OPGs, however,
exhibit, among other nice properties not pursued in this paper, the distinguishing feature of local
parsability. Among them, we recall their algebraic properties: in fact their languages (to be
named OPLs) are closed w.r.t. all basic language operations, including the Boolean ones.This
feature is unusual in language families larger than regular languages (to the best of our knowledge
OPLs are the largest family of deterministic languages that enjoys all such closures), and is the
key to the application of model-checking algorithms even outside the traditional scope of finite-
state machines: for instance OPLs strictly include the visibly pushdown languages [14], which
have been successfully proposed with the motivation of applying model-checking techniques to
infinite state machines [5], and also as an abstract model of mark-up (parenthesized) languages.

In this paper we exploited the local parsability property of OPGs to produce automatically a
parallel parser which is complemented by a parallel lexer. This allowed us to bring the possibility
to exploit effectively non-speculative parallelism in parsing, which was up to now a considerable
exception to the present tendency to exploit parallelism in practically any application.

Our prototype tool already offers considerable speed-up compared with state of the art se-
quential parsers such as Bison and can be used, with variable effort, to produce parallel parsers
for most practical programming languages. It is available for free downloading (under GNU
GPL license) for further application, experimentation, and possible extensions.

In the following, we mention various research directions to fully exploit the local parsability
property; we first give a couple of hints to make our tool even more efficient and more widely
applicable to a larger set of languages. Moreover, we outline other research directions aimed at
exploiting local parsability, both of theoretical nature and with the purpose of applying it in other
application fields than “pure” compilation.

8.1. Optimizing performances and effectiveness of the present tool

The general parallel parsing algorithmic schema defined in Section 2 is conceived in such a
way that it can be iterated through several passes until the obtained result is short enough to make
it convenient to apply a final sequential parsing. As a matter of fact, our present tool obtained
quite satisfactory performances even with one only parallel pass immediately followed by a final
sequential one. As we already noticed, however, there could be cases where splitting the input
in chunks of equal length does not correspond to the overall structure of the source, e.g., if the

40

chunks consist of the frontiers of two adjacent and large sub-trees. In such cases the further
passes described in the general Algorithm 2 may produce substantial benefits. Some further
experiments are planned to validate our conjecture that in most cases two passes are all that is
needed to exploit at best parallel parsing.

Deterministic parsing based on OPGs has been applied to many programming languages in
the past [22, 17] and we added a couple of more recent ones used in our benchmark; purposely,
JSON and Lua have been selected with sharply different features and, not surprisingly, adapt-
ing Lua to our OP-based approach was a considerably tougher job than the former one. Some
early investigation, e.g., on JavaScript, seems to hint at even more difficulties with other modern
languages: in general, in fact, as pointed out in Section 4, many modern languages offer (too?)
much freedom to programmers which generates overloading of various symbols and hampers
deterministic analysis, what often results into precedence conflicts. We are confident that such
difficulties are not insurmountable but we are aware that more work is needed to make our ap-
proach applicable in a generalized way to most practical languages. As a first step we plan to
widen the heuristic techniques developed in the case of Lua so as to apply them to other widely
used languages. To be useful in practice, such techniques must be supported by automatic tools
to obtain an OPG grammar equivalent to the original one and/or to produce an intermediate text
–after parallel lexical analysis– that can be supplied to an OP parallel parser. Moreover, we are
also looking into obtaining further validation of the advantages of parsing in parallel other data
description languages, such as, for instance, XML based ones. In the longer term we also wish
to investigate the theoretical aspects of this issue as hinted in the following subsection.

On the other hand we notice that recent recommended best practices tend to limit the exces-
sive freedom allowed by the grammars of modern languages. For instance [16] proposes a series
of disciplined ways to write cleaner and more understandable JavaScript programs; we verified
that, if applied rigorously, they produce a subset language almost ready for OP-parsing with no
need for a heavy preprocessing. Another case of well disciplined, and easily analyzable source is
provided by modern compiler back-ends, which target a restriction of the JavaScript language as
their assembly output such as Emscripten [4] and asm.js [49]. In both cases, the language to be
analyzed has all the features to be efficiently parsed in parallel: it is characterized by very large
compilation units, and has a grammar free from unusual quirks.

