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CHAPTER 1: INTRODUCTION

Content recommendation has risen to a new dimension with the advent of social media plat-

forms such as Twitter, Facebook, FriendFeed, Dailybooth, Instagram, etc. Although, this uproar

of data provides us with a gold-mine of real-world information, the conventional recommenda-

tion models based on collaborative or content-based techniques are not capable of capturing the

complex heterogeneous relationship provided by these data sources. The content-based recom-

mendation techniques work on a non-relational setting where the association between the entities

are ignored. In other words, it assumes that users do not influence each other. Contrary to this

notion, collaborative filtering techniques model the relationship between the entities; however,

it ignores the content-based features. Therefore, designing a model that is independently based

on either collaborative or content-based systems is not sufficient to create a robust recommender

framework. For example, consider a scenario of recommending an item to a user in Amazon. To

understand the likes and dislikes of this user, one could use his purchase history to obtain features

such as frequently purchased categories, spending pattern, wish lists etc. However, it is important

to note that the behavior of this user is not restricted to a single platform (in this case Amazon); in-

stead, the digital footprints of this user can manifest in the form of social network activities, blogs,

web searches and even purchases made in other e-commerce websites. These activities provide

us with a plethora of valuable information. For example, information from the user’s Facebook

profile can provide insights about the nature of his social circle and the type of pages the user likes

and follows. Profile information from Twitter can provide insights on follower, friends and the

content information about his Tweets and geo-location information. In addition to the user-based

attributes, external domains also provide various product-based attributes such as promotional ac-

tivities about the product, attractive product images from Instagram etc. With the availability of

such a wide variety of information, it is essential to address the question “how to effectively utilize

such high dimensional distribution of attributes?”. The solution to this question lies in addressing

the following challenges associated with recommendation systems and the heterogeneity of data.
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(1) Sparsity in item selection (explicit feedback or implicit feedback): most users buy few

items from a repository containing several thousand items, therefore distribution of items

per-user is extremely sparse. In the recommendation literature this problem is widely known

as the cold start problem.

(2) Difficulty in clustering similar users: some users have unique tastes and varied buying pat-

terns. Such users form a distribution of their own with very little similarity with other users.

Therefore, forcefully merging these users with other users will degrade the performance of

the recommendation model. This phenomenon is widely known as the grey sheep problem.

(3) Overcoming the curse of dimensionality to create scalable recommendation frame-

work: having a huge feature space is not always profitable since it becomes extremely dif-

ficult to choose the right set of features that can capture the behavior of users. Additionally,

the large feature dimension also affects the scalability of the recommendation models.

(4) Optimizing for Bias and Variance: with a large heterogeneous feature space it is very

much likely for a model to under- or over-fit. Therefore, it is extremely important to create

models that have a good balance between bias and variances.

In this thesis, we show various ways in which we can create hybrid recommendation sys-

tems. From simple recommendation models involving heuristic combinations of collaborative and

content based techniques to more complex systems involving latent probabilistic frameworks that

jointly models user’s behavior for greater personalization.

1.1 Heterogeneity of Data

We begin by explaining the intuition behind data heterogeneity in Figure 1.1, which shows

the different layers of features that affect a user’s interest in a particular item. In this example,

we have chosen the item to be the popular movie Moana by Disney pictures. This item can vary

from physical products such as books, electronics or even digital recommendations such as push

notifications in mobile phones and point of interest recommendation. In this Figure, we can see

that the user’s interest to pick a movie is influenced by the following attribute layers:
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Figure 1.1: Impact of project, personal and social network based features on Kickstarter users

(1) The social network layer: users are socially linked through various social media sites,

which in-turn influences their purchase behavior. For instance, people discuss about movies

in Twitter, follow celebrities, retweet and like Twitter posts. Some companies also have

dedicated Facebook pages to promote their product and keep users informed about the latest

developments.

(2) The item layer: this layer comprises the content quality and the temporal trend of the movie.

The temporal trend can be determined using popularity factors of the item such as box office

collection, promotional activities and reviews.

(3) The personal layer: This layer is a combination of the topical preference of the user, the

user’s preference over the cast members of the movie, and the influence of geo-location.

The geo-location of users have a strong influence over the selection of items. Nonetheless,

this impact is not uniform for all types of items. For example, products such as high end

DSLR cameras have a strong demand in USA, UK, France and Germany, while consumer

grade cameras are preferred in Asian countries. Similarly, action-based movies such as the

Transformers series are highly popular in China, while drama-based movies such as La La

land and Moonlight have a mediocre response.
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From the above explanation, we can see that in web data, features are not confined to a single

platform. Therefore, to build a robust recommendation model for a specific domain, it is extremely

important to incorporate the heterogeneous linkage between other external domains.

1.2 Contributions

The key contributions of our thesis are summarized in the following topics. In the upcoming

sections, each of these topics will be explained in detail.

Recommending Twitter Lists: Lists in social networks have become popular tools to organize

content. In paper [1], we propose a novel framework for recommending lists to users by combin-

ing several features that jointly capture their personal interests. Our contribution is of two-fold.

First, we develop a ListRec model that leverages the dynamically varying tweet content, the

network of twitterers and the popularity of lists to collectively model the users’ preference towards

social lists. Second, we use the topical interests of users, and the list network structure to develop a

novel network-based model called the LIST-PAGERANK. We use this model to recommend auxil-

iary lists that are more popular than the lists that are currently subscribed by the users. We evaluate

our ListRec model using the Twitter dataset consisting of 2988 direct list subscriptions. Using

automatic evaluation technique, we compare the performance of the ListRec model with dif-

ferent baseline methods and other competing approaches and show that our model delivers better

precision in terms of the prediction of the subscribed lists of the twitterers. Furthermore, we also

demonstrate the importance of combining different weighting schemes and their effect on captur-

ing users’ interest towards Twitter lists. To evaluate the LIST-PAGERANK model, we employ a

user-study based evaluation to show that the model is effective in recommending auxiliary lists that

are more authoritative than the lists subscribed by the users.

Analysis of Kickstarter Crowdfunding Domain: Crowdfunding has gained widespread popu-

larity in recent years. By funding entrepreneurs with creative minds, it is gradually taking over

the role of venture capitalists who provide the much needed seed capital to jump start business

ventures. Despite the huge success of the crowdfunding platforms, not every project is success-

ful in reaching its funding goal. Therefore, in [2] we answer the following question “what set



5

of features determine a project’s success?”. We begin by studying the dynamics of Kickstarter, a

popular reward-based crowdfunding platform, and the impact of social networks on this platform.

Contrary to previous studies, our analysis is not restricted to project-based features alone; instead,

we expand the features into four different categories: temporal traits, personal traits, geo-location

traits, and network traits. Using a comprehensive dataset of 18K projects and 116K tweets, we

provide several unique insights about these features and their effects on the success of Kickstarter

projects. Based on these insights, we build a supervised learning framework to learn a model that

can recommend a set of investors to Kickstarter projects. By utilizing features from the first three

days of project duration alone, we show that our results are significantly better than the previous

studies.

Group Recommendation Models for Crowdfunding: As an extension to the analysis on Crowd-

funding platforms, our recent work [3] proposes a probabilistic recommendation model, called

CrowdRec, that recommends Kickstarter projects to a group of investors. Being a highly heteroge-

neous platform, Kickstarter is fueled by a dynamic community of people who constantly interact

with each other before investing in projects. Therefore, the decision to invest in a project depends

not only on the preference of individuals, but also on the influence of groups that a person be-

longs and the on-going status of the projects. The proposed CrowdRec seamlessly incorporates

the on-going status of projects, the personal preference of individual members, and the collective

preference of the group . Using a comprehensive dataset of over 40K crowdfunding groups and 5K

projects, we show that our model is effective in recommending projects to groups of Kickstarter

users.

Trip Recommendation in Location-based Social Networks (LBSNS): The pervasive growth of

location-based services such as Foursquare and Yelp has enabled researchers to incorporate better

personalization into recommendation models by leveraging the geo-temporal breadcrumbs left by

a plethora of travelers. In our research [4], we explore Travel path recommendation, which is one

of the applications of intelligent urban navigation that aims in recommending sequence of point of

interest (POIs) to tourists. Currently, travelers rely on a tedious and time-consuming process of
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searching the web, browsing through websites such as Trip Advisor, and reading travel blogs to

compile an itinerary. On the other hand, people who do not plan ahead of their trip find it extremely

difficult to do this in real-time since there are no automated systems that can provide personalized

itinerary for travelers. To tackle this problem, we propose a tour recommendation model that

uses a probabilistic generative framework to incorporate user’s categorical preference, influence

from their social circle, the dynamic travel transitions (or patterns) and the popularity of venues

to recommend sequence of POIs for tourists. Through comprehensive experiments over a rich

dataset of travel patterns from Foursquare, we show that our model is capable of outperforming the

state-of-the-art probabilistic tour recommendation model by providing contextual and meaningful

recommendation for travelers.

1.3 Organization

The rest of this thesis is organized as follows. We begin by surveying the related work on

recommendation algorithms in Chapter 2 and delineate our work on ranking tweet content and

recommending Twitter List using regression and PageRank models. Chapter 4 will explain the

characteristics of the Kickstarter domain and provide various interesting outcomes from the fea-

ture analysis of this domain. This chapter will also illustrate a simple hybrid recommendation

model based on gradient boosted classifier to recommend backers to Kickstarter projects. The

concept of group recommendation will be introduced to the readers in Chapter 5, where we will

outline the challenges associated with this form of recommendation and propose our model called

CrowdRec and its generative process. Finally, in Chapter 6 we will illustrate the notion of Travel

recommendation by providing some statistical insights about the behavior of travelers and propose

a social sequential tour recommendation model for travelers.
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CHAPTER 2: BACKGROUND ON RECOMMENDATION MODELS

The main objective of all recommender systems is to obtain a utility function that estimates

the preference of a user towards an item. Typically a recommendation system can also be viewed

as a ranking engine, which presents users with a summary list of items in some order. The user

then interacts with the ranked list to receive more details about the item. Essentially, recommender

systems can be divided into two main categories: collaborative filtering methods and content-

based methods. Collaborative filtering-based techniques utilize the action of users selecting items

(i.e. rating, like etc) as input to obtain the similarity between users (or items). Content-based

approaches on the other hand, utilize the content information of the items to provide recommenda-

tions. This information might include user’s topical interest, item description, age, gender, etc. We

begin this chapter by introducing the fundamentals of content and collaborative filtering (CF) tech-

niques, where we explain various model- and memory-based methods. In the subsequent sections,

we will demonstrate advanced recommender techniques using latent factors models involving ma-

trix factorization and probabilistic generative models. In Section,3.3, we delineate our work on

developing hybrid recommendation models using ridge-regression and topic-specific PageRank.

More specialized models such as Group recommendation, and tour recommendation models will

be described in the chapters dedicated for such models.

