3,698 research outputs found

    Practical Methods for Optimizing Equipment Maintenance Strategies Using an Analytic Hierarchy Process and Prognostic Algorithms

    Get PDF
    Many large organizations report limited success using Condition Based Maintenance (CbM). This work explains some of the causes for limited success, and recommends practical methods that enable the benefits of CbM. The backbone of CbM is a Prognostics and Health Management (PHM) system. Use of PHM alone does not ensure success; it needs to be integrated into enterprise level processes and culture, and aligned with customer expectations. To integrate PHM, this work recommends a novel life cycle framework, expanding the concept of maintenance into several levels beginning with an overarching maintenance strategy and subordinate policies, tactics, and PHM analytical methods. During the design and in-service phases of the equipment’s life, an organization must prove that a maintenance policy satisfies specific safety and technical requirements, business practices, and is supported by the logistic and resourcing plan to satisfy end-user needs and expectations. These factors often compete with each other because they are designed and considered separately, and serve disparate customers. This work recommends using the Analytic Hierarchy Process (AHP) as a practical method for consolidating input from stakeholders and quantifying the most preferred maintenance policy. AHP forces simultaneous consideration of all factors, resolving conflicts in the trade-space of the decision process. When used within the recommended life cycle framework, it is a vehicle for justifying the decision to transition from generalized high-level concepts down to specific lower-level actions. This work demonstrates AHP using degradation data, prognostic algorithms, cost data, and stakeholder input to select the most preferred maintenance policy for a paint coating system. It concludes the following for this particular system: A proactive maintenance policy is most preferred, and a predictive (CbM) policy is more preferred than predeterminative (time-directed) and corrective policies. A General Path prognostic Model with Bayesian updating (GPM) provides the most accurate prediction of the Remaining Useful Life (RUL). Long periods between inspections and use of categorical variables in inspection reports severely limit the accuracy in predicting the RUL. In summary, this work recommends using the proposed life cycle model, AHP, PHM, a GPM model, and embedded sensors to improve the success of a CbM policy

    Road Maintenance through Machine Learning

    Get PDF
    This thesis explores the use of machine learning techniques for road infrastructure maintenance. We propose an innovative machine learning-based approach to improve the efficiency and effectiveness of road maintenance strategies. The focal point of this investigation is the development and implementation of a machine learning framework to enhance road quality monitoring. We use Long Short-Term Memory (LSTM) networks to accurately predict future road conditions and identify potential areas requiring maintenance before significant deterioration occurs. This predictive approach is designed to enable a shift from reactive to proactive road maintenance, optimizing the use of limited resources and improving overall road safety. The methodology of the research is structured in three phases: the creation of a prototype system for road condition data collection, the application of LSTM networks for predictive analysis, and the utilization of optimization techniques to guide effective maintenance decisions. By focusing on predictive accuracy and the strategic allocation of maintenance efforts, the study seeks to extend the lifespan of road infrastructure, reduce maintenance costs, and enhance the driving experience. This thesis is a contribution to the field of road infrastructure maintenance by introducing a predictive maintenance model that leverages advanced machine learning techniques. It aims to transform the traditional maintenance approach, providing a scalable and efficient solution to road infrastructure management challenges, with the potential to significantly influence policy and practice in infrastructure maintenance.KEYWORDS: Machine learning; Infrastructure maintenance; Proactive maintenanc

    A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance

    Full text link
    Prognostic Health Management aims to predict the Remaining Useful Life (RUL) of degrading components/systems utilizing monitoring data. These RUL predictions form the basis for optimizing maintenance planning in a Predictive Maintenance (PdM) paradigm. We here propose a metric for assessing data-driven prognostic algorithms based on their impact on downstream PdM decisions. The metric is defined in association with a decision setting and a corresponding PdM policy. We consider two typical PdM decision settings, namely component ordering and/or replacement planning, for which we investigate and improve PdM policies that are commonly utilized in the literature. All policies are evaluated via the data-driven estimation of the long-run expected maintenance cost per unit time, relying on available monitoring data from run-to-failure experiments. The policy evaluation enables the estimation of the proposed metric. The latter can further serve as an objective function for optimizing heuristic PdM policies or algorithms' hyperparameters. The effect of different PdM policies on the metric is initially investigated through a theoretical numerical example. Subsequently, we employ four data-driven prognostic algorithms on a simulated turbofan engine degradation problem, and investigate the joint effect of prognostic algorithm and PdM policy on the metric, resulting in a decision-oriented performance assessment of these algorithms

