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Abstract

Closeness centrality is one way of measuring how central a node
is in the given network. The closeness centrality measure assigns a
centrality value to each node based on its accessibility to the whole
network. In real life applications, we are mainly interested in ranking
nodes based on their centrality values. The classical method to com-
pute the rank of a node first computes the closeness centrality of all
nodes and then compares them to get its rank. Its time complexity
is O(n · m + n), where n represents total number of nodes, and m
represents total number of edges in the network. In the present work,
we propose a heuristic method to fast estimate the closeness rank
of a node in O(α · m) time complexity, where α = 3. We also pro-
pose an extended improved method using uniform sampling technique.
This method better estimates the rank and it has the time complex-
ity O(α ·m), where α ≈ 10 − 100. This is an excellent improvement
over the classical centrality ranking method. The efficiency of the
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proposed methods is verified on real world scale-free social networks
using absolute and weighted error functions.

1 Introduction

In network science, various centrality measures have been defined to identify
important nodes based on the application context. As an example, one can
consider identifying the location within a city where to place a new pub-
lic service, so that it is easily accessible for everyone. Similarly, identifying
central people that have ideal social network location for the purpose of infor-
mation dissemination or network influence. In such kind of applications, the
nodes who can access the entire network faster need to be selected. To cap-
ture this specific property of the reachability of nodes to the entire network,
researchers have defined closeness centrality.

The closeness centrality of a node u is defined as C(u) = n−1∑
∀v d(u,v)

, where

n is total number of nodes and d(u, v) is the shortest distance between two
nodes u and v [1]. It represents the closeness of a node to all other nodes
in the given network. The closeness centrality of a node can be computed
by executing breadth first traversal (BFT) [2] from the respective node. The
time complexity to compute the closeness centrality of a node is O(m), where
m represents total number of edges in the network. The proposed definition
of closeness centrality [1] is only applicable for the connected networks. In the
present work, we have considered real world scale-free connected networks.

The proposed closeness centrality measure assigns a centrality value to
each node. But in real life applications, we are mainly interested in the
relative importance of the node rather than its centrality value. This can
be measured using the closeness centrality rank of the node based on the
computed closeness centrality values of all nodes. The classical method to
compute the closeness rank of a node has two steps: (1) calculate the closeness
centrality values of all nodes, and (2) compare these values to determine the
closeness rank of the node. The time complexity of the first step is O(n ·m)
as it computes the closeness centrality of all nodes, and for the second step,
it is O(n) as it compares the centrality value of the given node with all other
nodes. So, the overall time complexity of this process isO(n·m+n) = O(n·m)
that is very high, given that the entire network is required. This method is
not feasible for large real world networks because of its high time complexity
and dynamic characteristics of the networks.

2



Figure 1: Reverse Rank versus Closeness Centrality

Real world complex networks such as WWW network, online social net-
works, collaboration networks, communications networks, are growing very
fast with time. So, the computation of different centrality measures based on
the global structure of the network is very high. Current literature focuses
mainly on proposing approximation methods to compute closeness centrality
measure. Even if we apply these approximation methods, we need to ap-
proximate closeness centrality values of all nodes to estimate the rank of a
node, and its complexity is still high. Besides the size, there are other issues
like real world networks are highly dynamic in nature. In these dynamic
networks, the importance of different nodes keeps changing with time. So,
to compute the rank of a node, we need the current complete snapshot of
the network. Due to the large size of the network, it may not be feasible to
download the entire network, store it, and process it.

In the present work, we propose heuristic and randomized heuristic meth-
ods to fast estimate the closeness centrality rank of a node. The complexity
of the proposed methods is O(m) that is a great improvement over the classi-
cal ranking method that has the complexity O(nm). The proposed methods
exploit the structural properties of the network to reduce the time complex-
ity of closeness ranking. For example, the nodes in the center of a network
have high closeness values, while the ones in the periphery have the least
closeness values. Closeness values of the middle layer nodes increase sharply
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from periphery to center. Due to this unique behavior of closeness centrality
in real world scale-free social networks, we observe that the reverse ranking
versus closeness centrality follows a sigmoid curve as shown in Figure 1. In
reverse ranking, the node having the lowest closeness value has the highest
rank 1 and the node having the highest closeness value has the least rank.
This sigmoid curve helps to estimate the closeness rank of a node without
computing the closeness values of all nodes.