8.2. Related research directions
The local parsability property proposes several intriguing questions which further widen the

spectrum of potential applications both within and beyond parallelism.
From a theoretical point of view, OPLs are just an example of locally parsable languages

with bound 1 but many more could be worth investigating: as mentioned in Section 7, Floyd
himself proposed a generalization of the family by adopting larger bounds of the context nec-
essary to disambiguate the r.h.s. to be reduced. At the time it was concluded that the approach
was unpractical for complexity reasons, but the computational power available nowadays could
question that early decision. Given that most parsability properties of CF languages are in gen-
eral undecidable (see e.g. [35, 28] for a summary of such results) and that it is even undecidable
whether the language generated by a CF grammar is OPL [31], a few natural questions arise.

• To which languages is it possible to apply a preprocessing in the same style as we did for
Lua in Section 4, so that the obtained intermediate text is an OPL?

• Furthermore, is it possible and useful to extend our proposed approach to locally parsable
languages beyond the OPLs?

41

The local parsability property can be exploited also in further ways besides parallel parsing.
It is universally acknowledged that, thanks to its malleability, software is subject to con-

tinuous evolution, whether for corrective or evolutionary maintenance. Most often the changes
applied to a large program are local, as they affect only a small fraction of its syntax tree. This
asks naturally for incremental parsing, i.e., to modify the existing parse only in the affected part
without redoing much identical work. Starting from the early work [26] a fairly rich literature
on incremental parsing has been developed (see, e.g., [18, 38]) which, unlike the case for paral-
lel parsing, has also produced several practical tools. Such results, however, normally concern
more widely adopted families of deterministic languages, which do not enjoy the local parsabil-
ity property; OPLs instead, can add to the techniques adopted for the more general family, more
specific ones directly based on the local parsability property, which may produce simpler and
more efficient algorithms; a very early one is sketched in [9]. Mainly, the local parsability prop-
erty can be exploited in conjunction for incremental and parallel parsing in the non-infrequent
case of multiple, scattered changes to large pieces of software.

(Syntactic) error management can also take advantage of the local parsability property. In
many cases, in fact, a syntax error may affect an unpredictable portion of code, and it is often
the case that, at their early occurrence, parsing is stopped or becomes meaningless (e.g., the
standard parsers generated by Bison stop their processing at the first error). The local parsability
property instead, allowing for (re)starting parsing at any position, may produce, possibly by
acting in parallel, large portions of syntax tree associated with correct code, even if such code
is preceded by serious errors. Thus, breaking the code into many chunks can help not only
to locate the source of the problem but also to fix it without redoing much useless work, by
exploiting both parallelism and incrementality. Similar, though less relevant, benefits could be
obtained by exploiting parallel lexical analysis.

Finally, let us remember that parsing is normally preliminary to a subsequent semantic phase.
In the case of programming languages such semantic analysis consists typically in code interpre-
tation or compilation and is often based on some attribute schema. If we assume, as it is some-
times the case in bottom-up compilation, that the attribute schema is of synthesized type, then,
we obtain “for free” parallelism and incrementality for semantic analysis automatically inte-
grated with parallel and incremental lexical and syntactic analysis. The benefits of such exploita-
tion can be enormously extended beyond the realm of programming language compilation since
most “structured” design activities can be formalized in terms of a tree-shaped syntax paired
with an attribute-based semantic evaluation; furthermore, in many cases the semantic algorithms
exhibit a high computational complexity so that the efficiency gained by means of parallelism
and, mainly, incrementality can become really impressive. Again, a very early description of an
approach pursuing the goal of incremental syntax-semantic analysis is given in [9].

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools. Pearson/Addison
Wesley, second edition, 2007.

[2] Akim Demaille, et al . GNU Bison. http://www.gnu.org/software/bison/, 2014.
[3] H. Alblas, R. op den Akker, P. O. Luttighuis, and K. Sikkel. A bibliography on parallel parsing. SIGPLAN Notices,

29(1):54–65, 1994.
[4] Alon Zakai. Emscripten. https://github.com/kripken/emscripten/wiki, 2014.
[5] R. Alur and P. Madhusudan. Adding nesting structure to words. Journ. ACM, 56(3), 2009.
[6] R. H. Austing, D. M. Conti, and G. L. Engel, editors. Proceedings 1978 ACM Annual Conference, Washington,

DC, USA, December 4-6, 1978, Volume I. ACM, 1978.