2.1 Content Based Recommendation

Content-based recommendation system learns the user behavior exclusively from the features

of the objects rated by the user. These features can be in the form textual representation of the ob-

ject or other meta-data information that exhibits the characteristics of the object. Irrespective of the

characteristics of the object, the first step in building a recommender framework is to pre-process

the data to extract these features. This completely depends on whether the data is structured or un-

structured. For example, if we are building a recommendation model for suggesting News feeds,

the feature extraction stage would involve extracting keywords, n-grams, concepts, sentiments etc.

Once the information is extracted, we can represent these items by a vector of attributes. For text-

based attributes, the feature space is usually represented as a vector of term weights, where each
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weight indicates the degree of association between the item and the term. There are numerous

ways to calculate these terms weights, but the most widely used techniques involve the follow-

ing concepts: (a) Term-Frequency, which is based on the observation that multiple occurrences

of a term in a document are not less relevant than single occurrences and (b) Inverse Document

Frequency, which is based on the observation that frequently used terms are less relevant (or im-

portant) than rare terms. In paper [5], the authors propose a news recommendation model called

News@hand that makes use of Semantic Web technologies to represent item features. The at-

tributes of the news articles are represented as TF-IDF scores in the space of concepts defined in

the ontologies. Textual content of items can also take the form of social tags which are keywords

generated by the users. For instance, in paper [6], the authors represent the user profile as a tag

vector, where the weights indicate the number of times a tag has been assigned to a document; [7]

on the other hand, adopt a more sophisticated approach by matching the user-tag co-occurrence

using WORDNET [8]. Besides these classic techniques, plethora of works exists on learning the

term weights from the item’s textual content [9–13]. In a recent work Gu et. al. [14] propose a

unified method that can simultaneously learn the weights of multiple content matching signals and

global term weights. In addition to content based features, other meta-data such as likes, ratings

and comments can also be extracted to enhance the feature space. For example, the authors of

paper [15] extract publisher, date, ISBN, price, etc., to recommend books for Amazon users using

a Naive Bayes classification model. Papers [16, 17] target movie recommendation by learning the

synopses extracted from the Internet Movie Database (IMDB). The synopsis of the movies are

represented by feature vectors that contain weighting for word with noun tags and noun phrases,

where the phrases are weighted according to its importance in the synopsis. Similar to this idea,

paper [17] proposes a model called Movies2GO that learns user preferences from the synopsis of

movies rated by the user; however, unlike conventional method of ranking items, this paper uses

a novel voting scheme that allows multiple individuals with conflicting preferences to arrive at an

acceptable compromise. Content-based systems also adopt the concept of relevance feedback to
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refine the recommendation model to incrementally refine queries based on previous search results

[18–20].

Recent works on content-based systems include the extracting of stylistic features such as light-

ing, color, and motion for video recommendations [21] and developing recommendation models

for spoken documents[22]. In [22], the authors develop recommendations for internet audio (i.e.

spoken document) by extracting content-based features to characterize non-linguistic aspects of the

audio such as speaker, language and gender. Paper [23] on the other hand, combines search and

recommendation system that refines the learners from the re-ranking results to enhance the recom-

mendation performance and [24] study the impact of content uniqueness for group recommenda-

tion systems. For a comprehensive summary of collaborative filtering techniques, the readers are

referred to survey articles [25, 26].

2.2 Recommendation using Collaborative Filtering
2.2.1 Memory-Based Techniques

Although content-based techniques are extremely popular and performs reasonably well even

with the lack of user ratings, they are limited by the features that are explicitly associated with

the objects that they recommend. For example, consider the scenario of recommending a movie

I to two users U1 and U2. Let us assume that the movie is characterized by a set of attributes A.

These attributes can be the textual contents of the movies or it’s meta-data information such as

plot, description, names of the cast members etc. When recommending, the content-based system

assumes that the attribute values of the user U1 is independent from the attribute values of U2,

i.e. relationships of the form U1 × U2 are completely ignored. Collaborative systems (in short

CF) on the other hand, rely only on user ratings and can be used to recommend items without

any descriptive data. The greatest strength of CF algorithms is that it captures the correlation

between the users to make robust recommendations that are more accurate than content-based

ones [27]. As explained by the survey [28], this allows the CF algorithms to perform out-of-the

box recommendations. For instance, it is possible for a person who likes pop music to also enjoy

music from other genres such as classical, jazz, country etc. A content-based recommender system
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trained on the features pop albums will not be able to suggest jazz or classical albums since there

will be very little overlap of features (i.e., performers, instruments, mood, tempo etc.) between

two different genres of music.

In Collaborative filtering, the training dataset is represented as a U×I matrix with U represent-

ing the number of users and I representing the items. The values of this matrix can be the rating

provided by the user to the items or implicit binary values indicating the binary actions such as

likes and clicks. Memory-based CF algorithms creates a prediction function by utilizing the entire

training sample of the user-item database. Usually, the prediction function measures the similarity

between the users using some distance measure. The popular ones include neighborhood-based

CF algorithm [29], which adopts the following steps to calculate the user-user similarity: (1) cal-

culate similarity weight wi,j between two users (or items) i and j, which indicates the correlation

between two users (2) find the k most similar users (i.e. neighbors) after computing the similar-

ities and (3) aggregate the weighted similarity scores of the neighbors to rank the unseen items

and recommend the top-N items to the user. One of the earliest and the most popular research on

memory-based CF techniques can be seen from paper [30] that proposes a recommendation system

for the retail bookseller Barnes and Noble and [31] that proposes a recommendation system for the

e-commerce website Amazon.com.

2.2.2 Model-Based Techniques

Although simple to implement and interpret, memory-based CF techniques come with several

limitations. First, similarity between two users are based directly on the commonly rated/selected

items and therefore these methods become unreliable when the data is sparse. Second, memory-

based techniques require the entire data to calculate the user similarity, which makes these algo-

rithms extremely slow, thus hampering the scalability. To overcome this issue, researchers pro-

posed models that work by factorizing the user-item matrix to a lower dimension called latent-

factors. The preference of users towards items is then calculated based on this latent dimension

to perform recommendation. These methods can also be viewed as dimensionality reduction tech-

niques that utilizes algorithms such as Singular Value Decomposition [32], Principal Component



11

Analysis (PCA) [33]. Nonetheless, from a recommendation context, the most popular latent-factor

models span from two areas of research namely: (a) Matrix-factorization (MF) [34, 35] and

(b) Probabilistic latent factor (PMF) models. First, we briefly explain the rationale behind MF

techniques and then provide details about PMF models, which is the main focus of this thesis.

Matrix Factorization for CF: the key assumption made by any form of latent-factor model is that

a large user-item matrix U × I (usually I >> U ) can be reduced to a low-dimensional latent space

of two individual components θu ∈ RK and φi ∈ RK of users and items respectively, where where

K << I . The rating of a user u towards an item i is then estimated using the following function:

r̂ui = θTuφi (2.1)

In the above equation r̂ui is the estimated rating of an item i by the user u, this equation is also

termed as the hypothesis function. The classic paper on MF for recommendation was proposed by

Korean et. al. [34]. In this paper, the cost function between the estimated and the actual rating is

formulated as follows:

C =
∑

u,i∈observed ratings

(rui − θTuφi) + λ(
∑
u

‖θu‖2 +
∑
i

‖φi‖2) (2.2)

where rui is actual set of observed rating (i.e. ground truth), θT · φ is the estimated rating, and

λ is the regularization parameter that penalizes the L2-norms ‖θu‖2 ‖φi‖2 in-order to avoid over-

fitting. The objective is to minimize the cost function w.r.t to the parameters φ and θ, which is

performed using a technique called alternating least squares (ALS). The steps to perform ALS is

briefly described as follows:

• Fix the user parameter θ and solve the quadratic function for item parameter φji .

• Once item parameters are estimated, use this updated set of item factors to estimate user

parameter θju.

• Repeat step 1 and 2 until convergence.

Although equation 2.2 can be solved using techniques such as stochastic gradient descent

(SGD), ALS is a better algorithm due to the following reasons. First, by holding the user or
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item parameter constant, equation 2.2 essentially becomes a convex function and hence the mini-

mization should converge at some point. Second, unlike SGD, by holding θ fixed and estimating

φ (or vise versa), ALS allows faster convergence since the algorithm finds the absolute minimum

at each step and does not take small steps in the downward direction of the slope. The formulation

of the cost function in equation 2.2 can also be extended to incorporate user and item biases to

capture the uncertainty in the rating system. For example, consider two users A and B who like

an item I. In a rating system that allows users to rate items on a scale of 1-5, let us assume that

user A gives a rating of 5 for the item, while B provides a rating of 3. This does not mean, user

B dislikes the item. It simply means user B is more critical than A. On the contrary, it could also

mean that user A is more lenient in rating. Therefore, in-order to accommodate such user biases,

we can reformulate the cost function as follows:

C =
∑

u,i∈observed ratings

(rui − θTuφi) + λ(
∑
u

(‖θu‖2 + b2u) +
∑
i

(‖φi‖2 + c2i )) (2.3)

In addition to the above formulation, another popular variant of the MF-based recommender

system modifies the hypothesis function for implicit feedback data. Not all recommender systems

are rating-based; in fact, most of the web-data is associated with implicit feedback where users

expresse their preference towards items using hidden actions such as clicks, page scrolls, likes and

wish lists. In other words, a user need not exclusively buy an item or rate an item to express his/her

interest. To model such implicit feedback Hu et al., [35] introduce a boolean factor pui ∼ θTuφi,

where pui is a binary value that is determined based on the level of interaction between the user

and the item. For instance, pu,i can be 1 if the user likes or adds an item to his wish list. The cost

function for this implicit MF formulation is defined as follows:

Cimp =
∑

u,i∈observed ratings

δui(rui − θTuφi) + λ(
∑
u

‖θu‖2 +
∑
i

‖φi‖2) (2.4)

where δui := 1 + λrui is the confidence in pui, which penalizes the cost function for incorrect

prediction. So far, we provided an overview of the matrix factorization techniques for recommen-
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dation. For a detailed understanding of MF algorithms, readers can refer the recent works such as

[36–38] and [39].