The proposed methods are simulated on different types of real world net-
works, such as online social networks, collaboration network, communication
network, and so on. The accuracy of the proposed methods is measured us-
ing absolute and weighted error functions. Results show that the proposed
method can be used efficiently for large size dynamic networks.

The main contributions of the paper are as follows:

• We study the characteristics of closeness centrality and their depen-
dency on the structural properties of the real world scale-free social
networks.

• We propose methods to estimate the closeness centrality rank of a node
in O(m) time.

• The proposed methods are simulated on real world networks and their
efficiency is verified using absolute and weighted error functions.

As per the best of our knowledge, this is the first work in this direction.
The rest of this paper is organized as follows. In the next section, we discuss
the brief literature on closeness centrality. Section 3 and 4 explain datasets
and notation used in the paper respectively. In section 5, we study the
behavior of closeness centrality. These observations help to construct the
closeness ranking estimation method. In section 6 and 7, we propose methods
to estimate the closeness rank and discuss their complexity analysis. In
section 8, the simulation results are discussed. The paper is concluded in
section 9. The proposed work further opens up various future directions that
are discussed in the last section.

2 Related Work

Closeness centrality denotes reachability of a node to the given network. In
undirected and unweighted networks, the reachability of two nodes only con-
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siders the minimum number of hops to reach from one node to another. But
in other types of networks like weighted networks, directed networks, the
link weights and directions also affects the distance between two nodes. So,
the closeness centrality has been extended to these networks like weighted
networks [3], directed networks [4], disconnected networks [5], multilayer net-
works [6], overlapped community structure [7], and so on.

The complexity to compute the closeness centrality in large scale networks
is very high. It has attracted the researchers towards the following problems
related to measuring the closeness centrality of a node:

1. Update closeness centrality in dynamic networks,

2. Approximation algorithms for closeness centrality,

3. Identify top-k nodes,

4. Other works like the computation of closeness centrality in parallel or
distributed environment, its correlation with other centrality measures,
and so on.

Real world networks are highly dynamic and the computation of closeness
centrality of all nodes for each change in the networks will be a cumbersome
task. In dynamic networks, for each update, the closeness centrality of some
nodes may remain unaffected. Kas et al. proposed a method to update
closeness centrality in dynamic networks [8]. The proposed method uses the
set of affected nodes to update the closeness centrality whenever there is
any addition, removal, or modification of nodes or edges. Yen also proposed
an algorithm called CENDY (Closeness centrality and avErage path leNgth
in DYnamic networks) to update closeness centrality whenever an edge is
updated [9]. Sariyuce et al. proposed a method to update closeness centrality
using the level difference information of breadth first traversal [10].

The classical method to compute closeness centrality of a node requires
the entire network and it is costly for big networks. There are some works that
provide approximation methods to compute it fast. Cohen et al. proposed a
sampling based method to approximate closeness centrality in directed and
undirected networks [11]. Eppstein et al. proposed a randomized approxima-
tion algorithm with time complexity O( logn

ε2
·m) to approximate the closeness

centrality within an additive error of ε · ∆ with high probability, where ∆
is the diameter of the network [12]. Rattigan used the concept of network
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structure index (NSI) to approximate the values of different centrality mea-
sures that are based on the shortest paths in the given network [13]. Some
other approximation methods for closeness centrality include [14–16].

Most of the real life applications focus on identifying few top nodes having
the highest closeness centrality. Okamoto et al. proposed a method to rank
k highest closeness centrality nodes using a hybrid of approximate and exact
algorithms [17]. Ufimtsev proposed an algorithm to identify high closeness
centrality nodes using group testing [18]. Olsen et al. presented an efficient
technique to find k most central nodes based on closeness centrality [19].
They used intermediate results of centrality computation to minimize the
computation time. Bergamini et al. proposed a faster method to identify
top-k nodes in undirected networks by approximating the upper bound on
closeness centrality using BFT [20].

