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Abstract

Most real world dynamic networks are evolved very fast with time.
It is not feasible to collect the entire network at any given time to
study its characteristics. This creates the need to propose local algo-
rithms to study various properties of the network. In the present work,
we estimate degree rank of a node without having the entire network.
The proposed methods are based on the power law degree distribution
characteristic or sampling techniques. The proposed methods are sim-
ulated on synthetic networks, as well as on real world social networks.
The efficiency of the proposed methods is evaluated using absolute
and weighted error functions. Results show that the degree rank of a
node can be estimated with high accuracy using only 1% samples of
the network size. The accuracy of the estimation decreases from high
ranked to low ranked nodes. We further extend the proposed methods
for random networks and validate their efficiency on synthetic random
networks, that are generated using Erdős-Rényi model. Results show
that the proposed methods can be efficiently used for random networks
as well.
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1 Introduction

In complex networks, all nodes have unique characteristics that can be cap-
tured using several of the centrality measures proposed in the literature like
degree centrality [1], semi-local centrality [2], closeness centrality [3], be-
tweenness centrality [4], eigenvector centrality [5], Katz centrality [6], PageR-
ank [7], and so on. These centrality measures assign a value to each node
based on its importance in the given context. But, in real life applications,
we are mostly interested in the relative importance of the node with respect
to the top ranked node. It can be measured using the rank of the node based
on the given centrality measure. In the present work, we estimate degree
rank of a node using local information. The degree of a node u is denoted
by du, which represents the number of neighbors of the node. Degree rank
of a node u is defined as, Ract(u) =

∑
vXuv + 1, where Xuv = 1, if dv > du,

otherwise Xuv = 0. It has been referred as actual degree rank throughout
the paper. A node having the highest degree is ranked 1. All nodes having
the same degree will have the same rank.

The classical ranking method collects the degree of all nodes and compares
them to compute the rank of a node. If the degree of a node can be computed
in O(1) time, then the time complexity of this method is O(n). The space
complexity is also high as it requires entire network for the processing. It
is not feasible to collect the entire network and store and process it for the
large scale networks. Due to this very reason, this method is not feasible for
large-scale or distributed real world networks.

Real world networks are highly dynamic, so, the rank of a node keeps
on changing with time. To estimate the latest rank of a node, the current
snapshot of the entire network is required. Even if we collect this dataset,
it might not be useful for further estimations. So, the complexity of pre-
processing will be very high. There are some more constraints while studying
these networks like online social networks can only be accessed using public
interface calls or their API. The number of calls is constant due to API’s
restrictions. These networks can only be sampled using random walk or its
variants like weighted random walk, metropolis-hastings random walk, and
so on. It creates the need to propose efficient local algorithms to estimate
various properties of the network using less amount of data.

In the present work, we propose four methods to estimate degree rank of a
node without having the entire network. These methods use a small snapshot
of the network that is collected using different sampling techniques. The pro-
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posed methods require some network parameters like network size, maximum,
minimum or average degree of the network, that are estimated using random
walk samples. Once these pre-processing steps are done, the degree rank
of a node can be estimated using the proposed methods. The first method
uses power law degree distribution characteristic of real world scale-free net-
works [8] and estimates the degree rank of a node in O(1) time. The next
method uses the uniform sampling technique to collect the samples. It com-
putes the local rank of the node in the collected samples, that is extrapolated
to estimate its global rank. The last two methods use metropolis-hastings
random walk and classical random walk to collect the samples for the rank
estimation.

We further study the accuracy and efficiency of the proposed methods
on synthetic as well as on real world networks. The accuracy is measured
using absolute and weighted error functions. Results show that the proposed
methods estimate rank of a node with high accuracy just by using 1% samples
of the network size. So, these methods can be used efficiently for online
social networks. The proposed methods are verified on 20 real world social
networks and the detailed comparison of these methods is discussed in the
Results section.

These ranking methods are further extended to rank nodes in random
networks. The efficiency of the proposed methods is verified on random
networks of 100,000-500,000 nodes. Results show that the degree rank of a
node can be estimated efficiently using a small (1% nodes) sample size.

As per the best of our knowledge, this is the first extensive study of its
kind. This work can be helpful to make progress in other domains like identi-
fication of influential nodes, comparison of the relative importance of nodes,
etc. Identification of influential nodes has been the center of various other
research problems like an epidemic [9], viral marketing [10], information dif-
fusion [11,12], opinion formation [13], and so on. It has attracted researchers
for quite a long time. The proposed methods can be used to rank influential
nodes in different contexts. Degree centrality also has been combined with
many other centrality measures to identify the influential nodes [2, 14, 15].
Fortunato et al. studied the correlation of in-degree with PageRank of the
node [16]. They show that the PageRank is directly proportional to the
in-degree, modulo an additive constant. Ghoshal and Barabasi studied the
dependency of super stable nodes on their degrees [17]. All these applications
show the importance of degree ranking in diverse domains of science. As the
network size is increasing very fast with time, it is not feasible to implement
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regular methods. So, local algorithms need to be used in such scenarios as
they are practical for large-scale dynamic networks. In [18], authors pro-
pose fast heuristic methods to estimate the rank of the nodes based on the
closeness centrality that itself is a global centrality measure.

The rest of this paper is organized as follows. Next, we discuss related
work. In section 3, we discuss methods that are used to estimate the required
network parameters. In section 4, all notation that will be used in the paper,
are explained. Section 5 describes degree rank estimation methods for scale-
free networks. Each of its subsection explains one method in depth. Section 6
explains datasets, error functions, and simulation results for all the proposed
methods. Section 7 explains ranking methods for random networks and their
validation on Erdos-Renyi networks. The paper is concluded in section 8.
This project has various future directions that can be explored further. These
are also discussed in the conclusion.