Probabilistic Matrix Factorization: As explained earlier, the primary focus of this thesis is

to tackle the challenges of recommendation systems from the perspective of probabilistic latent

models. Therefore, we begin by introducing one of the earliest works on generative latent fac-

tor models for recommendation [40]. Although this model was originally projected as a variant

of matrix factorization technique, the formulation is much closer to a class of models known as

probabilistic graphical models (PGMs). Probabilistic graphical model is a vast area of research;

nonetheless, our research is confined to a sub-class of PGMs known as Generative models for Di-

rected Acyclic Graphs. For a detailed understanding of probabilistic graphical models the readers

are suggested to survey the book by Koller et al. [41]. The generative model of PMF is shown

in Figure 2.1, where the nodes represent random variables, V represents an item, U represents a

user and the plate notations imply a set of M items and N users. Relationship between the random

variables are represented as directed edges. The generative process is explained as follows:

• For each user u, draw a user latent factor: θu ∼ N (0, λ−1θ IK)

• For each item i, draw item latent factor: βi ∼ N (0, λ−1φ )IK)

• For each user-item pair (u, i), draw a rating (or feedback): rui ∼ N (θTuφi, c
−1
ui )

Parameters θ and φ are estimated using a maximum a posteriori (MAP) estimate. Similar

to the above formulation, cui represents the confidence on the response rui. Our research work

essentially focuses on such generative models, where an action is explained using a set of random

variables connected via directed edges. More specifically, we focus on a class of generative models

called the topic models. We begin by explaining a primitive topic model called probabilistic latent

semantic analysis (PLSA) for recommendation. We then gradually add more complexity to this

model to explain the popular document-topic model called latent dirichlet allocation (LDA) in the

upcoming sections.
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Figure 2.1: Graphical Structure of the Probabilistic Matrix Factorization

2.2.3 Probabilistic Latent Models

In this section, we will be discussion two important models (a) Probabilistic Latent Semantic

Analysis and (b) Latent Dirichlet Allocation. These two models will serve as the foundation for

our work in the later chapters.

Probabilistic Latent Semantic Analysis (PLSA) for Recommendation: The probabilistic latent

semantic analysis is a generative model, which laid the foundation for the research on topic models.

Although there are several variations of the PLSA algorithm, the very first model was proposed by

Hoffman et al., [42] for document and word clustering. The authors extended the same framework

for collaborative filtering in paper [43]. The PLSA framework is also called as the aspect model

and the traditional way of estimating the parameters is to use the expectation maximization (EM)

algorithm. The graphical structure of PLSA is shown in Figure 2.2, where U denotes the set of

users {uj}Uj=1 and I denotes the set of items {im}Im=1. The variable Z is basically the latent factor

of the model. With the graphical structure and the notations defined, the generative process of

PLSA can be explained as follows:

• User u chooses a topic of interest z.
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Figure 2.2: Graphical Model of PLSA: Variant1
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P(Z)

P(I|Z)

Figure 2.3: Graphical Model of PLSA: Variant2

• Based on this z, the user then selects an item i.

The central assumption of the model is that users choose items based on some hidden interests z

and the goal is to infer these hidden interests. The generative model shown in Figure 2.3 is similar

to 2.2; except, the graphical model is re-structured to fit the d-separation property which states that

once the latent interest of the user z is known, the selection of item i is independent of the user u.

The central inferential problem of PLSA is to estimate the posterior probability given by:

p(z|u, i) =
p(z, u, i)

p(u, i)

=
p(u)p(z|u)p(i|z)∑
Z

p(u)p(z|u)p(i|z)
(2.5)

We can ignore the normalization factor in the above equation and proceed by finding the log-

likelihood of the numerator. The probability of a user u choosing an item i can be obtained by

marginalizing over the variable z as follows:
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p(u, i) =
∑
Z

p(z, u, i)

=
∑
Z

p(u)p(z|u)p(i|z) (2.6)

Since we have U users and I items, the complete likelihood for the dataset is defined as follows:

D =
∏
U

∏
I

p(u, i)n(u,i) (2.7)

where n(u, i) is the number of times a user u picked an item i. Taking the log of the likelihood

function we obtain the following equation:

L =
∑
U

∑
I

n(u, i)log(u, i) (2.8a)

=
∑
U

∑
I

n(u, i) log [
∑
Z

p(u)p(z|u)p(i|z)] (2.8b)

Since, in our case, variable z is latent, explicitly finding the maximum likelihood estimates of the

parameters is hard. Therefore, we maximize the expected value of the log-likelihood as follows:

E(L) =
∑
U

∑
I

n(u, i)
∑
Z

log p(u)p(z|u)p(i|z)

=
∑
U

∑
I

n(u, i)Q(z)
∑
Z

log p(u) + log p(z|u) + log p(i|z) (2.9)

where the Q-function Q(z) is generally set to the posterior p(z|u, i). In the E-step we obtain this

posterior probability and for the M-step we maximize the modified version of the log-likelihood

that is obtained by introducing lagrange multipliers as follows:

H = E(L) + α[1−
∑
U

p(u)] + β
∑
U

[1−
∑
Z

p(u|z)] + γ
∑
I

[1−
∑
Z

p(i|z)] (2.10)

The Lagrange Multipliers α, β, and γ can be obtained by taking the partial derivatives of the

equation (2.10) w.r.t p(u),p(u|z), and p(i|z). When simplified the parameters p(u),p(u|z), and
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p(i|z) equates to the following expressions:

p(u) =

∑
I

∑
Z

n(u, i)p(z|i, u)∑
U

∑
I

∑
Z

n(u, i)p(z|i, u)
(2.11a)

p(i|z) =

∑
U n(u, i)p(z|i, u)∑

I

∑
U n(u, i)p(z|i, u)

(2.11b)

p(z|u) =

∑
I n(u, i)p(z|i, u)∑

Z

∑
I n(u, i)p(z|i, u)

(2.11c)

Using the above set of equation, the EM algorithm is defined as follows:

1. Initialization: Begin by randomly initializing the parameters p(u), p(u|z), and p(i|z).

2. E step: Estimate the posterior p(z|u, i) using Equation 2.5.

3. M step: Use the newly calculated posterior from Step 2 to recalculate the parameters using

expressions 2.11(a-c).

4. Repeat Steps 2 and 3 until convergence.

Latent Dirichlet Allocation (LDA): A Recommendation Perspective: Proposed by Blei et al.,

[44], LDA is the most popular topic model for document and word clustering. Although the gen-

erative model of the document-topic generation is very similar to PLSA, LDA introduces Dirichlet

priors that smooths the topic mixture in individual documents and the word distribution, thus al-

leviating the overfitting problem of PLSA. In this section, we provide the details of the LDA and

derive the collapsed Gibbs Sampling process to infer the parameters. Instead of explaining LDA

from a document-word perspective, we explain it from a recommendation perspective where docu-

ments are users and words are the items selected by these users. To explain the generative process,

we provide a toy example in Figure 2.4, which illustrates the decision making process of a user u to

watch a movie v. Since this is just an illustrative example, we have just four movies and genres (or

topics); in reality, the topic and movie space can be extremely large. The following steps delineate

the generative process of the model:

• Each user u has multiple topical interests (in our example, genres). Therefore, he can choose

items (in our example, movies) v from various genres. In Figure 2.4, the user u is interested



18

in comedy, horror, drama and action genres. The user’s interest over the set of genres follow

a dirichlet distribution θ ∼ Dirichlet(α) with hyper-parameter α.

• From distribution of genres θ, the user then chooses a single genre z using a multinomial

over the distribution θu.

• After selecting a genre z, u then picks a movie v from the genre-movie distribution ma-

trix φ ∼ Dirichlet(η) with hyper-parameter η. The movie is drawn using a multinomial

distribution over the distribution φ.

However, in reality, we do not observe the user’s distribution of interest θ, which implies we

do not observe z, which in-turn means that we do not observe the movie-topic distribution either.

The only observed variables are the users and the items. Therefore, the central inferential problem

of LDA is to estimate θ and φ from the observed variables N (movies) and U (users).

Figure 2.4: Plate notation of the LDA based recommender model

The formal representation of the LDA’s generative framework is depicted in Figure 2.5. The

posterior for the model is defined as follows:

p(θ, φ, z|w, α, β) =
p(θ, φ, z, w|α, β)

p(θ, φ, z, w|α, β)
(2.12a)

=
p(θ, φ, z, w|α, β)

p(w|α, β)
(2.12b)
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|U|

|Z|

Figure 2.5: Plate notation of LDA based recommender model

Based on the generative model, the likelihood can be expanded into the following expression:

p(θ, φ, z, i|α, β) = p(i|z, φ)p(z|θ)p(θ|α)p(φ|η) (2.13a)

More precisely, for a single user the likelihood is defined by:

p(θu, φ, zu, vu|α, β) =
Nu∏
n=1

p(v|φzu,n)p(zu,n|θu)p(θu|α)p(φ|η) (2.14a)

where N is the number of movies and Nu denotes the movies chosen by the user u. Unfortu-

nately, the denominator (i.e. the marginalizing constant) of the equation 2.12a is intractable to

compute. Therefore, we use an approximate inference technique called Gibbs sampling to obtain

the posterior of LDA. The following paragraph describes derivation of Gibbs sampler for LDA.

Collapsed Gibbs Sampling: It is important to note that although we need to obtain the complete

likelihood p(θ, φ, z|w, α, β) in the equation 2.12a, this expression can be collapsed by excluding

θ and φ. This is because, once we infer zi, which is the topic assignment for each item {vi}Ni=1,

it is sufficient to calculate the user-topic distribution θ and item-topic distribution φ. Hence, the

collapsed posterior of the Gibbs sampler is written as follows:

p(z|v, α, β) =
p(z, v|α, β)

p(w|α, β)
(2.15)

According to the Gibbs sampling procedure, when sampling a topic z for an item v, we assume

that all other topic assignments for items other than v are known. Applying this rule to equation
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2.15, we obtain the following posterior:

p(zi|Z¬i, α, β, v,N) =
p(zi, Z

¬i, v, N |α, β)

p(z¬i, v, N |α, β)
(2.16)

∝ p(Z,N |α, β) (2.17)

where, Z¬i indicates the set of topic assignments for all movies expect movie vi. Now, using the

graphical model, the numerator can be expanded as follows:

p(Z,N |α, β) = p(N |Z, β)︸ ︷︷ ︸
(A)

· p(Z|α)︸ ︷︷ ︸
(B)

(2.18)

Part (A) of the above expression is expanded into the following components:

p(V |Z, β) =

∫
p(V |Z, φ) · p(φ|β)dφ (2.19)

In equation (2.19), p(φ|β) follows a dirichlet distribution and p(V |Z, φ) follows a multinomial

distribution defined by:

p(φ|β) =
K∏
k=1

1

∆(β)

N∏
v=1

φβv−1k,v (2.20a)

p(V |Z, φ) =
K∏
k=1

N∏
v=1

φ
ψk,v

k,v (2.20b)

here ψkv is a count matrix indicating the number of times item v is assigned to the topic k, and

∆(β) is the gamma function defined as follows:

∆(β) =

∏|β|
i=1 Γ(βi)

Γ(
∑βi

i=1 βi)
(2.21)
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Substituting equations (2.20a) and (2.20b) in eqation (2.19) we obtain the following expression:

p(V |Z, β) =

∫ K∏
k=1

1

∆(β)

N∏
v=1

φβv−1k,v

K∏
k=1

N∏
v=1

φ
ψk,v

k,v dφk (2.22a)

=
K∏
k=1

1

∆(β)

∫ V∏
v=1

φ
ψk,v+βv−1
k,v dφk (2.22b)

=
∆(ψk + β)

∆(β)
(2.22c)