Wehmuth et al. studied the correlation of closeness centrality with the
local neighborhood volume of the node [21]. The ranking based on local
neighborhood volume is named as DACCER (Distributed Assessment of the
Closeness CEntrality Ranking) and is highly correlated with closeness cen-
trality ranking in both real world and synthetic networks.

Bader et al. proposed parallel algorithm to compute closeness central-
ity, where it executes a breadth first traversal (BFT) from each vertex as a
root [22]. Lehmann and Kaufmann proposed a method for decentralized com-
putation of closeness centrality [23]. Wang et al. proposed a distributed al-
gorithm that estimates closeness centrality with 91% accuracy in terms of or-
dering on random geometric, Erdős-Rényi, and Barabási-Albert graphs [24].

Closeness centrality has been applied to study various research topics like
collaboration networks [25,26], brain network [27], community detection [28],
identification of the community of a node by using the community informa-
tion of other nodes [29], closeness preferential attachment (CPN) model to
generate synthetic networks [30], and so on.

Currently, there is no work to estimate the rank of a node using its close-
ness centrality. In our previous works, we proposed methods to estimate
the degree rank of a node using its local information. First, we proposed
a method based on the power law degree distribution of scale-free networks
and it computes the degree rank of a node in O(1) time [31, 32]. We fur-
ther compute the variance in the rank estimation using power law degree
distribution [33]. Next, we propose sampling based methods to estimate the
degree rank in scale-free and random networks [34]. These works focus on
directly estimating the rank of a node based on the centrality measure. In
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the present work, we rank the nodes based on closeness centrality that itself
is a global centrality measure.

3 Datasets

We have studied structural properties of the closeness centrality using real
world network datasets that are briefly explained in Table 1.

Table 1: Datasets

Network Type #Nodes #Edges Ref
Brightkite Social Network 56739 212945 [35]
DBLP Co-authorship Network 317080 1049866 [36]
Digg Social Network 261489 1536577 [37]
Enron Communication Network 84384 295889 [38]
Epinion Social Network 75877 405739 [39]
Facebook Social Network 63392 816831 [40]
Gowalla Social Network 196591 950327 [35]
Google+ Social Network 107614 12238285 [41]
Slashdot Social Network 82168 504230 [42]
Twitter Social Network 81306 1342296 [41]

4 Terminologies

Table 2 explains the terminologies used in the paper. G(V,E) represents a
network where V is the set of nodes and E is the set of edges.

5 Closeness Centrality Behavior

In this section, we study the behavioral characteristics of closeness centrality
and their correlation with the network structure.

5.1 Closeness Centrality vs. Degree Centrality

First, we study the correlation between closeness centrality and degree of the
nodes. Results do not show that the closeness centrality is correlated with
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(a) Brightkite (b) DBLP

(c) Digg (d) Enron

(e) Epinion (f) Facebook

Figure 2: Degree versus Closeness Centrality
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Table 2: Terminologies for the paper

Notation Description
n Total number of nodes in the network
m Total number of edges in the network
u, v, w Nodes in the network
deg(u) Degree of node u
C(u) Closeness centrality of node u
cmax Maximum closeness centrality in the network
cmin Minimum closeness centrality in the network
cmid Closeness centrality of middle ranked node in the network
c′max Estimated maximum closeness centrality in the network
c′min Estimated minimum closeness centrality in the network
c′mid Estimated closeness centrality of middle ranked node
Rrev(u) Reverse rank of node u in the network
Ract(u) Actual rank of node u in the network
Rest(u) Estimated rank of node u in the network

the degree, but they show that the node having the highest degree either
has the highest closeness centrality or it is very close to the highest closeness
centrality as shown in Figure 2. This is desirable since the degree of a node is
a local characteristic and it can be computed in O(1) time. This information
can be used to identify the node having highest closeness centrality. Further
details are explained in Section 6.