42

[7] A. Barenghi, S. Crespi-Reghizzi, D. Mandrioli, F. Panella, and M. Pradella. The PAPAGENO parallel-parser
generator. In A. Cohen, editor, Compiler Construction - 23rd International Conference, CC 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings, volume 8409 of Lecture Notes in Computer Science, pages 192–196. Springer, 2014.

[8] A. Barenghi, S. Crespi Reghizzi, D. Mandrioli, and M. Pradella. Parallel parsing of operator precedence grammars.
Inf. Process. Lett., 113(7):245–249, 2013.

[9] D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli. Syntactic-semantic incrementality for agile verification.
Science of Computer Programming, 2013. DOI:10.1016/j.scico.2013.11.026.

[10] Celestia Development Team. The Celestia Space Simulation. http://sourceforge.net/projects/
celestia/, 2014.

[11] M. Chytil, M. Crochemore, B. Monien, and W. Rytter. On the parallel recognition of unambiguous context-free
languages. Theoretical Computer Science, 81(2):311–316, 30 Apr. 1991. Note.

[12] J. Cohen, T. Hickey, and J. Katcoff. Upper bounds for speedup in parallel parsing. Journal of the ACM, 29(2):408–
428, Apr. 1982.

[13] S. Crespi Reghizzi, L. Breveglieri, and A. Morzenti. Formal languages and compilation. Springer, 2013.
[14] S. Crespi Reghizzi and D. Mandrioli. Operator precedence and the visibly pushdown property. Journal of Computer

and System Science, 78:1837–1867, 2012.
[15] D. Crockford. RFC4267 - The application/json Media Type for JavaScript Object Notation (JSON). http:

//www.ietf.org/rfc/rfc4627.txt, 2006.
[16] D. Crockford. JavaScript - the good parts: unearthing the excellence in JavaScript. O’Reilly, 2008.
[17] K. De Bosschere. An Operator Precedence Parser for Standard Prolog Text. Softw., Pract. Exper., 26(7):763–779,

1996.
[18] P. Degano, S. Mannucci, and B. Mojana. Efficient incremental LR parsing for syntax-directed editors. ACM Trans.

Program. Lang. Syst., 10(3):345–373, July 1988.
[19] M. DeLoura. The engine survey: General results. http://www.satori.org/2009/03/

the-engine-survey-general-results/, March 2009. [Online; accessed 5 December 2013].
[20] C. N. Fischer. On parsing context free languages in parallel environments. Technical report, Cornell University,

Apr. 1975.
[21] M. J. Fischer. Some properties of precedence languages. In P. C. Fischer, S. Ginsburg, and M. A. Harrison, editors,

Proceedings of the 1st Annual ACM Symposium on Theory of Computing, May 5-7, 1969, Marina del Rey, CA,
USA, pages 181–190. ACM, 1969.

[22] R. W. Floyd. Syntactic analysis and operator precedence. J. ACM, 10(3):316–333, 1963.
[23] R. W. Floyd. Bounded context syntactic analysis. CACM, 7(2):62–67, 1964.
[24] Game Developer. 14th Annual Front Line Awards, January 2012.
[25] U. Germann, E. Joanis, and S. Larkin. Tightly packed tries: How to fit large models into memory, and make

them load fast, too. In Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language
Processing, pages 31–39, 2009.

[26] C. Ghezzi and D. Mandrioli. Incremental parsing. ACM Trans. Program. Lang. Syst., 1(1):58–70, 1979.
[27] A. Gibbons and W. Rytter. Optimal parallel algorithms for dynamic expression evaluation and context-free recog-

nition. Information and Computation, 81(1):32–45, Apr. 1989.
[28] S. Greibach. A note on undecidable properties of formal languages. Mathematical systems theory, 2(1):1–6, 1968.
[29] D. Grune and C. J. Jacobs. Parsing techniques: a practical guide. Springer, 2008.
[30] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Comm. of the ACM, 29(12):1170–1183, 1986.
[31] H. B. Hunt and D. J. Rosenkrantz. Computational parallels between the regular and context-free languages. SIAM

J. Comput., 7(1):99–114, 1978.
[32] A. H. Karp and H. P. Flatt. Measuring parallel processor performance. Comm. ACM, 33(5):539–543, 1990.
[33] J. Kegler. Perl and undecidability. The Perl Review, 2008.
[34] P. N. Klein and J. H. Reif. Parallel time O(log n) acceptance of deterministic CFLs on an exclusive-write P-RAM.