Where equation (2.22c) is obtained using the property
∫ ∏|α|

v=1 p
xv+αv−1
v dp = ∆(x+ α). Deriving

part (B) of equation (2.18) in the similar fashion yields the following expression:

p(Z|α) =
∆(Ωu + α)

∆(α)
(2.23)

where Ωu is the count indicating the number of times a user u is assigned to topic z. Finally, we

can obtain p(Z,N |α, β) using expressions (2.22c) and (2.23) as follows:

p(Z,N |α, β) =
K∏
k=1

∆(ψk + β)

∆(β)
·
U∏
u=1

∆(Ωu + α)

∆(α)
(2.24)

As mentioned earlier, since the posterior cannot be estimated directly, we use the following Gibbs

update rule:

p(zi|N,Z¬i, α, β) =
p(Z,N |α, β)

p(Z¬i, N¬i|α, β)
(2.25)

The numerator of the above expression was derived in equation (2.24). The denominator of this

expression is defined by:

p(Z¬i, N¬i|α, β) =
K∏
k=1

∆(ψ¬ik + β)

∆(β)
·
U∏
u=1

∆(Ω¬iu + α)

∆(α)
(2.26)
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Substituting equations (2.23) and (2.26) we can obtain equation (2.25) as follows:

p(zi = k|Z¬i, N, v, α, β) =
∆(ψk + β)

∆(ψ¬ik + β)
·

∆(Ωu + α)

∆(Ω¬iu + α)

=

Γ(ψk,v + βv)

Γ(
∑N

v=1 ψk,v + βv)
·

Γ(Ωd,k + αk)

Γ(
∑K

k=1 Ωu,k + αk)

Γ(ψ¬ik,v + βv)

Γ(
∑N

v=1 ψ
¬i
k,v + βv)

·
Γ(Ω¬iu,k + αk)

Γ(
∑K

k=1 Ω¬iu,k + αk)

(2.27a)

Therefore, given a user u and a item i, the probability of assigning a topic z to the tuple (u, i)

is then obtained by simplifying the Gamma functions in expression (2.27a). The final posterior

expression is defined by:

p(zi = k|Z¬i, v, N¬i, α, β) = (Ω¬iu,z + αz) ·
ψ¬iz,v + βv∑V
v=1 ψ

¬i
z,v + βv

(2.28)

It should be noted that, in this draft, we donot furnish all the nity grity details of the Gibbs

sampling derivation of LDA. For complete details about the derivation, readers are suggested to

survey the draft on parameter estimation for text analysis [45].

2.3 Summary

In this chapter, we provided a complete overview of the popular techniques in the field of

Recommender systems. First, we furnished the research works on content-based recommendation

which learns the user behavior exclusively from the features of the objects rated by the user. We

then explained the flaws in this technique, and introduced the concept of collaborative filtering.

The explanation about CF algorithms were split into (a) memory-based techniques and (b) model-

based techniques. and the problems associated with memory-based techniques such as scalability

and sparsity were delineated. Finally, we introduced probabilistic latent-factor models and ex-

plained the details of two important algorithms PLSA and LDA that will serve as the basics for

understanding the upcoming chapters.
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CHAPTER 3: LIST RECOMMENDATION IN TWITTER
3.1 Introduction

The increase in web contents in the form of social media websites, blogs, and news articles

have resulted in the problem of information overload. Researchers have tackled the problem of

information overload from different perspectives such as organizing trending topics in user’s time-

line, URL recommendations for twitterers, recommending followers and tweets [46–49]. A new

direction of research that is proposed in this chapter is the development of personalized recom-

mendation based on social lists. Lists serve a dual purpose in various social networks. First, they

serve as a newsletter or a daily-digest for users who seek unified source of information. Second,

they act as topical-hubs that unite users who share similar interests. Originally lists were intro-

duced by Twitter in 2009; however, they have been adopted by various social networking websites

in different forms under different names. For instance, Google+ terms lists as social circles and

Facebook provides a feature called community pages. In general, every list has a curator who cre-

ates the list and makes it as private or public. Other users can freely subscribe to such public lists,

while private lists are restricted to the owner’s approval. Lists are one of the strongest indicators

of topical homophily [50]. Consequently, they can be an excellent tool to smoothen the problem

of information overload.

Recommending lists is a challenging task because most users create them for grouping friends

or other users whom they find interesting. Such lists that are created for personal convenience

do not gain the attention of people. This implies that most of them do not have any subscribers.

Furthermore, list names are not unique; there can be thousands of lists with similar (or even same)

names [51]. This further exacerbates the problem of finding genuine, authoritative and topically

relevant set of lists. In this chapter, we propose two recommendation models that recommend

lists for Twitter users based on their personalized interest. Our first model, called the ListRec,

captures and models the users’ interest based on a combination of content, network and trendiness

based measures. For users with rich tweet history, we measure their interests using the topics de-

rived from their tweets. Unlike the existing studies, we view the twitterer’s interest as a temporally

varying feature and exploit this variation using an exhaustive set of streaming tweets to dynami-
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cally model the users’ interest. For users with sparse tweet history, we project the user space into

a followee space and utilize the followee’s list subscriptions to indirectly measure the interest of

the users. We also add a new trend based score that measures the popularity of lists in the Twitter

domain. The final score is then modeled as a linear combination of these three individual scores

(based on content, network, and popularity) to effectively measure the interests of the users and

personalize list recommendation. The coefficients in this linear combination are estimated using

a cyclic ridge regression estimation approach. Our experimental results show that the ListRec

outperforms other competing state of the art methods. Our second model is the LIST-PAGERANK

which will recommend lists that are popular and are more (topically) authoritative than the lists

that are currently subscribed by the users. To the best of our knowledge, there are no studies that

use Twitter lists for personalized recommendation. We summarize the major contributions of this

chapter as follows:

a. We propose a recommendation framework called ListRec that recommends Twitter lists

based on the personalized interest of twitterers. Unlike the existing studies that recommend

external information like news articles and blogs, our work is purely domain-specific.

b. The interests of users are modeled using a combination of weighting schemes: (a) a con-

tent based scheme that models the users’ interest based on temporally varying topics; (b) a

network based scheme that uses the followee-network of the users to overcome the tweet

sparsity; and (c) a trendiness based scheme that is based on the popularity of the lists.

c. We propose a LIST-PAGERANK based algorithm that leverages the network structure of

Twitter lists to recommend authoritative lists that match the topical interest of the users.

The rest of this chapter is organized as follows. We begin by describing the modeling of

ListRec in Section 3.3. Section 3.4 describes the creation of the list network and formulation

of the LIST-PAGERANK. Section 6.6 will show the results of our experiments and explain the

data collection methodology. Section 3.2 discusses the related work on this topic. Finally, the

conclusions obtained through this study are presented in Section 3.6.
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3.2 Related Work

Over the past few years, researchers have proposed various methods to overcome the problem

of information overload in social networks. These studies can be classified into three main cate-

gories: (a) reorganization of user timeline in microblogs, (b) topic modelling, and (c) personalized

recommendation.

Reorganization of user timeline: The research on timeline reorganization aims to re-rank the

timeline of users in microblogging network like Twitter. Feng et al. [52] build a feature-aware fac-

torization model that uses the graph containing nodes in the form of users, publishers and tweets.

They build their model based on the notion that the tweet history reveals user’s personal preference.

Bernstein et al. [46] adopt a topic based technique for organizing twitter feeds. In their work, the

tweets are transformed into queries for external search engine. The popular terms are then assigned

as topics. Burgess et al. use Twitter lists to tackle the problem of timeline reorganization. Since

lists implicitly denote the topical interests of twitterers, they propose a system called Butterworth

that can automatically build twitter lists by leveraging user’s social network and the content gen-

erated by friends. Our work is different from the ones mentioned above since it uses a novel list

based PageRank algorithm. None of these works mention about the topic of list recommendation

which forms a core part of our work.

Topic modeling The use of topic models in microblogging has been extensively studied by many

authors. Ramage et al. [53] presents a scalable implementation of labeled LDA. Phan et al. [54]

use the LDA topic model for building short and sparse text classifiers. [47] propose a URL recom-

mendation system for Twitter users. According to the authors, the topics in Twitter are presented

by different concepts that change over time. The concepts are built using a linguistic model that

detects entities and mentions from users’ tweets. Our topic modeling method uses the notion of

dynamic temporal LDA which is not captured by the methods mentioned above.

User Recommendation Unlike timeline reorganization that restricts itself to the ranking of tweets,

the user recommendation tackles the information overload problem by providing users with con-

tents or users that are relevant to the user’s interest. In [55], a URL recommendation system for
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twitter users is proposed which aims to recommend URLs by constructing a vector-of-words from

users’ tweets to measure their interest. In our previous work [56], we developed a model that

recommends geo-location based tweet summaries. Analyzing the tweet’s content and social graph

for recommending friends and followers have been studied by various researchers [57], [48], [49].

There are very few studies that exploit the list feature in Twitter [58, 59]. In their studies, [58] rank

the tweets within the subscribed lists of users rather than recommending existing lists. In short,

their work is similar to the ranking of user’s timeline and hence it is quite different from our work.

The models proposed in our work are similar to the ones described in [60] and [61]. However,

unlike these works, our paper leverages on the Twitter lists and temporal interest of users to design

a new recommendation system.

3.3 Recommending Twitter List using Regression

In this study, we classify the Twitter users into two categories: the persistent twitterers, and the

active consumers. Persistent twitterers are users who tweet frequently and consistently. Therefore,

they tend to have a rich tweet history. On the other hand, active consumers are characterized by a

sparse tweet history, but they actively consume information from Twitter by following other users.

Our aim is to develop a list recommender system that can be effective for both these categories of

users. For this reason, we use a combination of users’ tweet history (when available), and their

network of followees to collectively measure their personalized interest.

List-preference based on varying topical interests: The topical interest of twitterers changes

with time. For example, consider the following set of tweets tweeted by a twitterer over a period

of 1 year.

1. Love my #iphone 4s and its retina screen simply colorful and vibrant. #iphoneRocks

- March 2012
2. #Apple versus #Samsung this is interesting. I think #iphone has lost it’s charm

- December 2012
3. Finally sold my #iphone4s and got a #GalaxyS4 simply loving the big screen!. Can’t wait to

explore the new #Android - June 2013
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We can clearly see the transition of the user’s interest from iphone to Galaxy S4 mobile. This also

means that recommending lists related to iphone might not be interesting to this user. Therefore,

we model the interest of twitterers as a temporally varying factor by using the discrete dynamic

topic model (dDTM) [62] to create a temporal topic-preference matrix that captures the inclination

of the users towards a set of topics at different time frames. Unlike LDA [44], the dDTM sees the

order of collection as an evolving set of topics. The dDTM uses a state space model on the natural

parameters of the multinomial distributions that represent the topics. The alignment among topics

across time steps is captured by a Kalman filter. The inferior performance of topic models over

short text documents is a well known problem that has been widely studied in the literature [63].