5.2 Closeness Centrality Pattern from Center to Pe-
riphery

In scale-free networks, central nodes have the highest closeness centrality and
the extreme periphery nodes have minimum closeness centrality. As we move
from the center to the periphery closeness centrality of the nodes decreases.
To analyze this pattern in depth, we execute breadth first traversal from
the central node (having the highest closeness centrality) until all nodes are
traversed. The plots of closeness centrality of nodes versus their distance
from the center node are shown in Figure 3. Results show that the nodes
farthest from the central nodes have minimum closeness centrality, and the
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outermost level of the BFT (also referred as the outermost periphery) is
very sparse. This behavior of the closeness centrality can be used to find
the minimum closeness centrality nodes in the network, by looking at the
diametrically opposed nodes from the central ones.

5.3 Closeness Centrality vs. Reverse Ranking

Real world networks have a dense central region that contains a very few
number of nodes having the highest closeness centrality. These central nodes
are highly connected with each other and also with rest of the network. The
nodes belonging to the outermost peripheral layers have the least closeness
values. Closeness centrality of all other nodes lies between this range and
increases sharply as we move from the periphery to the center.

Due to this behavior, the reverse ranking versus closeness centrality of
nodes follows a sigmoid curve as shown in Figure 1. In reverse ranking, a
node having highest closeness value will have the smallest rank n (where
n is the total number of nodes) and the node having the lowest closeness
value will have the rank 1. We plot reverse rank versus closeness centrality
for more than 20 real world social networks and find that they follow the
sigmoid curve and it is symmetric in most of these networks. The results are
displayed in Figure 4 for some of the datasets, where the x-axis represents
closeness centrality and the y-axis represents the reverse ranking of the nodes.

We study this curve in depth and find that the 4-parameter logistic equa-
tion can better fit the curve. The equation of the 4-parameter logistic is
defined as,

Rrev(u) = n+
1− n

1 +
(
C(u)
cmid

)p , (1)

where, cmid represents closeness centrality of the middle ranked node in the
network, n represents total number of nodes, and p denotes slope of the
logistic curve at the middle point (also called hill’s slope). All parameters
are displayed in Figure 1. We will use this logistic equation to estimate the
closeness rank of a node as explained in the next section.
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6 The Heuristic Method for Closeness Rank-

ing

In this section, we propose a method to estimate the closeness rank of a
node. The node of interest whose rank we compute is mentioned as interested
node. The proposed method exploits the structural characteristics of the
closeness centrality to efficiently estimate the ranking. As we discussed,
the reverse rank versus closeness centrality follows a sigmoid curve, we use
this characteristic to estimate the rank of a node. Once we estimate both
parameters of the logistic Equation 1, the closeness rank of a node can be
estimated in O(1) time.

We will now discuss methods to estimate both of these parameters: (1)
closeness centrality of the middle-ranked node (cmid) and (2) slope of the
logistic curve (p). Next, we will discuss the method to estimate closeness
rank of a node and its complexity.

6.1 Estimate closeness centrality of middle ranked node
(cmid)

We observed that in most of the real world networks, reverse rank versus
closeness centrality follows a symmetric sigmoid pattern. The plots for some
of these networks are shown in Figure 4, where the plots (a)− (d) are sym-
metric. We use this information to compute the value of cmid, using the
network.

Using the property 5.1, the maximum closeness centrality can be esti-
mated as, c′max = C(u) where deg(u) ≥ deg(v),∀v ∈ V . While estimating
the closeness centrality of the interested node, keep track of the node having
the highest degree. Once the highest degree node is known, we can compute
its closeness centrality using the standard computation method. We thus
have the following observation.

Observation 1. The maximum closeness centrality can be estimated as,
c′max = C(u) where deg(u) ≥ deg(v), ∀v ∈ V (G).

In a network, the nodes having the maximum distance from the central
node have minimum closeness centrality as observed in figure 3. So, we can
keep track of the nodes falling on the outermost level of BFT while computing
the maximum closeness centrality. Let w be a node in the network chosen
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(a) Brightkite (b) DBLP

(c) Digg (d) Enron

(e) Epinion (f) Facebook

Figure 3: Closeness Centrality versus BFT Level from the Central Node
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uniformly at random from all the nodes farthest away from u (i.e. d(u,w)
is maximum) for u identified as a central node in Observation 1. Using
the property 5.2, the minimum closeness centrality can be estimated by the
closeness centrality of w. We thus have the following observation.