SICOMP: SIAM Journal on Computing, 17, 1988.
[35] D. E. Knuth. On the translation of languages from left to right. Information and Control, 8(6):607–639, 1965.
[36] D. E. Knuth. A characterization of parenthesis languages. Information and Control, 11(3):269–289, 1967.
[37] J. Lampe. Local parse - A base for realistic parallelisation of compilers. Elektronische Informationsverarbeitung

und Kybernetik, 26(1/2):75–84, 1990.
[38] J. Larchevêque. Optimal incremental parsing. ACM TOPLAS, 17(1):1–15, Jan. 1995.
[39] Layer7 Technology. XML Accelerator. http://www.layer7tech.com/products/

xml-accelerator, 2014.
[40] W. Lu, K. Chiu, and Y. Pan. A parallel approach to XML parsing. In 7th IEEE/ACM International Conference

on Grid Computing (GRID 2006), September 28-29, 2006, Barcelona, Spain, Proceedings, pages 223–230. IEEE,
2006.

43

[41] R. McCloskey, J. Wang, and J. Belanger. Parallel parsing of languages generated by ambiguous bounded context
grammars, Mar. 18 1994.

[42] M. D. Mickunas and R. M. Schell. Parallel compilation in A multiprocessor environment (extended abstract). In
Austing et al. [6], pages 241–246.

[43] Papageno Developers. PAPAGENO: the parallel parser generator for operator precedence grammars. https:
//github.com/PAPAGENO-devels/papageno, 2014.

[44] Pontifical Catholic University of Rio de Janeiro. Lua official reference manual. http://www.lua.org/
manual/5.2/, 2014.

[45] W. Rytter. On the complexity of parallel parsing of general context-free languages. Theoretical Computer Science,
47(3):315–321, 1986. Note.

[46] D. Sarkar and N. Deo. Estimating the speedup in parallel parsing. IEEE Trans. on Softw. Eng., 16(7):677, 1990.
[47] R. Sin’ya, K. Matsuzaki, and M. Sassa. Simultaneous finite automata: An efficient data-parallel model for regular

expression matching. In 42nd International Conference on Parallel Processing, ICPP 2013, Lyon, France, October
1-4, 2013, pages 220–229. IEEE Computer Society, 2013.

[48] G. U. Srikanth. Parallel lexical analyzer on the cell processor. In SSIRI (Companion), pages 28–29. IEEE Computer
Society, 2010.

[49] The Mozilla Foundation. Asm.js. http://asmjs.org/, 2014.
[50] The Wikimedia Foundation. Wikipedia adopts Lua as its default scripting language. http://en.wikipedia.

org/wiki/Wikipedia:Wikipedia_Signpost/2012-01-30/Technology_report, 2012.
[51] L. Vagner and B. Melichar. Parallel LL parsing. Acta Inf, 44(1):1–21, 2007.
[52] Z. Zhao, M. Bebenita, D. Herman, J. Sun, and X. Shen. HPar: a practical parallel parser for HTML — taming

HTML complexities for parallel parsing. ACM Transactions on Architecture and Code Optimization, 10(4), Dec.
2013.

44

Appendix

Herein we report Lua’s syntactic grammar in operator precedence form.
chunk → block | ENDFILE
block → statList |

retStat |
statList RETURN SEMI |
statList RETURN exprList SEMI |
statList RETURN |
statList RETURN exprList