2 Related Work

Real world networks are highly dynamic. Their size is increasing very fast
with time and in many cases, they are stored in a decentralized way. It is not
feasible to store the entire network to study its characteristics like network
size, average degree, clustering coefficient, and so on. A small snapshot of the
dataset can be collected at any given time to study network characteristics.
This has motivated researchers to use sampling techniques to study network
parameters. While sampling, the main focus is that the collected dataset
should be a good representative of the complete dataset.

The sampling techniques can be mainly categorized as node selection
based sampling techniques [19], edge selection based sampling techniques [19],
and graph traversal based sampling techniques. In node selection or edge se-
lection methods, nodes or edges are sampled uniformly at random from the
network respectively. Haralabopoulos and Anagnostopoulos proposed En-
hanced Random Node Sampling method and compared its efficiency with
already existing methods [20]. The paper contains the results of the es-
timation of network parameters like clustering coefficient, average degree,
assortativity, and the number of components in real world networks.

The node or edge sampling methods are not feasible in real world net-
works as the structure of social networks is not known in advance. So,
these networks can be sampled using graph traversal techniques like breadth
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first search (BFS) [21], depth first search (DFS) [21], forest fire sampling
(FFS) [19], snowball sampling [22], or random walk based methods like sim-
ple random walk (RW) [23], Metropolis Hastings random walk (MHRW) [24],
reweighted random walk (RWRW) [25], respondent driven sampling (RDS)
[26], supervised random walk [27], Modified TOpology Sampling (MTO) [28],
walk-estimate [29], Frontier sampling (m-dimensional random walk) [30],
Rank Degree sampling based on edge selection [31], preferential random
walk [32], and so on.

Next, we discuss estimation methods for network parameters using sam-
pling methods. Kurant et al. proposed a method called SafetyMargin that
uses Induced Edges sampling techniques to estimate the network size [33].
The proposed method outperforms state of the art methods even using 10
times small sample size. In 2013, Hardiman and Katzir proposed a more ef-
ficient method to estimate the network size using random walk samples [34].
This method is discussed in more detail in Section 3.1. They also proposed
methods to compute average clustering coefficient and global clustering co-
efficient of the network using random walk. There have been proposed some
more methods to estimate network size like [35–39].

Sampling techniques also have been used to identify degree related prop-
erties like high degree nodes, average degree, or degree distribution of the
network. Cooper et al. proposed a biased random walk method to identify
high degree nodes in the scale-free networks [40]. Marchetti-Spaccamela pro-
posed a method to estimate the degree of a node in directed network [41].
Dasgupta et al. proposed a method to estimate the average degree of the
network using smooth random walk, that is discussed in Section 3.2 [42].
Eden et al. proposed an algorithm to estimate the average degree using Õ(1)
queries [43]. There have been proposed some more methods to estimate the
average degree [35, 44]. Cem and Sarac proposed methods to estimate the
size and the average degree of online social networks where only one random
neighbor of the node can be accessed using API calls [45]. They further used
ego-centric sampling and showed that the use of neighborhood information
is not always beneficial to estimate network parameters like network size and
average degree [46].

Ribeiro et al. studied the mean square error while computing the degree
distribution of the network [47]. They further compute the normalized mean
square error for estimating the out-degree and in-deg distribution of the di-
rected networks [48]. The proposed method uses Directed Unbiased Random
Walk (DURW) that takes a random jump with a fixed probability depending
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on the degree of the node while taking the walk. The results show that the
out-degree distribution can be estimated more efficiently and accuracy of the
in-degree distribution is very less unless the graph is not symmetric.

Thus, we have seen that the sampling methods can be used to estimate
various network parameters. In the present work, we use sampling techniques
to estimate degree centrality rank of the nodes.

3 Estimation of Network Parameters

Different ranking methods require different network parameters that need to
be estimated during the preprocessing steps. In this section, we discuss the
methods that are used to estimate these parameters.

3.1 Estimate the Network Size

The network size is estimated using a method (HK method) that was pro-
posed by Hardiman and Katzir [34]. The proposed estimator is based on
the concept of collision to count total number of nodes, where samples are
collected using the classical random walk. Authors use neighbors’ informa-
tion of the sampled nodes to detect the collision a step before it actually
occurs. There is a high probability of collision on short distances due to the
local traversal. So, a pair of nodes in random walk samples is considered to
count the collision if their distance is long during the random walk. We have
considered a pair if their distance is more than 2.5% of sample size. It is the
same as taken by the authors.

3.2 Estimate the Average degree

The average degree of the network is used while estimating the rank of a
node using power law degree distribution. It is estimated using a method
(AD method) that was proposed by Dasgupta et al. [42]. The samples are
collected using smoothed random walk with a distribution Dd,c, where the
probability to sample a node u is directly proportional to du + c, and c is
constant during the entire random walk. The samples generated using this
distribution are equivalent to samples generated from the network, where c/2
self-loops are added to each node.
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They proposed two estimators called: 1. Guess&Smooth, 2. Smooth.
The optimal value of c is decided using Guess&-Smooth estimator. This
smoothing parameter c is used by Smooth estimator to collect the sam-
ples. These two estimators are combined to propose an estimator that takes
O(logU · loglogU) samples to estimate average degree with high accuracy,
where U is an upper bound on the maximum degree of the network. Thus,
this estimator takes very less number of samples to estimate the average
degree.

The estimated average degree of the network is required while estimating
the rank of a node using power law degree distribution method.