Observation 2. The minimum closeness centrality can be estimated as,
c′min = C(w), ∃w where d(w, u) is max, for u identified in Observation 1.

We now use Observations 1 and 2 to estimate the closeness centrality of
the middle ranked node.

Proposition 1. In the symmetric sigmoid curve of reverse rank versus close-
ness centrality, the closeness centrality of the middle-ranked node, (cmid), can
be computed as cmid = (cmax + cmin)/2.

Proof. If the sigmoid curve is symmetric, then using Figure 1 we note that:
The distance from C to A = cmax − cmin
The distance from A to B = (cmax − cmin)/2
The distance of B from the origin point can be computed as,

cmid = cmin + (cmax − cmin)/2 = (cmin + cmax)/2, (2)

as desired.

6.2 Estimate Slope of the Sigmoid Curve (p)

We measured the slope of the sigmoid curve for 20 real world networks using
scaled levenberg-marquardt algorithm [43] with 1000 iterations and 0.0001
tolerance. We observed that the slope ranges from 10-15. The slope for the
discussed datasets is shown in Table 3. The average of these values is used
as the value for p in the simulation. We empirically observed that the slight
variation in the estimation of p does not cause more error in the ranking.

6.3 Estimate Closeness Rank

After estimating all the needed parameters for the sigmoid curve, the close-
ness rank of the interested node u can be estimated using Proposition 2.

Proposition 2. In a network G, the closeness rank of a node u can be
computed as, Ract(u) = 1 + n−1

1+
(

CC (u)

cmid

)p .
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Table 3: Networks versus their p values

Network p value Network p value
Brightkit 12.18 Gowalla 10.79
DBLP 14.11 Google+ 15.95
Digg 14.23 Facebook 12.74
Enron 11.47 Twitter 14.47
Epinion 12.99 Slashdot 14.89

Average 13.38

Proof. Using Equation 1, the reverse rank of a node u can be computed as,

Rrev(u) = n+ 1−n
1+
(

C(u)
cmid

)p .
The actual rank of a node can be estimated by subtracting its reverse

rank from the total number of nodes plus 1. We thus have that,

Ract(u) = n−Rrev(u) + 1

Ract(u) = n− n− 1− n

1 +
(
C(u)
cmid

)p + 1,

Ract(u) = 1 +
n− 1

1 + (C(u)
cmid

)p
, (3)

as desired.

Thus, we can now estimate the rank of a nodes in a network G using
Corollary 1.

Corollary 1. In a network G, the closeness rank of a node u can be estimated
as, Rest(u) = 1 + n−1

1+

(
C(u)

c′
mid

)p′ , where c′mid and p′ are the estimated values of

closeness centrality of middle ranked node and slope of the sigmoidal closeness
centrality curve respectively.

The combined method to estimate the closeness rank of a node is ex-
plained in Algorithm 1. Here, closeness centrality(G, u) method returns
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the closeness centrality of node u. closeness centrality1(G, u) method re-
turns the closeness centrality C(u) of node u, the node w having the highest
degree in the network, and the network size n. closeness centrality2(G,w)
method returns the closeness centrality of node w, and list of the nodes hav-
ing maximum distance from the node w. random choice(cmin list) func-
tion returns a value uniformly at random from the given list cmin list.
closeness centrality(G, u), closeness centrality1(G, u), and closeness cent-
rality2(G, u) methods can be implemented by modifying the BFT algorithm
as they just need to keep track of few variables.

Algorithm 1: EstimateClosenessRank(G, u, p)

1 (C(u), w, n) = closeness centrality1(G, u);
2 (c′max, cmin list) = closeness centrality2(G,w);
3 c′min = closeness centrality(G, random choice(cmin list));
4 c′mid = (c′max + c′min)/2;
5 Estimate closeness rank of the node using equation 3 as,

Rest(u) = 1 + n−1

1+

(
C(u)

c′
mid

)p ;