statList → stat |
SEMI |
stat SEMI |
statList SEMI stat |
statList SEMI

stat → varList XEQ exprList |
functionCall |
label |
BREAK |
GOTO NAME |
DO block END |
DO END |
WHILE expr DO block END |
WHILE expr DO END |
REPEAT block UNTIL expr |
REPEAT UNTIL expr |
IF exprThen END |
IF exprThen ELSE block END |
IF exprThen ELSE END |
IF exprThenElseIfB END |
IF exprThenElseIfB ELSE block END |
IF exprThenElseIfB ELSE END |
FOR name XEQ eCe DO block END |
FOR name XEQ eCeCe DO block END |
FOR nameList IN exprList DO block END |
FUNCTION funcName LPARENFUNC parList RPARENFUNC block END |
FUNCTION funcName LPARENFUNC RPARENFUNC block END |
FOR name XEQ eCe DO END |
FOR name XEQ eCeCe DO END |
FOR nameList IN exprList DO END |
FUNCTION funcName LPARENFUNC parList RPARENFUNC END |
FUNCTION funcName LPARENFUNC RPARENFUNC END |
LOCAL FUNCTION name LPARENFUNC parList RPARENFUNC block END |
LOCAL FUNCTION name LPARENFUNC RPARENFUNC block END |
LOCAL FUNCTION name LPARENFUNC parList RPARENFUNC END |

45

LOCAL FUNCTION name LPARENFUNC RPARENFUNC END |
LOCAL nameList |
LOCAL nameList XEQ exprList

elseIfBlock → block ELSEIF expr THEN block |
block ELSEIF expr THEN elseIfBlock |
ELSEIF expr THEN block |
block ELSEIF expr THEN |
ELSEIF expr THEN |
ELSEIF expr THEN elseIfBlock

exprThenElseIfB → expr THEN elseIfBlock
exprThen → expr THEN block |

expr THEN
name → NAME
eCe → expr COMMA expr
eCeCe → eCe COMMA expr
dot3 → DOT3
retStat → RETURN SEMI |

RETURN exprList SEMI |
RETURN |
RETURN exprList

label → COLON2 NAME COLON2
funcName → nameDotList |

nameDotList COLON name
nameDotList → NAME |

nameDotList DOT NAME
varList → var |

varList COMMA var
var → NAME |

prefixExp LBRACK expr RBRACK |
prefixExp DOT NAME

nameList → NAME |
nameList COMMA name

exprList → expr |
exprList COMMA expr

expr → logicalOrExp
logicalOrExp → logicalAndExp |

logicalOrExp OR logicalAndExp
logicalAndExp → relationalExp |

logicalAndExp AND relationalExp
relationalExp → concatExp |

relationalExp LT concatExp |
relationalExp GT concatExp |
relationalExp LTEQ concatExp |
relationalExp GTEQ concatExp |
relationalExp NEQ concatExp |
relationalExp EQ2 concatExp

46

concatExp → additiveExp |
additiveExp DOT2 concatExp

additiveExp → multiplicativeExp |
additiveExp PLUS multiplicativeExp |
additiveExp MINUS multiplicativeExp

multiplicativeExp → unaryExp |
multiplicativeExp ASTERISK unaryExp |
multiplicativeExp DIVIDE unaryExp |
multiplicativeExp PERCENT unaryExp

unaryExp → caretExp |
NOT unaryExp |
SHARP unaryExp |
UMINUS unaryExp

caretExp → baseExp |
baseExp CARET caretExp

baseExp → NIL | FALSE | TRUE | NUMBER |
STRING |
DOT3 |
functionDef |
prefixExp |
tableConstructor

prefixExp → var |
functionCall |
LPAREN expr RPAREN

functionCall → prefixExp LPAREN exprList RPAREN |
prefixExp LPAREN RPAREN |
prefixExp LBRACE fieldList RBRACE |
prefixExp LBRACE RBRACE |
prefixExp STRING |
prefixExp COLON name LPAREN exprList RPAREN |
prefixExp COLON name LPAREN RPAREN |
prefixExp COLON name LBRACE fieldList RBRACE |
prefixExp COLON name LBRACE RBRACE |
prefixExp COLON name STRING

functionDef → FUNCTION LPARENFUNC parList RPARENFUNC block END |
FUNCTION LPARENFUNC RPARENFUNC block END |
FUNCTION LPARENFUNC parList RPARENFUNC END |
FUNCTION LPARENFUNC RPARENFUNC END

parList → nameList | nameList COMMA dot3 | DOT3
tableConstructor → LBRACE fieldList RBRACE |

LBRACE RBRACE
fieldList → fieldListBody | fieldListBody COMMA | fieldListBody SEMIFIELD
fieldListBody → field | fieldListBody COMMA field | fieldListBody SEMIFIELD field
field → bracketedExp EQ expr | name EQ expr | expr
bracketedExp → LBRACK expr RBRACK

47