3.3 Estimate the Maximum Degree

In power law degree distribution, the frequency of highest degree node is
almost 1. In the analysis, maximum degree is estimated as the available
maximum degree in the samples, d′max = max {du,∀u ∈ S}, where S is the
set of samples.

3.4 Estimate the Minimum Degree

In real world networks, we observe that the minimum degree is 1 or close to
1. We use the same value of minimum degree for the analysis, so d′min = 1.
In BA and ER networks, the minimum degree is estimated as the available
minimum degree in the samples.

The minimum and maximum degree are estimated using the network size
estimator samples.

4 Notation

G(f) represents a set of networks having n nodes, and all networks are gen-
erated using the same degree distribution f . Table 1 contains all notation
used in the paper.

5 Estimate the Degree Rank

In this section, we will explain four methods to estimate degree rank of a
node using local information.
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Table 1: Notation

Notation Description
G A network, G ∈ G(f)
n Total number of nodes in the network
m Total number of edges in the network
n′ Estimated number of nodes in the network
nj Total number of nodes having degree j in the network
u, v, w Nodes in the network
du Degree of node u
dmax Maximum degree in the network
dmin Minimum degree in the network
davg Average degree of the network
S Set of sampled nodes
s Sample size, s = |S|
d′max Estimated maximum degree/maximum degree in S
d′min Estimated minimum degree/minimum degree in S
d′avg Estimated average degree/average degree of S

Ract(u) Actual rank of node u in the network
Rest(u) Estimated rank of node u in the network
Rlocal(u) Rank of node u in sample S
RG(u) A random variable that denotes the rank of node u in G
RS(u) A random variable that denotes the rank of node u in S
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5.1 Using Power Law Degree Distribution (PLMethod)

In 1999, Barabasi and Albert observed that degree distribution f of real
world scale-free networks follows power law [8]. The probability f(j) of a
node having degree j is given as f(j) = cj−γ, where c and γ are constants
for a network. Due to the power law characteristic, only a few nodes manage
to get the higher degree in the network. In real world scale-free networks,
the range of the exponent is 2 < γ < 3. The degree rank of a node can
be computed using power law equation if its parameters are known. In this
section, we propose a method to estimate these parameters that can be used
further to estimate degree rank of the node.

Theorem 1. In a scale-free network G (G ∈ G(f)), the power law exponent
of degree distribution can be computed as, γ ≈ 2 + dmin

davg−dmin , where dmin and

davg represent minimum and average degree of the network respectively.

Proof. Let network G follows power law degree distribution f(j) = cj−γ.
First, we derive an equation to estimate the value of c. The sum of prob-
abilities of a node having degree j (dmin ≤ j ≤ dmax) is equal to 1. The
probability function of degree distribution can be written as,

dmax∑
j=dmin

f(j) = 1.

We switch to integration1 to compute c:

∫ dmax

dmin

f(j)dj = 1,∫ dmax

dmin

c · j−γdj = 1.

After integration, we obtain the value for c to be

c · (dmax)
1−γ − (dmin)1−γ

1− γ
= 1

1Here, discrete probability values are considered as continuous probability density func-
tion, as this introduces a very small error.
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c =
1− γ

(dmax)1−γ − (dmin)1−γ
. (1)

To compute γ, the average degree of the network, (davg), is used. Using
f(j) = c · j−γ, it can be computed as

davg =
dmax∑
j=dmin

j · f(j)

davg =

∫ dmax

dmin

j ·
(
c · j−γ

)
dj.

After integration, we have that

davg = c · d
2−γ
max−d2−γmin

2−γ .

Putting value of c from equation (1) in this equation,

davg =
1− γ
2− γ

· d
2−γ
max − d

2−γ
min

d1−γmax − d1−γmin

davg =
γ − 1

γ − 2
· d

γ−2
max − d

γ−2
min

dγ−1max − dγ−1min

· dmax · dmin

where, dmin << dmax, and 2 < γ < 3 for scale-free real networks [8].

davg ≈ γ−1
γ−2

dγ−2
max

dγ−1
max
· dmax · dmin

davg ≈ γ−1
γ−2 · dmin

i.e. γ ≈ 2 + dmin
davg−dmin .

We next present the expected degree rank of a node.

Theorem 2. In a network G (G ∈ G(f)), the expected degree rank of a node

u can be computed as, E[RG(u)] ≈ n
(
d1−γmax−(du+1)1−γ

d1−γmax−d1−γmin

)
+ 1, where γ is the

power law exponent of the degree distribution of network G.

Proof. In a given network G, the actual rank of a node u having degree du
can be computed as,
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Ract(u) =
dmax∑
j=du+1

nj + 1

where nj represents total number of nodes having degree j in network G. Let
Nj be a random variable that represents total number of nodes having degree
j in G. Then, the expected value of Nj can be computed as, E[Nj] = n ·f(j).
Thus the expected degree rank of a node u can be computed as

E[RG(u)] = E

[
dmax∑
j=du+1

Nj + 1

]

E[RG(u)] =
dmax∑
j=du+1

E[Nj] + 1

E[RG(u)] =
dmax∑
j=du+1

n · f(j) + 1

E[RG(u)] ≈ n

∫ dmax

du+1

f(j)dj + 1.

Since f(j) = cj−γ, after the integration of E[RG(u)] ≈ n
∫ dmax
du+1

c · j−γdj + 1
we have

E[RG(u)] ≈ nc
d1−γmax − (du + 1)1−γ

1− γ
+ 1.

Replacing the value of c from equation (1), we obtain

E[RG(u)] ≈ n(
d1−γmax − (du + 1)1−γ

d1−γmax − d1−γmin

) + 1

as desired.