6 Return Rest(u);

6.4 Complexity Analysis

In this section, we will discuss the time complexity of the proposed heuristic
method that is explained in Algorithm 1. The complexity of step 1 is O(m)
as it executes one BFT and keeps track of the highest degree node while
executing the BFT. The time complexity of step 2 is O(m) as it executes
BFT from the node w and returns the list of nodes that are traversed during
the last level of BFT. The time complexity of step 3 is O(m), as we assume
that random choice(cmin list) function returns a value in constant time as
the size of the list is very small. Step 4 and 5 take O(1) time. So, the overall
complexity of the proposed method is O(m)+O(m)+O(m)+2·O(1) = O(m).
This is a great improvement over the classical ranking method that takes
O(n ·m) time.
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7 The Randomized Heuristic Method

We observed that the accuracy of the estimated rank highly depends on the
accuracy of the cmid estimator. So, we propose an improved cmid estimator
to increase the accuracy of the proposed method.

In the heuristic method, we assumed that the sigmoid curve is symmetric.
But in some real world networks, the sigmoid curve might not be symmetric,
but very close as seen in Figure 4 (e), (f), and the heuristic method will
give a huge error for such cases. So, we propose an improved randomized
method that uses uniformly random samples to estimate the value of cmid.
The improved method picks k nodes uniformly at random and computes their
closeness centrality values. The average of these k closeness values is used as
the estimated value of cmid. Results show that the estimated value of cmid
is very close to its actual value. Further details are explained in the Results
section. The complete algorithm is explained in Algorithm 2.

Algorithm 2: RandomizedClosenessRank(G, u, p, k)

1 (C(u), n) = closeness centrality3(G, u);
2 Take a list L;
3 for i← 1 to k do
4 Select a node w uniformly at random;
5 Add closeness centrality(G,w) in list L;

6 c′mid = average of all values of L;
7 Estimate closeness rank of the node using equation 3 as,

Rest(u) = 1 + n−1

1+

(
C(u)

c′
mid

)p ;

8 Return Rest(u);

7.1 Complexity Analysis

InRandomizedClosenessRank(G, u, p, k) algorithm, the complexity of close-
ness centrality3(G, u) method is O(m) as it returns the closeness centrality
of node u and the total number of nodes. In the for loop, k nodes are chosen
uniformly at random and their closeness centrality is computed. So, the com-
plexity of the for loop is O(k ·m). Complexity of step 6 and 7 is O(1). Thus,
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the overall complexity of the proposed method is O(m) +O(k ·m) +O(1) =
O((k + 1)m). As k << n, the complexity of the proposed method is O(m).

(a) DBLP (b) Digg

(c) Facebook (d) Epinion

(e) Enron (f) Twitter

Figure 4: Reverse Rank versus Closeness Centrality

8 Simulation Results

In this section, we discuss error functions and simulation results on real world
datasets.
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8.1 Error Functions

The accuracy of the proposed methods is computed using absolute and
weighted error functions that are discussed below:

1. Absolute Error: Absolute error for a node u is computed as,

Errabs(u) = |Rest(u)−Ract(u)|.

The percentage average absolute error can be computed as

Errpaae =
average absolute error

network size
· 100%.

where the average absolute error is computed by taking the average
of absolute error for each node.

2. Weighted Error: In real life applications, importance of the rank
depends on where does a node stand and how many total nodes are
there. If you get 100 rank, it is admirable if there are 100,000 people
but it is not good enough if there are only 500 people. So, the same
rank value can be more important in a larger network than in a smaller
one. So, the impact of the error depends on percentile of the node
as well as on the network size. The proposed weighted error function
considers both of these parameters and it is defined as,

Errwtd(u) = Errabs(u)
n

× percentile(u)%.

The percentile of a node u can be calculated as, percentile(u) = n−Ract(u)+1
n

×
100. The weighted error increases linearly with the percentile of the
node, and decreases with the network size.