To overcome this problem, we use tweet pooling technique [64] to collect all the tweets tweeted

by these users, and use their history of tweets as input to the dDTM. For the set of users U in our

database, we run the dDTM over their tweet history to obtain the set of topics T at different time

frames tf . We then use these topics as an intermediate plane to formulate a content-list matrix that

maps the topical interests of the twitterers to the set of lists L. We explain this mapping using the

following set of matrices:

• User-topic matrix J: The topical interest of twitterers J for a time frame tf is |U| × |T |

matrix, where the value UT ij denotes the number of times a word in twitterer u’s tweet has

been assigned to the topic τjεT .

• Topic-List matrix M: The topic-List matrix defines a relation between the set of lists and the

topics that are spanned by these lists. We create this matrix by collecting the set of tweets

that emerge from every list lεL, and use the dDTM to generate a set of topics. The topic-List

matrix is represented as M = |T | × |L|.

The interest of twitterers towards the lists is a |U| × |L| matrix that is obtained as follows:

F = J ·M (3.1)

Network based List-preference: For users with low tweeting frequency (i.e. the active con-

sumers), we use their followee network to indirectly measure the preference of user u εU to a
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set of lists {l1, ..., ln} in L. First, we obtain the set of followees F for users in U to create a

user-followee matrix given by

E = |U| × |F | (3.2)

Second, the user’s interest towards his followees is measured based on the number of times a

user ui retweeted his followee fj . The adjacency matrix E is defined as follows:

Eij =
RT (i, j)∑

f∈F
RT (i, f)

(3.3)

where RT (i, j) is the number of times the user i retweeted his followee j, and
∑
RT (i, f) is the

total number of retweets by the user i (normalization factor).

Third, the list subscriptions of followees in the set F is retrieved to create a followee-list matrix

|F | × |L| given by

Jij =


1 if i subsribes to list j

0 otherwise
(3.4)

Finally, we obtain the network-list matrix |U| × |L| as follows:

∆ = E · J (3.5)

List-preference based on Trending List: A list can be considered trending in Twitter if the

hashtags produced by this list are popular at a specific time t. Therefore, for every list in the set

L, we retrieve the hashtags that emerge from their respective tweets to create a hashtag-List matrix

given by

K = |H| × |L| (3.6)

We then determine the trending lists by estimating the popularity of hashtags in the set H at a

specific time t in the ordered Twitter streamsD1, . . .Dn. Each Twitter streamDi is a set of ordered

n-tuples represented as {< hi1, ti1 >, . . . , < him, tim >} where hi is the hashtag and ti is it’s

corresponding publishing time. Kwak et al. [65] showed that the topics in Twitter become popular

for a certain period of time and gradually die. This encourages us to use a time-decay function to
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estimate the trending hashtags [66]. The numeric weight of hashtags H in the Twitter stream D

at any given time is a function of the elapsed time since the first occurrence of this hashtag. The

common way to model such functions is using an exponential-decay. Mathematically, we denote

the function as follows:

W (h) =
∑

<hi,ti>εD

β

[tnow − ti]
T (3.7)

where the parameter βε(0, 1] controls the weight of the hashtags; tnow denotes the current time, and

T sets the granularity of time-sensitivity. In this work, we give equal importance to every hashtag

at the beginning by setting β to 1. The trendiness of hashtags h εH is measured by estimating

Ŵ (h) using first order derivative of their cumulative counts. The trending-List matrix is given by

Ω = H ·K (3.8)

whereH is a row matrix that contains the estimated weights for the hashtags H .

Recommendation score of Twitter List: The recommendation of Twitter lists L for a set of users

{u1, ..., un} given their tweet history Zu and followees Fu is represented as a linear combination of

their topic based weightage F, their network based score ∆, and the score based on list trendiness

Ω. Formally, we denote the preference score by

P (u, l) = αF + β∆ + γΩ (3.9)

Ridge regression for list recommendation: We now describe the algorithm to estimate α, β and

γ for the preference score (3.9). The ridge regression algorithm is used as a solver for estimation

at each step of Algorithm 1. The regularization function used here is the L2 norm of the regression

coefficient vector. We now explain the major steps involved in this estimation algorithm.

In the first step, β and γ are initialized using a fitting heuristic. In this fitting heuristic, we

estimate βinit by selecting a randomly sampled subset of data, and fitting it to the response vector

∆. The size of this sample is set of 30% of the original data. Similarly γinit is also estimated using

this 30% fitting heuristic. The values of βinit and γinit are used in Equation (3.9) to formulate the
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Algorithm 1: Cyclic Approximate Ridge Regression for List Recommendation
Input: Binary response vector P , Topic List matrix F , Network List Matrix ∆, Trending List

Matrix Ω
1: Initialize β=βinit and γ=γinit

2: P
′
= P − ∆βinit − Ωγinit

3: Using P ′ and F estimate αfinal

4: Set P ′ = P − Fαfinal − ∆βinit

5: Using P ′ and Ω estimate γfinal as in Step 3
6: Set P ′ = P − Fαfinal − Ωγfinal

7: Using P ′ and ∆ estimate βfinal as in Step 3
8: Output αfinal,βfinal and γfinal.

regression problem to estimate αfinal. This cycle of estimation is continued in the remaining steps

to estimate the values of βfinal and γfinal as explained in Algorithm 1. This final set of coefficient

values are used for estimating the scores.

3.4 Recommending Twitter List using PageRank

In our previous work [1], we proposed a LIST-PAGERANK model that can recommend aux-

iliary set of lists that are authoritative and topically similar to the lists that are subscribed by the

twitterers. We begin this section by explaining the construction of the list network. We define

the set of Twitter lists as a tuple Lc <C,M,J ,S>, where C denotes the curator of the list; M is

the set of list members; J is the set of topical words, and S is the set of subscribers. A directed

graph D(V,E) is formed with lists as the vertex V of the network. Defining edges in Twitter lists

can be tricky. This is because, unlike user-follower relationship in Twitter, an explicit relationship

between lists does not exist. Therefore, in this section, we exploit the hidden structure of Twitter

lists to define their linkage. We say that, an edge between two lists exists if the member of a list is

a subscriber of another list. Figure 3.1 shows this notion using three list nodes. In this figure, the

user C who is a member of list 3 subscribes to another list 2; thus, establishing a linkage between

these lists. Similarly, user G, a member of list 2 subscribes to list 3.

With the list network defined, we now explain the meaning of authority in Twitter list. The

definition of authority is based on the following observations:

• Influential twitterers tend to be a member of many lists.
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• Lists containing influential twitterers have the potential to attract many subscribers. The

subscription count in turn makes the list authoritative.

This notion is similar to the real-life event of news paper subscription. Top circulated news papers

like The Wall Street Journal and The New York Times attract more subscribers because the content

produced by them are relevant and exhaustive; more importantly, they are written by prominent

reporters and journalists. The influence of a twitterer can be measured by his list membership

count. For example, the user C in Figure 3.1 is a member of two lists: list 1 and list 3. Now, the

authority score of the list 2 goes up due to the presence of this influential member.

Members

Subscribers

AA BB CC

DD EE

Members

Subscribers

XX GG

CC RR

C Subscribes to 

1/3 * sim(List1,List2)

Members

Subscribers
RR CC

R , C Subscribes to 

2/2 * sim(List3,List2)

FF GG

G Subscribes to 

1/2 * sim(List2,List3)

List 1 List 2

List 3

Figure 3.1: Representation of list-network using a subscriber-member relationship

We show this effect in Figure 3.1 by plotting the membership count of users against the sub-

scriber count of their list subscription. We see that, as the membership count increases, the sub-

scriber count also increases. The increase in subscriber count becomes more pronounced when the

membership count goes beyond 80. This clearly shows that the subscription of users with high list

membership results in attracting more subscribers; thereby, making the list more dominant. Our

goal is to recommend auxiliary set of lists that are not only authoritative, but also topically similar

to the lists that are subscribed by the twitterers. We now explain the creation of list-topic matrix J

and the formulation of our LIST-PAGERANK.
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Figure 3.2: Influence of twitterers’ membership count over their list subscription count

To create the list-topic matrix J , we obtain the topics from the auxiliary set of lists Lc by

tokenizing the tweets from each list. We then construct a bag-of-words vector W , where W =<

tf(l, w1), ..., tf(l, wm) > and tf(l, w) is the term frequency of the tweet word w in the list l ε Lc.

The matrix J is denoted by |Lc| × |W |. We define the adjacency matrix for our list-network as

follows:

LNi,j =


|M(i) ∩ S(j)|
|M(i)|

× Sim(i, j) if link exists

0 otherwise

(3.10)

In the above equation, the link exists if atleast one member of list i is a subscriber of the list j,M(i)

is the set of all members of i, and S(j) is the set of all subscribers of j. The numerator |M(i)∩S(j)|

denotes the number of members of list i who are subscribers of list j, and the denominator |M(i)|

is the total number of members of the list i. An example of this formulation is shown in the Figure

3.1. In this example, there is just one user (user C), who is both a member of list 1 and a subscriber

of list 2. Therefore, the edge weight between list 1 and list 2 is 1/3. Finally, the similarity term

Sim(i, j) is calculated as the cosine similarity between the lists i and j given by

Sim(i, j) =
Ji · Jj
|Ji| × |Jj|

(3.11)
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where Ji and Jj are topic vectors obtained from the list-topic matrix J .

In our list-network, it is possible for lists to form loops. For example, in the Figure 3.1, a loop

exists between list 3 and 2 since the member of list 3 is a subscriber of list 2 and vice versa. Such

loops will accumulate high influence without distributing it. In the random surfer algorithm of

PageRank, a link is added from every web page to all other web pages to overcome this problem.

We adopt the same methodology in our list graph, by introducing the teleportation vector LW

defined as:

LW = Jk (3.12)

where Jk is the k-th column of the list-topic matrix J . In this manner, the teleportation probability

is higher for a list which is more topically similar to the original list.

We finally represent the LIST-PAGERANK as a convex combination of the matrix LNi,j and

the teleportation vector LW as follows:

Lrank = αLNi,j + (1− α) ∗ LW (3.13)

The addition of the teleportation vector LW enables the surfer visiting a list to jump to another

random list with a probability (1 − α), where α is a parameter that controls the probability of

teleportation that is set between 0 and 1.

3.5 Experimental Results
3.5.1 Dataset Description

In the earlier section, we categorized the users as persistent twitterers and active consumers

based on their tweeting behaviour. In general, it is difficult to obtain users with such characteristics

merely by querying the Twitter for random user Ids due to the API limitations. For this reason, we

use our streaming database that was collected from January 2012 to August 2013 using Twitter’s

firehose API that provides 10% of every day’s streaming tweets. Figure 3.3 shows the comparison

of the tweet frequency plots between users who appear in over 60% of our database, and users

who appear in less than 30% of our database. While both the plots follow a powerlaw distribution,

the former shows a tweet count between 500-1000 for a majority of users, while the latter clearly



34

shows that most users have sparse number of tweets. We denote the set of users with high tweeting

frequency by P , and those with low frequency by A. We create our user dataset U as follows:

1. The set of persistent users is denoted by P ∗ = {p|pεP and p has atleast 3 list subscriptions}.

2. Since the active consumers have a scarce set of tweets, we choose these users based on their

followee count. Figure 3.4 shows that most users in the set A do not follow other users.