And so, using Theorem 2 and given general estimators about the network,
we can estimate the degree rank of nodes.

Corollary 2.1. In a network G (G ∈ G(f)), the degree rank of a node u can
be estimated as,

Rest(u) = n′

(
(d′max)

1−γ − (du + 1)1−γ

(d′max)
1−γ − (d′min)1−γ

)
+ 1,
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where γ = 2 +
d′min

d′avg−d′min
, and n′, d′min, d

′
max, and d′avg denote the estimated

value of network size, minimum degree, maximum degree, and average degree
of the network respectively.

In one of our previous works, we have validated this method on BA net-
works [49,50]. The proposed method estimates the rank with high accuracy
for BA networks but does not give good results for real world networks, as
they follow power law degree distribution with a droop head and a heavy
tail. We further compute variance in degree rank estimation using power
law degree distribution and the results show that there is a high variance for
lower degree nodes [51].

Next, we propose few more sampling based approaches that perform bet-
ter on real world networks. These are discussed below.

5.2 Using Uniform Sampling (US Method)

In this section, the uniform sampling technique is used to collect a small
sample of actual dataset. In uniform sampling, the probability of sampling
a node is equal to 1/n, where n is total number of nodes. Uniform sam-
ples preserve the characteristics of actual dataset. So, the collected samples
follow similar degree distribution as observed in real world networks. Here
we assume that the network G is generated using degree distribution f1 and
G ∈ G(f1). Now, Theorem 3 can be used to estimate the rank of a node
using uniform samples. The expected global rank of a node can be estimated
by extrapolating its local rank in the collected sample set.

Theorem 3. In a network G (G ∈ G(f1)), if sample S is collected uniformly,
the expected local rank of node u can be computed as, E[RS(u)] ≈ s

n
E[RG(u)],

where RG(u) and RS(u) are random variables that denote the rank of node u
in network G and sample S respectively.

Proof. We are interested in computing the rank of a node u having degree du.
Let’s take a random variable Nj, that denotes the number of nodes having
degree j in the network. The expected value of Nj can be computed as,
E[Nj] = n · f1(j).

The expected rank of node u in network G can be computed as:
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E[RG(u)] = E[
∑dmax

j=du+1(Nj) + 1]

E[RG(u)] =
dmax∑
j=du+1

(n · f1(j)) + 1 (2)

Now, we have a uniform sample S of size s. In network G, the probability
p to sample a node y uniformly at random having degree greater than du
(dy > du) can be defined as,

p =
∑dmax
j=du+1(n·f1(j))∑dmax
j=1 (n·f1(j))

Using equation (2),

p = E[RG(u)]−1∑dmax
j=1 (n·f1(j))

p = E[RG(u)]−1
n
∑dmax
j=1 (f1(j))

Using the property of probability distribution
∑dmax

j=1 f1(j) = 1.

E[RG(u)] = p · n+ 1 (3)

The expected value of local rank of node u in sample S can be computed as,

E[RS(u)] =
∑s

j=0

(
s
j

)
pj(1− p)(s−j)j + 1

E[RS(u)] = s · p+ 1 (4)

Using equations (3) and (4),

E[RS(u)] = s
n
E[RG(u)] + n−s

n

Where, 0 ≤ (n− s)/n < 1, if s ≤ n. So,

E[RS(u)] ≈ s
n
E[RG(u)]
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In a network G, Ract(u) ≈ E[RG(u)] and Rlocal(u) ≈ E[RS(u)]. Rlocal(u)

denotes the rank of node u in sample S, and Rlocal(u) =
∑d′max

j=i+1(n
′
j) + 1,

where n′j is the number of nodes having degree j in sample S. Using theorem
3, the actual rank of node u can be computed as,

Ract(u) ≈ n

s
Rlocal(u) (5)

Corollary 3.1. In a network G, using uniform samples, degree rank of a
node u can be estimated as, Rest(u) = n′

s
Rlocal(u), where n′ is the estimated

network size.

5.3 Using Metropolis-Hastings RandomWalk (MHMethod)

In most of the online networks, uniform sampling is not possible as node
ids are not known well in advance. These networks can be sampled using
graph sampling techniques like breadth first traversal, random walk, etc.
These sampling methods are biased towards higher degree nodes and fail
to generate uniform samples. In this method, we use metropolis-hastings
random walk that generates sample equivalent to uniform samples, that can
be used for rank estimation.

Metropolis-Hastings Random Walk: This technique was first pro-
posed by Metropolis et al. [24] in 1953. In this method, the probability
distribution of random walk is modified so that the collected samples retain
the properties of the actual distribution of the dataset. At each time step,
the crawler will move to the next node with probability p and will stay at
the same node with probability (1− p). So, the probability distribution can
be modified as,

Pu→v =


1
du
·min(1, du

dv
), if v is the neighbor of u,

1−
∑

w 6=u Pu→w, if v = u,

0, otherwise.
This probability distribution collects more samples of lower degree nodes

and fewer samples of higher degree nodes, so the collected samples are not bi-
ased towards higher degrees. Gjoka et al. studied that in real world network,
the samples collected using metropolis-hastings random walk are equivalent
to uniform samples, and can be used to study the network parameters [52].
Corollary 3.1 can be used to estimate degree rank using MHRW samples.
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5.4 Using Random Walk (RW Method)

The classical random walk is a well known easier method to collect the sam-
ples in large dynamic networks. In Random Walk, a crawler starts from a
randomly chosen node. It moves to the next node that is chosen uniformly
at random among the neighbors of the current node [23]. The probability to
move to node v from node u is defined as,

Pu→v =

{
1
du
, if v is a neighbor of u,

0, otherwise.
In a random walk, the probability of a node being sampled converges to a

stationary distribution, p(u) = du/2m. So, the collected samples are biased
towards high degree nodes. We propose Theorem 4 to estimate degree rank
using random walk samples.