8.2 Discussion

The proposed methods are simulated on all datasets discussed in Table 1. To
measure the accuracy of the proposed methods, the absolute and weighted
errors are computed for each node. Then it is averaged over all nodes to com-
pute the overall error in the proposed methods. The errors of the proposed
methods are shown in Table 4.
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Table 4: Error in the Estimated Ranking

Network Best Fit Heuristic Method Rand. Heuristic Method
Error Error Error (k=50)

Paae Wtd Paae Wtd Paae Wtd
Brightkite 1.48 0.79 7.96 3.89 2.96 1.32
DBLP 1.29 0.68 9.47 4.38 3.29 1.91
Digg 1.24 0.49 4.50 2.48 3.60 1.94
Enron 4.14 1.81 8.56 3.92 5.64 2.94
Epinion 1.42 0.70 7.72 3.96 2.16 1.00
Facebook 1.72 0.94 6.68 3.54 3.64 1.92
Google+ 1.44 0.64 20.57 12.22 3.70 1.77
Gowalla 1.52 0.81 17.96 9.30 3.97 1.94
Slashdot 0.78 0.29 6.29 2.69 2.91 1.47
Twitter 0.98 0.59 24.64 14.70 3.41 1.96

The best fit error is computed by using the best-fit logistic curve on the
reverse rank versus closeness centrality curve. The parameters of the best
fit curve are computed using scaled levenberg-marquardt method with 1000
iterations and 0.0001 tolerance [43]. Once the parameters of the best fit curve
are computed, the Equation 3 is used to compute the rank of a node. Results
show that the error computed using best-fit parameters is very low, and the
sigmoid closeness pattern can be efficiently used to estimate the rank of the
nodes.

The error for heuristic and randomized heuristic methods is shown in
Table 4 for p = 13.38. The error varies with the p value. The reverse rank
versus closeness centrality plots for the best fit and approximated parameters
are shown in Figure 4. The heuristic method gives a high error on some of
the real world networks due to the error in the estimation of the parameters
of the logistic curve or if the curve is not smooth. The complexity to estimate
the closeness rank of a node is same as computing its closeness centrality;
this is a great improvement over the classical ranking method.

Next, we show that the improved randomized heuristic method gives a
great improvement over the heuristic method. To compute the error, each
experiment is repeated 40 times for k = 50, and the average of the errors is
shown in Table 4.

Thus, the results show that the sigmoid behavior of closeness centrality
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can be used to fast estimate the closeness rank of a node. The proposed
methods can be efficiently applied on real world online networks as the pro-
posed methods do not need to store the network. Their APIs can be used to
run the BFT and compute the closeness centrality.

9 Conclusion

In the present work, we studied behavior of the closeness centrality and its
correlation with the structural properties of the network on real world scale-
free social networks. We observed that the reverse ranking versus closeness
centrality follows a sigmoid pattern. We further analyze how does the close-
ness centrality of nodes change as we move from the central region to the
periphery. These unique characteristics of closeness centrality are used to
propose heuristic method for closeness ranking of a node. The complexity of
the proposed method is O(m) that is a great improvement over the classical
ranking method that takes O(n ·m) time.

The proposed method is further improved using uniformly random sam-
ples where the closeness centrality values of k sampled nodes are used to
estimate a parameter (cmid) of the sigmoid curve. The complexity of the
improved method is O(k · m) ≈ O(m) as (k << n). The accuracy of the
proposed methods is verified using absolute and weighted error functions.
Results show that the proposed methods can be efficiently used to estimate
the closeness rank of a node.

10 Future Directions

In the proposed methods, we have estimated the slope of the sigmoid curve
as an average of the slopes observed in real world networks. The slope of the
curve denotes how sharply the closeness centrality increases for all middle
layered nodes from periphery to central region. It depends on the density of
the network and how the density changes from periphery to the center.

We study the correlation of the slope of the sigmoid curve (p) with the
density of the network. In figure 5, we plot slope versus density for BA
networks [44] having 40, 000 nodes.We observe that the slope increases with
the density, reaches its maximum value, and then it further decreases with the
increase in the density. This correlation can be used to propose an estimator
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for p value.

Figure 5: Slope vs. Density on BA networks.

The proposed methods can be further improved by estimating the close-
ness centrality of a node using its local information without having the entire
network. These methods will be highly required due to the fast growth of the
networks. This will improve the time complexity of the proposed methods
many folds. The proposed methods can also be extended to other types of
networks like weighted networks, directed networks, hypergraphs, and so on.

The rank estimation of a node based on other centrality measures like
betweenness centrality, coreness, PageRank, is still an open problem.
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