    Advancing Models and Theories for Digital Behavior Change Interventions

    Get PDF
    To be suitable for informing digital behavior change interventions, theories and models of behavior change need to capture individual variation and changes over time. The aim of this paper is to provide recommendations for development of models and theories that are informed by, and can inform, digital behavior change interventions based on discussions by international experts, including behavioral, computer, and health scientists and engineers. The proposed framework stipulates the use of a state-space representation to define when, where, for whom, and in what state for that person, an intervention will produce a targeted effect. The "state" is that of the individual based on multiple variables that define the "space" when a mechanism of action may produce the effect. A state-space representation can be used to help guide theorizing and identify crossdisciplinary methodologic strategies for improving measurement, experimental design, and analysis that can feasibly match the complexity of real-world behavior change via digital behavior change interventions

    IoMT innovations in diabetes management: Predictive models using wearable data

    Get PDF
    Diabetes Mellitus (DM) represents a metabolic disorder characterized by consistently elevated blood glucose levels due to inadequate pancreatic insulin production. Type 1 DM (DM1) constitutes the insulin-dependent manifestation from disease onset. Effective DM1 management necessitates daily blood glucose monitoring, pattern recognition, and cognitive prediction of future glycemic levels to ascertain the requisite exogenous insulin dosage. Nevertheless, this methodology may prove imprecise and perilous. The advent of groundbreaking developments in information and communication technologies (ICT), encompassing Big Data, the Internet of Medical Things (IoMT), Cloud Computing, and Machine Learning algorithms (ML), has facilitated continuous DM1 management monitoring. This investigation concentrates on IoMT-based methodologies for the unbroken observation of DM1 management, thereby enabling comprehensive characterization of diabetic individuals. Integrating machine learning techniques with wearable technology may yield dependable models for forecasting short-term blood glucose concentrations. The objective of this research is to devise precise person-specific short-term prediction models, utilizing an array of features. To accomplish this, inventive modeling strategies were employed on an extensive dataset comprising glycaemia-related biological attributes gathered from a large-scale passive monitoring initiative involving 40 DM1 patients. The models produced via the Random Forest approach can predict glucose levels within a 30-minute horizon with an average error of 18.60 mg/dL for six-hour data, and 26.21 mg/dL for a 45-minute prediction horizon. These findings have also been corroborated with data from 10 Type 2 DM patients as a proof of concept, thereby demonstrating the potential of IoMT-based methodologies for continuous DM monitoring and management.Funding for open Access charge: Universidad de Málaga / CBUA. Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Junta de Andalucía, Spain. María Campo-Valera is grateful for postdoctoral program Margarita Salas – Spanish Ministry of Universities (financed by European Union – NextGenerationEU). The authors would like to acknowledge project PID2022-137461NB-C32 financed by MCIN/AEI/10.13039/501100011033/FEDER(“Una manera de hacer Europa”), EU

    Colchicine, COVID-19 and hematological parameters: A meta-analysis

    Get PDF
    Introduction: Colchicine has the potential in reducing patient morbidity and mortality in COVID-19 infection owing to its anti-inflammatory properties. This study aims to determine the efficacy of colchicine in optimizing inflammatory hematological biomarker levels among COVID-19 patients.Methods: In accordance to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement guidelines, a systematic search was conducted using the following keywords: Colchicine, covid*, SARS-CoV-2, anti-inflammatory, trials, clinical, hematological, laboratory. Databases were searched from December 2019 until August 26, 2021: MEDLINE/PubMed, Web of Science, Cochrane, Scopus, and EMBASE. Other sources were located through ClinicalTrials.Gov, manually searching SAGE, Science Direct, Elsevier, and Google Scholar. The meta-analysis was conducted using Review Manager 5.4.Results: In total, six studies were included, of which four reported c-reactive protein (CRP) standardized mean reductions in the colchicine group (N = 165) as opposed to the control (N = 252; SMD = -0.49, p \u3c 0.001). On noting lactate dehydrogenase (LDH) values post treatment, the colchicine group (N = 204) showed significant reductions at the end of treatment compared to control (N = 290; SMD = -0.85, p \u3c 0.001). Finally, the D-dimer values in colchicine groups (N = 129) compared to control (N = 216) also documented a negative effect size (SMD = -0.9, p \u3c 0.001).Conclusion: Colchicine has efficacy in reducing inflammatory biomarkers observed in moderate-to-severe COVID-19 patients. It may be worthwhile to consider monitoring the clinical and laboratory parameters of patients in further trials to consider colchicine as a strong candidate for an adjunct to COVID-19 treatment