First, notice that in a random walk, the probability of a node being sam-
pled is directly proportional to its degree. These samples can be converted to
uniform samples using a new probability distribution, where the probability
of picking a node is inversely proportional to its degree p(u) ∝ 1/du, known
as re-weighted random walk sampling technique [25].

Theorem 4. In a network G (G ∈ G(f1)), using random walk sample S,
the degree rank of node u can be computed as, Ract(u) ≈ n

k
· Rlocal(u), where

Rlocal(u) =
∑d′max

j=du+1(q(j) ·k) + 1, and k is a constant, q(j) is the re-sampling

probability function q(j) =
n′j/j∑d′max

i=d′
min

n′i/i
, and n′j represents total number of

nodes having degree j in sample S.

Proof. The probability q to resample a j degree node can be computed as,

q(j) =
n′j/j∑d′max

i=d′
min

n′i/i
, where n′j represents total number of nodes having degree

j in sample S.
To estimate the degree rank of a node, collect q(j) · k samples of each

degree j from S, where k is a constant. So, total number of new sampled

nodes |S ′| =
∑d′max

j=d′min
(q(j) · k) = k. Then, the rank of node u in S ′ can be

computed as, Rlocal(u) =
∑d′max

j=du+1(q(j) · k) + 1.
As the new sample set S ′ follows uniform distribution, the rank of node

u can be computed using equation (5), Ract(u) ≈ n
k
·Rlocal(u).

In the experiments, the value of k is chosen as k = min(1/q), so that
the regenerated samples also contain higher degree nodes and their rank is
estimated with high accuracy.
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Corollary 4.1. In a network G, using random walk samples, the degree rank
of a node u can be estimated as,

Rest(u) = n′ ·

∑d′max
j=du+1

(
n′j
j
· k
)

∑d′max
j=d′min

(
n′j
j
· k
) ,

where n′j represents total number of nodes having degree j in sample S, and
k is a constant.

6 Simulation Results

In this section, we will discuss the datasets, error functions, and simulation
results.

6.1 Datasets

All proposed methods are simulated on both synthetic as well as on real
world scale-free networks. Synthetic networks are generated using Barabási-
Albert (BA) modelG(n, k), where each new coming node makes k preferential
connections with already existing nodes [8]. The probability p(u) to make
a connection with an existing node u is directly proportional to the degree
of node u, as p(u) = du/

∑
v dv. So, the nodes having higher degrees acquire

more links over time and it gives birth to power law degree distribution. All
synthetic datasets are explained in Table 2.

Table 2: Datasets

Network #Nodes #Edges
BA1 100000 999900
BA2 200000 1999900
BA3 300000 2999900
BA4 400000 3999900
BA5 500000 4999900

All real world datasets are explained below:
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1. Academia Online Social Network: Academia.edu is an online website
where academics share research papers. This is an extracted social net-
work from this website [53, 54]. It contains 200167 nodes and 1022440
edges.

2. Actor Collaboration Network: In actor collaboration network, nodes
represent actors and they are connected by an edge if they both have
performed in the same movie [8]. This network contains 374511 nodes
and 15014839 edges.

3. Catster Friendship Network: This social Network is created using the
friendships between catster.com website users [55]. catster provides a
platform to cat owners and lovers, where they can connect with each
other and share the information. It contains 148826 nodes and 5447464
edges.

4. DBLP Collaboration Network: This is a coauthorship network ex-
tracted from DBLP computer science bibliography, where edge denotes
that the authors have common publications [56]. This network contains
317080 nodes and 1049866 edges.

5. Delicious online social network: Delicious is a social bookmarking web
service for storing, sharing, and discovering web bookmarks. The
dataset contains all links among users [53,57]. It contains 536108 nodes
and 1365961 edges.

6. Digg Friendship Network: This friendship network was extracted from
Digg website in 2009 [58]. It contains 261489 nodes and 1536577 edges.

7. Dogster Friendship Network: This social Network is created using the
friendships between users of the website http://www.dogster.com [53].
catcher provides a platform to cat owners and lovers, where they can
connect with each other and share the information. It contain 426485
nodes and 8543321 edges.

8. Douban online social network: Douban is an online social network that
provides user review and recommendation services for movies, books,
and music. This is the friendship network extracted from the website
[53,57]. It contains 154908 nodes and 327162 edges.
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9. European Email Communication Network: This is the email commu-
nication network of a European research institution, where a node rep-
resents an individual person and an edge represents that at least one
email has been exchanged between them [59]. This dataset was col-
lected from October 2003 to May 2005 (18 months).

10. Facebook Network: Facebook is the most popular online social net-
working site today. This dataset is the induced subgraph of Facebook,
where users are represented by nodes and friendships are represented
by edges [60, 61]. It contains 3097165 nodes and 23667394 edges.

11. Friendster Network: This is the induced subgraph of Friendster online
social network [53]. Nodes represent users and a directed edge (a,b)
indicates that user a has added user b to his friendship lists. The
network is converted to a undirected network for study. It contains
5689498 nodes and 14067887 edges.

12. Foursquare Network: Foursquare is a location-based social network-
ing software for mobile devices that can be accessed using GPS. This
dataset is an induced subgraph of friendships of Foursquare [62]. It
contains 639014 nodes and 3214985 edges.