Therefore, we impose a threshold on the followee count of the users. Formally, we denote

the set of active consumers by A∗, where A∗ = {a|aεA and a has atleast 10 followees and 3

list subscriptions }.

Our final user dataset is given by U = P ∗ ∪ A∗. For our experiments, we have |P ∗| = 529,

|A∗| = 221 and |U| = 750.
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Figure 3.3: Tweeting frequency of frequent and infrequent twitterers from our streaming database

3.5.2 Automatic Evaluation

We evaluate the ListRec model based on the assumption that a user who subscribes to a

list finds it interesting. Our test dataset is the set of all users in U , and their list subscriptions L,

|L| = 2988. Ideally, the correct recommendation for a user uεU should correspond to the lists from

his own direct subscription.
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Figure 3.4: Number of followees per active consumer

Evaluation Metrics For evaluating our model we use the standard information retrieval measures.

For every user we compute: (1) precision at rank k (P@k) for our task is defined as the fraction

of rankings in which the subscribed lists is ranked in the top-k positions, (2) Our recommendation

is correct when the user-subscribed list is present in the ranked set of lists. The mean reciprocal

rank (MRR) is the inverse of the position of the first correct list in the ranked set of lists produced

by our model, and (3) success at rank k (S@k) is the probability of finding at least one correct list

in the top-k ranked ones. (4) The discounted cumulative gain (DCG) [67] is based on the simple

idea that highly relevant lists are more important than marginally relevant lists. DCG computes

the score for a list based on it’s position in the ranked set of lists. It then calculates the cumulative

gain by considering a linear summation of the relevance scores of the lists scaled by a logarithmic

factor. The scaling helps in obtaining the discounted cumulative gain metric.

Method Comparison We compare the performance of our model to the following baselines

• EntRank: For every user, we collect the user entities mentioned in their tweets. The entity

based ranking scheme ranks the lists based on the number of members who correspond to

the entities mentioned in the user tweets.

• Trendiness: We set α = β = 0 to rank the lists purely based on trendiness.
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Table 3.1: Comparison of the past and current interest of users generated by dDTM, and the topics
generated by LDA without taking the temporal shift of user interests

User
List

Topics
Past Interests

(dDTM)
Current Interests

(dDTM)
LDA

Topics

A
Influencial in tech

{Android, #technology, microsoft } food, volunteer, tech Google, #tech, hackathon
Volunteer, fastfood

latish, meal

B
Top 50 funny

{#smile, Darwin , follow} media, poll, breaking Comdey, Science, actors
people, critics
media, news

C
Astronauts in space
{NASA, #ISS, Mars } Game, #redsox, mars #mars, NASA, astronauts

Redsox, win
space, game

D
US Senators

{politics, #syria, Obama } Bills, business, venture governor, syria, policy
startup, venture
legislation, pay

E
Marketing Industry

{adcampaign, business, media} kobe, payments, ipad eComm, Advertising, Basketball
ipad, payments

play, game

Table 3.2: Performance comparison between different methods using MRR and Precision metrics

Algorithm MRR P@1 P@5 P@10
EntRank 0.08 0.04 0.0418 0.032
Trendiness 0.006 0.0 0.0017 0.001
Content 0.48 0.40 0.29 0.23
UserNet 0.51 0.31 0.34 0.21
listRec∗ 0.36 0.32 0.33 0.21
listRec 0.54 0.44 0.39 0.35

• Content: The content based weighting scheme ranks the lists purely based on the topical

interest of the Twitter users. We set β = γ = 0 for this scheme.

• UserNet: This scheme purely based on user-network. We set α = γ = 0 for this scheme.

• listRec∗: Instead of using dDTM to measure the user interest, we use the LDA by ignor-

ing the temporal variation of topical interest.

Table 4.4 shows the results of MRR and precision, while Table 4.5 reports the results of success

at k and DCG. We clearly see that the proposed listRec is the best performing model for all

measures. The Content based scheme closely follows our model, this clearly emphasizes the fact

that topical homophily is one of the important features. The UserNet performs reasonably well

when compared to listRec and Content. This shows that the followee network of a twitterer

plays an important role in determining his list subscription. In other words, the probability of a

user subscribing to a list increases if the list has already been subscribed by his followees. This
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Table 3.3: Performance comparison between different methods using Success at k and DCG met-
rics

Algorithm S@5 S@10 S@30 DCG
EntRank 0.14 0.19 0.198 0.27
Trendiness 0.024 0.027 0.0307 0.15
Content 0.43 0.471 0.52 17.54
UserNet 0.427 0.432 0.481 18.2
listRec∗ 0.324 0.342 0.348 16.49
listRec 0.45 0.493 0.54 18.42

clearly shows the impact of the social circle on users’ interest. The poor performance of EntRank

indicates that the entities mentioned in the users tweet need not be the members of a list.

Finally, it is important to note that the listRec∗ performs poorly when compared to our

listRec model. As mentioned before, the topic component of listRec∗ ignores the temporal

variation of user’s interest while generating the topics. From the results, it is quite conclusive that

the poor performance of EntRank is due to absence of this temporal variation. We provide further

insights on the performance of listRec∗ by comparing the topics generated by dDTM and LDA

over users’ tweets in Table 3.1. The topics generated by dDTM are split into two columns denoting

the past, and the current interests of the twitterer. We can clearly see that there is a significant shift

between the twitterer’s past and current interests. For example, user A’s past interest was related to

topics like fastfood and meal, while his current interest is more towards technology related topics

like Google, hackathon etc. Similarly, user C’s past interest was mostly centered around games,

while his current interest is inclined towards space related topics like NASA, mars, etc. The last

column in Table 3.1 shows the topical interest of users generated using LDA. We can see that the

topics are a mixture of the users’ past and current interests, with a majority of topics emerging

from user’s past time frame. On the other hand, the topics from the users’ list subscription have a

greater match with their current interests rather than their past. This is the most important reason

for the superior performance of listRec over listRec∗. Figure 3.5 shows the DCG measure

for the top 20 ranks. We can see that the listRec is able to suggest more related lists when

compared to all other performance measures.
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Figure 3.5: Average discounted cumulative gain of related lists for top 20 ranks for different algo-
rithms

3.5.3 Empirical Evaluation

In this section, we compare the quality of lists that are subscribed by the users with the lists that

are suggested by the LIST-PAGERANK. To run our experiments, we first create the list-network

LN that was described in Section 3.4. Using the set of user-subscribed lists L as the seed set, we

do the snow ball sampling using the following steps: (i) For every list lεL, we create a user-set by

collecting all the members and the subscribers from l, and (ii) for every user in this user-set, we

retrieve their list subscriptions. We iteratively perform these steps to create auxiliary set of lists Lc,

|Lc| = 10876. The adjacency matrix LN is constructed using the set Lc.

Table 3.4 shows the comparison between the top 5 subscribed and recommended lists. We

see that the recommended lists have extremely popular entities as members or subscribers. For in-

stance, the list on Technology News have users like stevenbjohnson who is a popular media theorist;

timoreilly is the CEO of O’Reilley Media. The list based on TV topics like #Glee, #NFL etc. have

very famous actors like davidschneider, and movie rating website RottenTomatoes associated with

them. Similarly, the lists on Funny tweets have very prominent entities associated with them and

the lists on Politics have famous political news channels such as foxnewspolitics and ABCPolitics.

The list related to aviation has TheDEWLine who is a prominent aerospace journalist and blogger
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and flightglobal which is a news source for global aviation. These entities are not only famous in

real-world, but are also active users in Twitter domain. All these users have a large number of fol-

lowers and retweeters. Additionally, the recommended lists have a large number of followers and

retweets when compared to the subscribed lists. We can clearly see that the presence of prominent

Twitter personalities acts as a magnet for attracting more subscribers and retweeters for a list.

Characteristics of the recommended list So far, we showed the performance of our LIST-PAGERANK

model using qualitative comparisons between the subscribed and the recommended lists. We now

show the characteristics of these recommended list by choosing samples from user-subscribed lists

L using various criteria. To achieve this, we use the quality measure proposed by Weng et al. [60]

for their TwitterRank model. However, unlike the authors, we don’t use their method to evaluate

our model; instead, we simply use it to measure the characteristics of the recommended list and

compare it with the classical PageRank algorithm and the indegree measure. This is mainly be-

cause unlike the TwitterRank, the user is not a part of the list network. The sampling procedure for

measuring the list characteristics is shown in Algorithm 2.

Algorithm 2: Sampling procedure for analyzing the list characteristics
1 Require: The user-subscribed set of lists L
2 Choose a sub-set |P | from the set L using different list-based features
3 for each list lεP do
4 Crawl a set of 10 auxiliary lists, denote this set as Z
5 Create a new list-network with the set Z
6 Run the LIST-PAGERANK algorithm to rank the lists in this new network Z
7 Using equation (3.14) report the characteristics of the ranked lists
8 end

For all our experiments, we sample 20 lists from the user-subscribed list L. Therefore, we

set |P | as 20 in step 1 of Algorithm 2. The selection of the sample P is based on four different

list-based features as described below:

Influence score of list members: Our first selection criteria is based on the influence score of

the list members. We wanted to see whether there is any correlation between the authority of the

lists that are calculated using individual authorities of the list member, and the authority of the list
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Table 3.4: Comparison of quality between subscribed and recommended lists for top topics

list
Number

list
Description

list
Topic Subscribed list Recommended list

S-Cnt Rt-Cnt Entities S-Cnt Rt-Cnt Entities

1
Technology

News
#Apple,

Technology 37 14
@magpienikki,

@Shadowrayven 14092 104
@stevenbjohnson,

@timoreilly

2 TV
#Glee,
#NFL 4 2

@TVGuide,
@TheEllenShow 1875 42

@RottenTomatoes,
@davidschneider

3
Funny
Tweets

Fun,
Comedy 4 17

@FakeAPStylebook,
@badbanana 8802 69

@OMGFacts,
@GuyCodes

4 Politics
#Obama,

Law 113 12
@ezraklien,

@SFist 1145 114
@ABCPolitics,

@foxnewspolitics

5 Aviation
InFligtCalls,
#privatejets 32 15

@DBaviation,
@bizjetkev 256 31

@flightglobal,
@TheDEWLine

calculated by our LIST-PAGERANK model. To measure the influence scores of the list members,

we use the popular klout score 1 service that provides the influence score of twitter users using

various inter and intra-domain based measures. For every list in L, we retrieve the members and

calculate their klout scores. The klout score for a list is then calculated as the collective score of

the individual members. To select the sample set P we rank the lists according to their klout scores

and choose a set of lists Pkh (high klout score) from the 90th percentile and Pkl (low klout score)

from the 10th percentile of the klout score counts, P = Pkh ∪ Pkl.