    Optimizing IC engine efficiency: A comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning

    Get PDF
    Transportation and power generation have historically relied upon Internal Combustion Engines (ICEs). However, because of environmental impact and inefficiency, considerable research has been devoted to improving their performance. Alternative fuels are necessary because of environmental concerns and the depletion of non-renewable fuel stocks. Biodiesel has the potential to reduce emissions and improve sustainability when compared to diesel fuel. Several researchers have examined using nanofluids to increase biodiesel performance in internal combustion engines. Due to their thermal and physical properties, nanoparticles in a host fluid improve engine combustion and efficiency. This comprehensive review examines three key areas for improving ICE efficiency: biodiesel as an alternative fuel, application of nanofluids, and artificial intelligence (AI)/machine learning (ML) integration. The integration of AI/ML in nanoparticle-infused biodiesel offers exciting possibilities for optimizing production processes, enhancing fuel properties, and improving engine performance. This article first discusses, the benefits of biodiesel concerning the environment and various difficulties associated with its usage. The review then explores the effects and characteristics of nanofluids in IC engines, aiming to know their impact on engine emissions and performance. After that, this review discusses the utilization of AI/ML techniques in enhancing the biodiesel-nanofluid combustion process. This article sheds light on the ongoing efforts to make ICE technology more environmentally friendly and energy-efficient by examining current research and emerging patterns in these fields. Finally, the review presents the challenges and future perspectives of the field, paving the way for future research and improvement

    Integrated Systems Health Management as an Enabler for Condition Based Maintenance and Autonomic Logistics

    Get PDF
    Health monitoring systems have demonstrated the ability to detect potential failures in components and predict how long until a critical failure is likely to occur. Implementing these systems on fielded structures, aircraft, or other vehicles is often a struggle to prove cost savings or operational improvements beyond improved safety. A system architecture to identify how the health monitoring systems are integrated into fielded aircraft is developed to assess cost, operations, maintenance, and logistics trade-spaces. The efficiency of a health monitoring system is examined for impacts to the operation of a squadron of cargo aircraft revealing sensitivity to and tolerance for false alarms as a key factor in total system performance. The research focuses on the impacts of system-wide changes to several key metrics: materiel availability, materiel reliability, ownership cost, and mean downtime. Changes to theses system-wide variables include: diagnostic and prognostic error, false alarm sensitivity, supply methods and timing, maintenance manning, and maintenance repair window. Potential cost savings in maintenance and logistics processes are identified as well as increases in operational availability. The result of this research is the development of a tool to conduct trade-space analyses on the effects of health monitoring techniques on system performance and operations and maintenance costs

    Models and explanatory variables in modelling failure for drinking water pipes to support asset management: a mixed literature review

    Get PDF
    There is an increasing demand to enhance infrastructure asset management within the drinking water sector. A key factor for achieving this is improving the accuracy of pipe failure prediction models. Machine learning-based models have emerged as a powerful tool in enhancing the predictive capabilities of water distribution network models. Extensive research has been conducted to explore the role of explanatory variables in optimizing model outputs. However, the underlying mechanisms of incorporating explanatory variable data into the models still need to be better understood. This review aims to expand our understanding of explanatory variables and their relationship with existing models through a comprehensive investigation of the explanatory variables employed in models over the past 15 years. The review underscores the importance of obtaining a substantial and reliable dataset directly from Water Utilities databases. Only with a sizeable dataset containing high-quality data can we better understand how all the variables interact, a crucial prerequisite before assessing the performance of pipe failure rate prediction models.EF-O acknowledges the financial support provided by the “Agencia de Gestió d’Ajust Universitaris I de Recerca” (https:// agaur. gencat. cat/ en/) through the Industrial Doctorate Plan of the Secretariat for Universities and Research of the Department of Business and Knowledge of the Government of Catalonia, under the Grant DI 093-2021. Additionally, EF-O appreciates the economic support received from the Water Utility Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua.Peer ReviewedPostprint (published version
    corecore