101,315 research outputs found

    Degree Ranking Using Local Information

    Get PDF
    Most real world dynamic networks are evolved very fast with time. It is not feasible to collect the entire network at any given time to study its characteristics. This creates the need to propose local algorithms to study various properties of the network. In the present work, we estimate degree rank of a node without having the entire network. The proposed methods are based on the power law degree distribution characteristic or sampling techniques. The proposed methods are simulated on synthetic networks, as well as on real world social networks. The efficiency of the proposed methods is evaluated using absolute and weighted error functions. Results show that the degree rank of a node can be estimated with high accuracy using only 1%1\% samples of the network size. The accuracy of the estimation decreases from high ranked to low ranked nodes. We further extend the proposed methods for random networks and validate their efficiency on synthetic random networks, that are generated using Erd\H{o}s-R\'{e}nyi model. Results show that the proposed methods can be efficiently used for random networks as well

    A Faster Method to Estimate Closeness Centrality Ranking

    Get PDF
    Closeness centrality is one way of measuring how central a node is in the given network. The closeness centrality measure assigns a centrality value to each node based on its accessibility to the whole network. In real life applications, we are mainly interested in ranking nodes based on their centrality values. The classical method to compute the rank of a node first computes the closeness centrality of all nodes and then compares them to get its rank. Its time complexity is O(n⋅m+n)O(n \cdot m + n), where nn represents total number of nodes, and mm represents total number of edges in the network. In the present work, we propose a heuristic method to fast estimate the closeness rank of a node in O(α⋅m)O(\alpha \cdot m) time complexity, where α=3\alpha = 3. We also propose an extended improved method using uniform sampling technique. This method better estimates the rank and it has the time complexity O(α⋅m)O(\alpha \cdot m), where α≈10−100\alpha \approx 10-100. This is an excellent improvement over the classical centrality ranking method. The efficiency of the proposed methods is verified on real world scale-free social networks using absolute and weighted error functions

    Kronecker Graphs: An Approach to Modeling Networks

    Full text link
    How can we model networks with a mathematically tractable model that allows for rigorous analysis of network properties? Networks exhibit a long list of surprising properties: heavy tails for the degree distribution; small diameters; and densification and shrinking diameters over time. Most present network models either fail to match several of the above properties, are complicated to analyze mathematically, or both. In this paper we propose a generative model for networks that is both mathematically tractable and can generate networks that have the above mentioned properties. Our main idea is to use the Kronecker product to generate graphs that we refer to as "Kronecker graphs". First, we prove that Kronecker graphs naturally obey common network properties. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KronFit, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take super- exponential time. In contrast, KronFit takes linear time, by exploiting the structure of Kronecker matrix multiplication and by using statistical simulation techniques. Experiments on large real and synthetic networks show that KronFit finds accurate parameters that indeed very well mimic the properties of target networks. Once fitted, the model parameters can be used to gain insights about the network structure, and the resulting synthetic graphs can be used for null- models, anonymization, extrapolations, and graph summarization

    Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks

    Full text link
    How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.Comment: KDD 2019 Research Track. 11 pages. Changelog: Type 3 font removed, and minor updates made in the Appendix (v2
    • …
    corecore