13. Gowalla Social Network: This network is extracted from a location-
based social network called, Gowalla [63]. This was used to share the
locations among its users. In this network, a node represents a user and
an edge indicates the friendship between the user. It contains 196591
nodes and 950327 edges.

14. Google Plus Social Network: This is an induced subgraph of Google
plus online social network [64]. It contains 107614 nodes and 12238285
edges.

15. Hollywood Collaboration Network: This is an undirected collaboration
network of Hollywood movie actors where nodes are actors, and there
is an edge between two actors if they have appeared in a movie together
[65].It contains 1069126 nodes and 56306653 edges.

16. Hyves: Hyves is a popular social networking site in the Netherlands
that is mainly used by Dutch visitors. This is the induced subgraph
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of this that was collected in December 2010 [62]. The network is undi-
rected and unweighted. It contains 1402673 nodes and 2777419 edges.

17. last.fm Network: Last.fm is a music website that has more than 40
million active users [53,66]. This is the induced friendship networks of
the bloggers from this website. It contains 1191805 nodes and 4519330
edges.

18. Livemocha Network: Livemocha was an online language learning web-
site and this network is extracted from the social connections of the
website [67]. This contains 104103 nodes and 2193082 edges.

19. Pokec Online Social Network (soc-pokec): Pokec is a popular online
social network in Slovakia. The dataset contains a list of user relation-
ships [53]. It contains 1632803 nodes and 22301964 edges.

20. Youtube Social Network: This is the induced subgraph of Youtube
social network [62]. This network contains 1134885 nodes and 2987468
edges.

6.2 Error Functions

The accuracy of all methods is evaluated using absolute and weighted error
functions. These are discussed below:

1. Absolute Error: Absolute error for a node u is computed as,

Errabs(x) = |Rest(u)−Ract(u)|

The percentage average absolute error can be computed as

Errpaae =
average absolute error

network size
· 100%.

2. Weighted Error: In real life applications, the significance of the error
depends on two important parameters: 1. rank of the node, and 2.
network size. The same rank difference has more impact for the higher
ranked nodes than the lower ranked nodes. Similarly, the same er-
ror in the rank will be perceived higher in smaller networks than the
larger networks. We consider both of these parameters and propose a
weighted error function. It is defined as,
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Errwtd(x) = Errabs(x)
n

· (n−Ract(u)+1)
n

· 100%

Where, (n−Ract(u)+1)
n

× 100 denotes percentile of node u. The weighted
error increases linearly with the percentile and decreases with the net-
work size, if the absolute error is constant.

6.3 Results and Discussion

In this section, we will discuss simulation results of all proposed methods.
The network parameters like size, average, maximum, and minimum degree
are estimated using the methods discussed in Section 2. The network size
estimation method converges approximately at 1% samples. Each experi-
ment is repeated 10 times and the average value is considered for further
experiments.

To measure the performance of the proposed methods, the average error
is calculated for each degree and it is averaged over all degrees to compute the
overall error in rank estimation. Each value (absolute and weighted error) is
computed by taking the average of 20 iterations of the experiment. Results
for US, MH, and RW methods are shown when 1% nodes are sampled. All
methods are validated on 20 real world social networks, and the summarized
results are shown in Table 3. The detailed results are shown in Appendix I

Table 3: Average Estimation Error on 20 Real World Social Networks

Method Errpaae Errwtd
PL 1.51 1.14
US 0.13 0.12
MH 0.50 0.41
RW 0.16 0.13

Results show that US method performs best on real world networks. As
uniform sampling is not possible in real world networks, RW method is the
most feasible and accurate method. In random walk samples, the probability
of sampling a node is directly proportional to its degree once the samples
are stabled. But in our experiments, we have not removed samples before
mixing time and results are shown for the starting 1% samples. It makes the
proposed random walk method even faster. MH method gives more error
than both US and RW methods because MH random walk is not able to
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generate perfect uniform samples for small sample size. The efficiency of
the sampling methods increases with the sample size. The performance of
PL method is poor on real world networks as they do not follow the perfect
power law.

RW versus PL Method: In RW method, same samples can be used
to estimate the network size and degree rank, so it is faster than the other
sampling methods. RW method is also faster than PL method because PL
method estimates the average degree using smoothed random walk that is not
required in RW method. But if the network parameters are already known,
PL method can be used to estimate the rank in O(1) time.

The detailed results are shown for 10 networks and their estimated pa-
rameters are shown in Table 4. The average error is shown using actual
parameters (A.P.) as well as estimated parameters (E.P.) to observe the er-
ror caused due to the estimation of network parameters. Figures 1 and 2
show percentage average absolute error and average weighted error for BA
and real world networks respectively. In these figures, first 2 bars show the
average error of PL method using actual and estimated parameters respec-
tively. Then it is followed by US, MH, and RW methods. It can be observed
that in BA networks, RW method outperforms all other methods. In real
world networks, the accuracy of RW method depends on the density and
structure of the network. It gives more accurate results in sparse networks
than the dense networks. The Same pattern is observed in MH method, as
it also collects samples using a walk over the network.