Psh Psl Pmh Pml Prh Prl Pkh Pkl

0

2

4

6

8

10
List Pagerank

Pagerank

In-Degree

Figure 3.6: Characteristic score of ranked lists for different features

1http://klout.com/
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Subscriber count of the list: In this criterion P is chosen based on the number of subscribers of

the list. We calculate the subscriber count of each list in L, and rank them according to this count.

We now choose the lists Psh (high subscription count) from the 90th percentile, and the lists Psl

(low subscription) from the 10th percentile of the subscription count, P = Psh ∪ Psl.

Retweet count of the list: Similar to the subscription count criterion, we rank the lists in L based

on their retweet counts. We then choose lists Prh, and Prl from the 90th and 10th percentile of the

retweet counts respectively.

Membership count of the list: The final criterion is based on the membership counts of the

list. We rank the lists in L based on their membership counts. We then choose lists Pmh (high

membership), and Pml (low membership) from the 90th and 10th percentile of the membership

counts respectively.

The characteristic score of the recommended list is measured using the following equation:

C(Z) = {zi|ziεZ and R(zi) < R(zp)} (3.14)

Where, zp is the set of lists in Z which are directly subscribed by the users, and R(zi) denotes the

rank of the list i. According to the equation (3.14), C(Z) measures the number of auxiliary lists

that have a higher recommendation score than the subscribed lists. A high score of C(Z) implies

that a major part of the recommended list is from the auxiliary list, while a low score implies most

recommendation are from the user’s direct list subscription.

We show the results of running our LIST-PAGERANK over the sample network Z in Figure 3.6.

The x-axis denotes the different characteristic features that were used to choose the user-subscribed

list P , and the y-axis denotes the characteristic score obtained using the equation (3.14). From this

figure, we can infer three important characteristics of the recommended lists. When we choose the

set P with high subscription count (Psh), the lists recommended by our model is mostly from the

subscribed set of lists rather than the auxiliary (crawled) set of lists. This trend is similar in both the

PageRank and In-degree algorithms; nonetheless, the PageRank and In-degree tend to recommend

more auxiliary lists when compared to our model. If the user-subscribed set P is chosen based on
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the low subscription count criteria (Psl), we can see that all three algorithms perform equally by

recommending lists from the auxiliary set. We also see that the member count plays an important

role in deciding the list authority. If P is chosen such that the lists contain a large member count,

then most recommended lists are from the users’ direct subscription. On contrary, if P is chosen

with low membership count all the algorithms tend to recommend the auxiliary lists. It is important

to note that both in-degree and PageRank closely follows our model.

Finally, when we choose P based on high klout score (Pkh), the LIST-PAGERANK model rec-

ommends a majority of lists from users’ direct subscription; thus, indicating that the individual

authority of list members collectively contribute to the total list authority. Similar to the subscrip-

tion characteristic, both the in-degree and PageRank tend to recommend the direct list subscription

rather than the auxiliary list. The in-degree however seems to recommend more auxiliary lists

when compared to the other two. In case of low klout score (Pkl), all three algorithms perform in

similar fashion.

3.6 Summary

As more and more users join social networking platforms like Twitter, facebook, foursquare

etc., the data will be generated at an overwhelming pace, resulting in the problem of information

overload. To overcome this problem, social networking sites have introduced the concept of lists

that help users organize related information into a single bin. Despite being a powerful tool to

organize related users and topics, it requires the laborious task of manually adding people who

post about a similar topic. In this chapter, we outlined two major problems. First, we showed that

majority of users have sparse list subscriptions. Second, we showed that most lists have extremely

low number of subscribers, which in turn means that they are inferior in their topical content. To

overcome the first problem we introduced the ListRec model. We formulated this model as a

linear combination of content, network and trendiness based weighting schemes, and estimated the

parameters using a cyclic ridge regression algorithm. Our results showed that the ListRec model

outperformed other base line models in all the performance measures. Furthermore, we showed

the importance of using temporal topic model by leveraging our rich repository of temporally
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distributed streaming tweets. The results clearly showed that the user of dynamic temporal topic

model (dDTM) over the conventional topic model (LDA) resulted in a superior recommendation.

To handle the second problem, we introduced a LIST-PAGERANK model that recommends

auxiliary lists that are significantly better than the existing lists that are directly subscribed by the

twitterers. To design this model, we introduced a new subscriber-member based relationship for

the edges in the list network. Using empirical evaluation techniques, we showed that our model

is efficient in recommending lists that contain members who are topically authoritative. We also

showed that the recommended set of lists have high retweet and subscriber counts; thus, indicating

it’s topical dominance.
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CHAPTER 4: RECOMMENDATION IN CROWDFUNDING
4.1 Introduction

For several years, entrepreneurs had to seek the help of banks, brokers, and other financial inter-

mediaries to acquire the necessary funds for starting a business venture. Such financial constraints

were a huge bottleneck to people with innovative ideas. However, this scenario has changed dras-

tically with the emergence of crowdfunding platforms. Thanks to the widespread use of internet,

entrepreneurs can effectively post their ideas on crowdfunding websites and gain the attention of

people all over the world. The concept of crowdfunding is analogous to micro-financing or crowd-

sourcing [68], where the seed capital is collected by soliciting funds from a large group of people,

rather than a single individual (venture capitalist).

Crowdfunding can be characterized into four different types: equity-based, lending-based,

reward-based, and donation-based. In equity-based crowdfunding, the investors receive some form

of stake from the company. The donation-based is similar to a charitable venture, while in lending-

based, the investors are repaid for their investment. Finally, the most popular form of crowdfunding

is the reward-based, where users receive some form of gift in return of their investment. Kickstarter,

one of the popular crowdfunding sites, mainly adopts this reward-based crowdfunding mechanism

while raising over 480 million dollars in pledged amount and 19,911 successfully funded projects

in 2013. This domain follows the “all or nothing” policy, which means that the pledged money

is collected only if the goal amount is reached; if not, the entire money is returned back to the

investors. Kickstarter terms the investors as backers, and the founders of projects as creators. The

creators post their ideas by providing a detailed description of their project which includes the

scope of the project, video description, reward details, topical categories, location, updates, FAQs,

etc. The backers then invest in the project based on its quality and their personal interests.

Despite being a valuable platform for crowdfunding ventures, statistics show that only 43%

of the projects succeed in reaching their pledged goal [69]. Additionally, the margin by which

successful projects exceed their pledged goal is extremely narrow [70]. Being a relatively new

domain, very few studies have explored the crowdfunding domain from a data mining perspective

[71–73]. Although innovative in their approach, these studies restrict themselves to the standard
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set of features that are available readily from the Kickstarter domain. Therefore, our research

on crowdfunding [2] explores the popular Kickstarter domain, by leveraging diverse information

sources to construct a set of features that can play a significant role in determining the success of

Kickstarter projects. In the first part of this chapter, we perform a comprehensive study on the set of

features and their effect on Kickstarter projects. In the second part, we propose a supervised learn-

ing approach that effectively utilizes these features to tackle this unique recommendation problem.

We formulate our recommendation problem as a binary classification/regression problem, where

given a backer-project pair, the trained model computes the score that represents the likelihood

of funding. Utilizing the proposed approaches together with a gradient boosting tree, a state-of-

the-art learner model, we achieve a practically useful level of performance up to 0.89 AUC (area

under the curve) value. Additionally, we perform an in-depth evaluation of our model using over

795K backer-project relations and a wide variety of other data sources like backer profiles, tweets

and profile information of twitter users. Our analysis reveals various interesting knowledge about

the behaviors of Kickstarter users with respect to their backing frequency, social network, geo-

location, and other personality-based traits. The major contributions of this paper are summarized

as follows:

1. We perform an exhaustive study of the crowdfunding domain from the project, backer, social

network, and geo-location perspectives to provide several unique insights on inter- and intra-

domain factors that affect the success of Kickstarter projects.

2. Our analysis is based on diverse data sources such as: (1) content information of projects,

(2) profile information of backer and creators and (3) heterogeneous information from the

Twitter network.

3. We build a robust predictive model for recommending backers in crowdfunding domain that

achieves an AUC of 0.89, and a precision up to 0.8.

The rest of this chapter is organized as follows. We begin by presenting the related work on

this topic in Section 4.2. We then explain the characteristics of the Kickstarter domain in Section
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4.3. Section 4.4 describes the data collection methodology. Section 4.5 analyzes the features of

Kickstarter. Finally, the conclusions obtained through this study are presented in Section 4.7.

4.2 Related Work

Crowdfunding and Kickstarter: Since crowdfunding is still an emerging platform, most

studies on this domain are relatively new. One of the most comprehensive studies on Kickstarter

can be seen in [70] and [74]. In [70], the authors examine the dynamics of kickstarter domain,

and [74] explains various types of crowdfunding platforms. The authors of [75] and [76] perform

a real-world analysis on crowdfunding platforms. Their study is based on a real-time survey that

aims to learn the motivation behind users who create and invest crowdfunding projects. In [77],

the authors use natural language processing techniques to analyze the textual content of Kickstarter

projects, while [72] leverages the updates of projects to determine their success rate. There are very

few papers that study the role of twitter for Kickstarter projects. In a recent study, Lu et al. [78]

delineate the impact of social network on Kickstarter projects.

Studies on other Crowdfunding platforms: Apart from Kickstarter, there are many other

crowdfunding platforms. In our previous work, we analyzed the micro-financial activities in

Kiva.org [79, 80]. Few research works [81], [82] and [83] explored the effects of the internet

on micro-financing, and peer-to-peer lending transactions. The paper closest to our research is

characterized by a similar goal as that of ours [71]. In their paper, the authors adopt a hypothesis-

driven approach to analyze features from Kickstarter. Despite a novel approach, their analysis is

based on very basic set of features such as number of updates, comments, facebook friends, etc.;

such features are readily available from the Kickstarter platform. To the best of our knowledge our

work is the first to perform an extensive analysis of the Kickstarter domain by utilizing project-,

user profile-, geo-location- and social network-based attributes.

4.3 Characteristics of Kickstarter Campaign

Before exploring the features of Kickstarter, we investigate the general characteristics of this

crowdfunding domain. Figure 4.1(a) shows the overall trend of successful and failed projects. We

observe that a majority of projects exceed their goal by a very marginal amount. Additionally,
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projects that exceed their target goal by over 150% are extremely few. This suggests that people

are not interested in supporting the projects once the project goal amount is received. Figure 4.1(b)

shows the success ratio of top-10 categories of Kickstarter projects, where the top three project

categories are dominated by film & video, music and games. Furthermore, the success ratio of

these categories ranges roughly between 35%-65%, with Theater being the highest (about 65%)

and technology being the lowest (about 35%).

