1,082 research outputs found

    Personality in Computational Advertising: A Benchmark

    Get PDF
    In the last decade, new ways of shopping online have increased the possibility of buying products and services more easily and faster than ever. In this new context, personality is a key determinant in the decision making of the consumer when shopping. A person’s buying choices are influenced by psychological factors like impulsiveness; indeed some consumers may be more susceptible to making impulse purchases than others. Since affective metadata are more closely related to the user’s experience than generic parameters, accurate predictions reveal important aspects of user’s attitudes, social life, including attitude of others and social identity. This work proposes a highly innovative research that uses a personality perspective to determine the unique associations among the consumer’s buying tendency and advert recommendations. In fact, the lack of a publicly available benchmark for computational advertising do not allow both the exploration of this intriguing research direction and the evaluation of recent algorithms. We present the ADS Dataset, a publicly available benchmark consisting of 300 real advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) rated by 120 unacquainted individuals, enriched with Big-Five users’ personality factors and 1,200 personal users’ pictures

    Matrix Factorization Techniques for Context-Aware Collaborative Filtering Recommender Systems: A Survey

    Get PDF
    open access articleCollaborative Filtering Recommender Systems predict user preferences for online information, products or services by learning from past user-item relationships. A predominant approach to Collaborative Filtering is Neighborhood-based, where a user-item preference rating is computed from ratings of similar items and/or users. This approach encounters data sparsity and scalability limitations as the volume of accessible information and the active users continue to grow leading to performance degradation, poor quality recommendations and inaccurate predictions. Despite these drawbacks, the problem of information overload has led to great interests in personalization techniques. The incorporation of context information and Matrix and Tensor Factorization techniques have proved to be a promising solution to some of these challenges. We conducted a focused review of literature in the areas of Context-aware Recommender Systems utilizing Matrix Factorization approaches. This survey paper presents a detailed literature review of Context-aware Recommender Systems and approaches to improving performance for large scale datasets and the impact of incorporating contextual information on the quality and accuracy of the recommendation. The results of this survey can be used as a basic reference for improving and optimizing existing Context-aware Collaborative Filtering based Recommender Systems. The main contribution of this paper is a survey of Matrix Factorization techniques for Context-aware Collaborative Filtering Recommender Systems

    Leveraging Mobile App Classification and User Context Information for Improving Recommendation Systems

    Get PDF
    Mobile apps play a significant role in current online environments where there is an overwhelming supply of information. Although mobile apps are part of our daily routine, searching and finding mobile apps is becoming a nontrivial task due to the current volume, velocity and variety of information. Therefore, app recommender systems provide users’ desired apps based on their preferences. However, current recommender systems and their underlying techniques are limited in effectively leveraging app classification schemes and context information. In this thesis, I attempt to address this gap by proposing a text analytics framework for mobile app recommendation by leveraging an app classification scheme that incorporates the needs of users as well as the complexity of the user-item-context information in mobile app usage pattern. In this recommendation framework, I adopt and empirically test an app classification scheme based on textual information about mobile apps using data from Google Play store. In addition, I demonstrate how context information such as user social media status can be matched with app classification categories using tree-based and rule-based prediction algorithms. Methodology wise, my research attempts to show the feasibility of textual data analysis in profiling apps based on app descriptions and other structured attributes, as well as explore mechanisms for matching user preferences and context information with app usage categories. Practically, the proposed text analytics framework can allow app developers reach a wider usage base through better understanding of user motivation and context information

    Modeling item--item similarities for personalized recommendations on Yahoo! front page

    Full text link
    We consider the problem of algorithmically recommending items to users on a Yahoo! front page module. Our approach is based on a novel multilevel hierarchical model that we refer to as a User Profile Model with Graphical Lasso (UPG). The UPG provides a personalized recommendation to users by simultaneously incorporating both user covariates and historical user interactions with items in a model based way. In fact, we build a per-item regression model based on a rich set of user covariates and estimate individual user affinity to items by introducing a latent random vector for each user. The vector random effects are assumed to be drawn from a prior with a precision matrix that measures residual partial associations among items. To ensure better estimates of a precision matrix in high-dimensions, the matrix elements are constrained through a Lasso penalty. Our model is fitted through a penalized-quasi likelihood procedure coupled with a scalable EM algorithm. We employ several computational strategies like multi-threading, conjugate gradients and heavily exploit problem structure to scale our computations in the E-step. For the M-step we take recourse to a scalable variant of the Graphical Lasso algorithm for covariance selection. Through extensive experiments on a new data set obtained from Yahoo! front page and a benchmark data set from a movie recommender application, we show that our UPG model significantly improves performance compared to several state-of-the-art methods in the literature, especially those based on a bilinear random effects model (BIRE). In particular, we show that the gains of UPG are significant compared to BIRE when the number of users is large and the number of items to select from is small. For large item sets and relatively small user sets the results of UPG and BIRE are comparable. The UPG leads to faster model building and produces outputs which are interpretable.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS475 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Discovering Valuable Items from Massive Data

    Full text link
    Suppose there is a large collection of items, each with an associated cost and an inherent utility that is revealed only once we commit to selecting it. Given a budget on the cumulative cost of the selected items, how can we pick a subset of maximal value? This task generalizes several important problems such as multi-arm bandits, active search and the knapsack problem. We present an algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween items, expressed as a kernel function. GP-Select uses Gaussian process prediction to balance exploration (estimating the unknown value of items) and exploitation (selecting items of high value). We extend GP-Select to be able to discover sets that simultaneously have high utility and are diverse. Our preference for diversity can be specified as an arbitrary monotone submodular function that quantifies the diminishing returns obtained when selecting similar items. Furthermore, we exploit the structure of the model updates to achieve an order of magnitude (up to 40X) speedup in our experiments without resorting to approximations. We provide strong guarantees on the performance of GP-Select and apply it to three real-world case studies of industrial relevance: (1) Refreshing a repository of prices in a Global Distribution System for the travel industry, (2) Identifying diverse, binding-affine peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale recommender system by recommending items to users

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Probabilistic Personalized Recommendation Models For Heterogeneous Social Data

    Get PDF
    Content recommendation has risen to a new dimension with the advent of platforms like Twitter, Facebook, FriendFeed, Dailybooth, and Instagram. Although this uproar of data has provided us with a goldmine of real-world information, the problem of information overload has become a major barrier in developing predictive models. Therefore, the objective of this The- sis is to propose various recommendation, prediction and information retrieval models that are capable of leveraging such vast heterogeneous content. More specifically, this Thesis focuses on proposing models based on probabilistic generative frameworks for the following tasks: (a) recommending backers and projects in Kickstarter crowdfunding domain and (b) point of interest recommendation in Foursquare. Through comprehensive set of experiments over a variety of datasets, we show that our models are capable of providing practically useful results for recommendation and information retrieval tasks
    • 

    corecore