We further study, the behavior of estimation error with degree rank. Fig-
ure 3 shows absolute error versus degree rank for real world (a. Actor, and b.
DBLP) networks and BA network. In all methods, estimation error increases
with the rank. Figures 3(a) and 3(b) show that for high ranked nodes, RW
method outperforms other methods. US method gives more error for high
ranked nodes, as the linear extrapolation technique starts assigning rank from
n/s. If α percent nodes are sampled, it will start ranking nodes from 100/α,
that will induce more error for high ranked nodes. Figure 3(c) shows that PL
method outperforms other methods in BA networks, that is followed by RW
method. PL method estimates the rank in O(1) time once the preprocessing
steps are done. We observe that PL method works well for BA networks but
it gives a huge error for real world networks. It happens because of these two
reasons. Firstly, real world networks do not follow the perfect power law.
Secondly, the rank of a d degree node is computed by integrating the prob-
ability distribution function from d + 1 to dmax, but in real world networks
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(a) Absolute Error

(b) Weighted Error

Figure 1: Average Estimation Error for BA Networks
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(a) Absolute Error

(b) Weighted Error

Figure 2: Average Estimation Error for Real World Networks
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Table 4: Estimated Network Parameters

Network Number of Nodes Average Degree
Actual Estimated Actual Estimated

BA1 100000 106773 20.00 19.68
BA2 200000 199303 20.00 19.75
BA3 300000 292649 20.00 191.09
BA4 400000 406837 20.00 20.06
BA5 500000 500688 20.00 20.30
Actor 374511 417560 80.18 92.53
DBLP 317080 315587 6.62 7.20
Digg 261489 260435 11.75 17.00
Eu-Email 224832 223151 3.02 2.96
Gowalla 196591 199568 9.67 10.92
Youtube 1134885 1136445 5.26 10.15

nodes of some degrees might not be present. This further adds up to more
error.

In figure 3(a) and 3(b), it can be observed that the rank estimation error
in PL method decreases, goes very close to zero, and it further increases.
This gives a dip in the absolute error when it is plotted with degree rank.
This happens due to the error in the estimated slope of the degree distribu-
tion. The actual and estimated number of nodes versus degrees are shown
in figure 4 for DBLP network. So in this network, first, the estimated rank
will be lower than the actual rank, then, it will be close to zero when the
estimated rank is approximately equal to the actual rank, and finally, the
estimated rank will be higher than the actual rank. Due to this reason, it
shows a strange dip in the absolute error.

Next, we study how the estimation error changes with the network size.
To study the same, a BA network is evolved by maintaining the same density.
In Figure 5, percentage average absolute error and average weighted error are
plotted against the network size. Plots show that the error decreases with
an increase in the network size. It can also be observed that RW method
outperforms other methods as the network size increases.
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(a) Actor Network

(b) DBLP Network

(c) BA1 Network

Figure 3: Absolute Estimation Error versus Degree Rank on log-log scale
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Figure 4: Actual and Estimated Number of Nodes versus Degree

7 Random Networks

In this section, we study degree ranking methods for random networks. In
1959, Erdős and Rényi proposed a model to generate random networks, called
Erdős and Rényi (ER) model [68]. In ER model, a network is started with
n nodes, and an edge is placed between each pair of nodes with some fixed
probability p. The degree distribution g of random networks follows poisson
law. The probability of a node having degree j can be approximated as

g(j) → (davg)je
−davg

j!
as n → ∞, where davg is average degree of the network.

We will discuss a ranking method based on poisson law degree distribution.
The rest of the methods (US, MH, and RW method) can be directly applied
to random networks, as they have no dependency on the degree distribution
function. Network size and average degree are estimated using the same
techniques that we have discussed earlier.

7.1 Using Poisson Degree Distribution (PD Method)

This method uses Poisson degree distribution of random networks to estimate
degree rank of a node.

Lemma 5. In a random network G (G ∈ G(g)), the expected degree rank of

a node u can be computed as, E[RG(u)] = n · e−davg
∑dmax

j=du+1
(davg)j

j!
+ 1.
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(a) Absolute Error

(b) Weighted Error

Figure 5: Average Estimation Error versus Network Size for BA networks
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Table 5: Estimated parameters for Erdős and Rényi Networks

Network Number of Nodes Average Degree
Actual Estimated Actual Estimated

ER1 100000 99874 11.50 11.24
ER2 200000 202731 12.34 12.08
ER3 300000 300503 12.71 12.49
ER4 400000 398168 12.99 121.01
ER5 500000 505675 13.19 13.07

Proof. In a given network G that follows Poisson degree distribution, the
actual rank of a node u can be computed as,

Ract(u) =
∑dmax

j=du+1 nj + 1

where, nj represents total number of nodes having degree j in network G.
Let Nj be a random variable that represents the total number of nodes

having degree j in the network G (G ∈ G(g)). The expected value of Nj

is E[Nj] = n · g(j). Then, the expected degree rank of a node u can be
computed as,

E[RG(u)] = E

[
dmax∑
j=du+1

Nj + 1

]

E[RG(u)] =
dmax∑
j=du+1

E[Nj] + 1

E[RG(u)] =
dmax∑
j=du+1

n · g(j) + 1

As we know g(j) → (davg)je
−davg

j!
as n → ∞, so to compute the expected
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rank we use g(j) = (davg)je
−davg

j!
,

E[RG(u)] = n ·
dmax∑
j=du+1

(davg)
je−davg

j!
+ 1

E[RG(u)] = n · e−davg
dmax∑
j=du+1

(davg)
j

j!
+ 1,

as desired.

Corollary 5.1. In a random network G, the degree rank of a node u can be
estimated as,

Rest(u) = n · e−d′avg
∑d′max

j=du+1

(d′avg)
j

j!
+ 1, where d′max and d′avg are estimated

maximum and average degree of the network respectively.

7.2 Discussion

The proposed methods (PD, US, MH, RW) are verified on the generated ER
networks, and their details are given in table 5. Figure 6 shows percentage
average absolute error and average weighted error using actual and estimated
parameters. In PD method, the error computed using estimated parameters
is very high as the rank is highly dependent on the average degree. The
number of nodes for each degree j is directly proportional to (davg)

j, so, a
small estimation error leads to more cumulative error. Rest of the results are
similar to scale-free networks. The average error of RW method is very close
to US method, and it can be efficiently used for large size random networks.
The performance of RW method improves with network size. It is also ob-
served that the estimation error decreases as the network size increases. In
random networks, absolute error versus degree rank shows a different behav-
ior due to the poisson degree distribution. Figure 7 shows that the estimation
error first increases with the rank and then decreases.

8 Conclusion

In this work, we have proposed four methods to estimate degree rank of a
node without having the entire structure of the network. With time, the
size of real world dynamic networks is increasing very fast. It is not feasible
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(a) Absolute Error

(b) Weighted Error

Figure 6: Average Estimation Error for ER Networks
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Figure 7: Absolute Estimation Error versus Degree Rank for ER1 Network

to collect the entire network to study its global properties. The proposed
methods collect a small sample set using random walk or its variations and
estimate global degree rank of the node.

The accuracy of the proposed methods is evaluated using absolute and
weighted error functions. It is observed that the accuracy of RW method
is very close to US method. RW method is the most feasible and accurate
method for real world networks. In RW method, percentage average absolute
error is 0.16% and average weighted error is 0.13%. All proposed methods
estimate the rank of higher degree nodes more accurately than the lower
degree nodes. These methods are further extended to random networks.
Results show that they can be efficiently used to estimate degree rank in
random networks.

One can further extend this to estimate the rank of a node based on
other centrality measures like closeness centrality, betweenness centrality,
katz centrality, pagerank, coreness, and so on. The complexity to compute
these global centrality measures is very high. So, the local algorithms to
compute the global rank of the nodes will be of great interest.
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Table 6: Absolute and Weighted Error in the Estimated Ranking using all Methods on Real World Social
Networks

Network Type Ref Nodes Edges Avg Deg PL Error US Error MH Error RW Error
Abs Wt Abs Wt Abs Wt Abs Wt

Friendster Social [53] 5689498 14067887 4.95 0.06 0.06 0.01 0.01 0.05 0.05 0.01 0.01
Academia Social [54] 200167 1022440 10.22 1.46 1.01 0.15 0.14 0.47 0.35 0.19 0.14
Dogster Social [53] 426485 8543321 40.06 1.27 0.95 0.1 0.09 0.34 0.28 0.07 0.06
Facebook1 Social [61] 3097165 23667394 15.28 01.07 0.78 0.03 0.02 0.19 0.17 0.05 0.04
Gowalla Social [63] 196591 950327 9.67 01.05 0.66 0.12 0.11 0.5 0.41 0.12 0.1
Hyves Social [62] 1402673 2777419 3.96 0.2 0.15 0.02 0.02 0.07 0.07 0.01 0.01
Foursquare Social [62] 639014 3214985 10.06 1.1 0.95 0.08 0.07 0.52 0.45 0.06 0.05
Last.fm Social [66] 1191805 4519330 7.58 0.24 0.21 0.03 0.03 0.09 0.08 0.01 0.01
Livemocha Social [67] 104103 2193082 42.13 2.96 2.26 0.42 0.38 1.01 0.78 0.31 0.24
Delicious Social [53] 536108 1365961 5.1 0.31 0.25 0.05 0.05 0.17 0.15 0.05 0.04
Douban Social [53] 154908 327162 4.22 1.35 1.16 0.19 0.18 0.41 0.38 0.13 0.12
Actor Collaboration [8] 374511 15014839 80.18 3.48 2.31 0.15 0.14 0.51 0.41 0.27 0.21
DBLP Collaboration [56] 317080 1049866 6.62 1.25 01.09 0.12 0.11 0.43 0.34 0.21 0.16
Digg Social [69] 261489 1536577 11.75 0.59 0.54 0.12 0.12 0.42 0.39 0.1 0.09
Eu-Email Communication [59] 224832 339925 3.02 0.42 0.39 0.08 0.08 0.21 0.2 0.04 0.04
Gplus Social [64] 107614 12238285 227.45 5.93 4.64 0.46 0.41 21.08 2.34 1.09 01.07
Catster Social [53] 148826 5447464 73.21 2.43 11.02 0.25 0.23 1.1 0.9 0.25 0.2
Youtube Social [62] 1134885 2987623 5.27 0.14 0.11 0.03 0.03 0.1 0.09 0.02 0.02
Pokec Social [53] 1632803 22301964 27.32 2.74 1.78 0.05 0.04 0.14 0.1 0.07 0.05
Hollywood Collaboration [65] 1069126 56306653 105.33 2.54 1.91 0.08 0.07 0.3 0.26 0.15 0.12
Summary 1.51 1.14 0.13 0.12 0.50 0.41 0.16 0.13

39


	1 Introduction
	2 Related Work
	3 Estimation of Network Parameters
	3.1 Estimate the Network Size
	3.2 Estimate the Average degree
	3.3 Estimate the Maximum Degree
	3.4 Estimate the Minimum Degree

	4 Notation
	5 Estimate the Degree Rank
	5.1 Using Power Law Degree Distribution (PL Method)
	5.2 Using Uniform Sampling (US Method)
	5.3 Using Metropolis-Hastings Random Walk (MH Method)
	5.4 Using Random Walk (RW Method)

	6 Simulation Results
	6.1 Datasets
	6.2 Error Functions
	6.3 Results and Discussion

	7 Random Networks
	7.1 Using Poisson Degree Distribution (PD Method)
	7.2 Discussion

	8 Conclusion
	I Results on real world scale-free networks