Figure 4.1: (a) the percentage of the total goal amount raised by Kickstarter projects; (b) shows
the category-wise success ratio of projects: FV-film & video, Mu-music, Pu-publishing, Ga-games
, De-design, Ar-art, Fo-food, Fa-fashion, Te-technology, and Th-theater. (c) Backing frequency
of Kickstarter users and (d) shows the relationship between pledged amount and the number of
backers.

The relationship between backers and the pledged amount is an essential component of Kick-

starter. The backing pattern of Kickstarter users follows a power-law distribution, as depicted in

Figure 4.1(c). We see that a large number of people tend to back just one or two projects; people

who back more than 100 projects are extremely few. On the other hand, Figure 4.1(d) shows a

strong correlation between the number of backers and the pledged amount. An earlier study on
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Table 4.1: Kickstarter data statistics for 18,143 projects collected from Dec 2013 - Jun 2014.

Attribute Mean Min Max StdDev
Goal Amt 26,531.2 100 100,000,000 758,366.5
Pledged Amt 11,023.6 100 6,224,955 78,550.8
backers count 138 1 35,383 633.7
Duration(days) 31 1 60 10.05

Kickstarter reported a correlation of 0.9 [78]. However, we observe a lower but still strong cor-

relation of 0.68. More importantly, we found that there exists many projects with a large pledged

amount which had low number of backers. It implies that the kickstarter domain has gained more

trust over the years, and users are ready to back a large amount of money in kickstarter projects.

Nevertheless, in this paper we assume that backers impact the success of a project, and our goal is

to investigate the effect of various features that impact the backing count.

4.4 Dataset Description

Kickstarter Database: For our experiments, we obtained six months of Kickstarter data from

kickspy.1 Our dataset spans from 12/15/13 to 06/15/14, which consists of 27,270 projects char-

acterized by 30 project-based attributes. These attributes include a number of static features such

as: project goal, duration, textual content, etc., and two dynamic features like: per-day increase in

number of backers and pledged amount. To prepare our dataset, we removed projects that were

canceled, suspended as well as those with less than one backer and $100 as pledged amount. In this

manner, we obtained 18,143 projects and over 1 million backers. We denote our projects database

as K and backers database as B. The statistics of our database is given in Table 3.1.

Twitter Database: To build our tweet repository, we used the query API of Topsy 2 to search

the titles of all projects in our Kickstarter database. By expanding the short URLs, we eliminated

tweets that did not map to our database K. Using this method, we obtained 106,738 unique tweets,

which covered 55% of our projects. The remaining 45% were never promoted using Twitter. In

1www.kickspy.com
2www.topsy.com
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addition to this, we also retrieved the complete profile information of the promoters who tweeted

these tweets; we denote this database by S.

4.5 Analyzing Kickstarter Traits

The success of an entrepreneurial venture is heavily dependent on its quality from the project

contents. Therefore, in this section, we explore the set of factors that initiate a user to invest in

Kickstarter ventures. We begin by categorizing the features into three main groups: (a) project-

based traits, (b) personality-based traits and (c) network-based traits. The project-based traits are

purely with respect to features derived from the qualities of Kickstarter projects. The personality-

based trait is further divided into creator personality and backer personality. It represents the

characteristics of creators who host the Kickstarter project, and the backers who invest in these

projects. Lastly, the network-based traits are derived from the social media (Twitter) domain. In

the following sections, we explain these features in detail.

Figure 4.2: Analysis of features from Kickstarter domain. (a) Temporal progression of funds and backers
in Kickstarter; (b) Adoption rate of project promotions in Twitter; (c) effect of creator’s prior success rate
on the success of his current kickstarter project; (d) topical preference of users towards projects; (e) trust
relationship between the backers and creators, and (f) effect of geo-location on Kickstarter projects.

4.5.1 Project based Traits

Static features: We use 16 different features, which include generic features such as the duration

of project, goal amount, number of facebook shares, main topical category, sub-categories, number
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of backers, updates about the progress of project, pledged amount, comments, location, currency

and rewards. The content based features include total number of words in the project description,

risks and challenges, FAQs, number of images, and presence of videos.

Temporal features: One of the most interesting aspects of Kickstarter campaign is the U-shaped

distribution of fund progression over time. As shown in Figure 4.2(a), a large percentage of the

pledged goal is accumulated in the first few days of the project duration. The progression then

tapers out during the mid-phase, which can be considered as a dormant period in the project fund-

ing cycle. However, unlike the progression of news stories, the funding activity does not decay

monotonically towards the end; instead, we suddenly see an increase in the pledged amount during

the final phase of the project funding cycle (few days before the project end date). A popular term

for this phenomenon is the deadline effect [84]. It is also important to note that the accumulation

of backers follows closely with the pledged amount, where a majority of backing activity happens

during the first and last weeks of the funding cycle. This classic behavior of Kickstarter data has

also been shown some in recent studies [78, 85]. Another important temporal dynamics is related

with the spread of Twitter promotions over time. If the first few tweets about a kickstarter project

are tweeted within a short time frame, the number of Twitter users who adopt and promote these

tweets are much higher. In social science, this phenomenon is widely known as the Herding in-

stinct [86]. This effect is depicted in Figure 4.2(b), where ∆t5 denotes the average time delay

between the first 5 consecutive tweets. From this figure, we can conclude that early promotions

are crucial to a project’s success.

4.5.2 Personal Traits

Backer personality: To begin with, we retrieve the backing history of all the users in B, and

obtain the list of categories and creators for every project in their backing history. The history of

categories and creators are denoted by the set H(C) and H(E) respectively. The personality of

backers are analyzed using these two sets.

Topical preference: Topical preference plays an important role in determining the interests of users

[87]. In our setting, we define this as the tendency of users to continuously back projects from
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the same topical category. We examine this by calculating the conditional probability of a user

u to back a category c, given c is present in the backing history of this user. We represent this

probability by Pu(Cat) = P (c|c∈Hu(C)), where Hu(C) indicates the set of categories from user

u’s backing history. P (c|c∈Hu(C)) is calculated by Bayes′ theorem as follows:

P (c|c∈Hu(C)) =
P (c∈Hu(C)|c)P (c)

P (c∈Hu(C))
(4.1)

Figure 4.2(d) shows the outcome of this experiment. It can be seen that irrespective of the number

of backings, the probability of users backing the same category (P (Cat)) is very high. Although

this probability decreases with the increase in backing count, this reduction is significant only for

users with very large backings (i.e. over 1000). This signifies that backers have strong topical

preference over Kickstarter projects.

Mutual trust: It is shown that the investors do not just randomly choose projects for backing;

instead, they look for a long-term connection to the creator [75]. We call this attribute as the mu-

tual trust. To validate this claim, we calculate the conditional probability of a user u to back a

creator e, given that e is in the backing history of this user. This probability is represented by

Pu(Ent) = P (c|c∈Hu(E)), where Hu(E) indicates the set of creators from user u’s backing his-

tory and P (c|c∈Hu(E)) is calculated similar to Equation (5.12). Figure 4.2(e) shows the result of

this analysis; here, we notice an increase in probability P (Ent) as the backing count increases. In

other words, when users start backing more and more projects in Kickstarter, they tend to develop

an inclination towards creators whom they have backed in the past. This inclination leads to a

stronger relationship with the creator thereby creating a mutual trust.

Creator personality: The personality of project creators is measured using three features: a) num-

ber of projects hosted by the creator, b) number of projects backed, and c) the expertise of the

creator. The first two features are obtained from the profile information, while the third feature is

analyzed as follows:

Creator expertise: We say that a creator having a high success ratio in his past projects is more

likely to succeed in his current project. We evaluate this notion by calculating the probability
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p(kcurr|kpast), where kcurr denotes success of current project, and kpast denotes the success ratio

of prior projects. From Figure 4.2(e) we can distinctly see that this probability increases with

the increase in the creator’s success ratio. Hence, experienced creators have a greater chance to

succeed in the crowdfunding domain.

4.5.3 Location based Traits

In this section, we try to understand the role of geo-location on Kickstarter projects. For every

project in our databaseK, we calculate the percentage of backers whose geo-location matches with

the project’s location. The result of this study is depicted in 4.2(f), which clearly shows that geo-

location does impact the success of projects. Nonetheless, it is interesting to note that the impact

of geo-location is not uniform for all the categories of projects; for instance, projects on games,

comics and technology are not very much dependent on their geo-location, while projects on the-

ater, food, and dance are highly dependent. A logical explanation for this trend can be attributed

to the rewards that are provided by the projects. For example, the rewards offered by theatrical

projects mostly include items such as movie tickets, tickets to the premier shows or personal in-

teraction with the cast members. Such rewards are extremely dependent on the proximity to the

project’s geo-location since people from distant geo-locations might not travel to see the perfor-

mances. Contrary to this, rewards offered by technical projects can be sent to people all over the

world through mail.

4.5.4 Network based Traits

One of the main reasons for a project’s failure is the lack of publicity [76]. Therefore, before

we examine the social network features, we will see whether Twitter based promotions impact the

success of Kickstarter projects. Table 4.2 shows that projects with promotions have 63% chance

to succeed in their funding goal, while those without promotions have a mediocre success rate

of 34%. This definitively proves that tweets play a dominant role in determining the success of

projects. Hence, we divide our analysis into two parts: first, we examine the impact of various

network measures over the success of Kickstarter projects; second, we build communities of Kick-
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starter users from Twitter to examine the effect of these communities over the backing habits of

individuals.

Table 4.2: Success rate of projects with promotional activities. w/o-promo: without-promotional
activity; w-promo: with promotional activity.

# Projects
w/o-promo

Success
w/o-promo

# Projects
w-promo

Success
w-promo

8207 34% 9935 63%

Figure 4.3: Impact of Twitter network on the backers of Kickstarter projects. (a) and (b) show the
socio-centric analysis; (c) and (d) shows the ego-centric analysis.

Impact of Twitter network on Kickstarter projects: For this analysis, we construct a network using

the Twitter database S , which contains the set of users who tweeted about Kickstarter projects.

Each user s ∈ S is a node, and a directed link exists between node A and node B based on the

following conditions: 1) if A is a follower of B; 2) if A mentions B in his tweet. For the first

case, we assign a link weight of 1, and for the second case, the link weight depends on the number

of times A has mentioned B in his past tweets. By constructing this graph, we present the socio-
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centric and the egocentric attributes of this network. Figure 4.3(a) shows that the number of backers

increases with the number of nodes (i.e. promoters in Twitter). However, the accumulation of

backers is not only based on the number of promoters, it also depends on the connectivity between

these promoters. This notion is conveyed in Figures 4.3(b) and 4.3(c), where 4.3(b) shows that

stronger tie strength between the promoters results in greater accumulation of backers, and 4.3(c)

captures the same notion in terms of biconnectivity between the promoters. Lastly, Figure 4.3 (d)

shows that projects promoted by influential twitter users have the potential to attract many backers;

where the influence is determined by calculating the PageRank scores of the promoters.

Community influence on investors’ backing habits: Many studies have shown that communities from

social network play an important role in influencing the actions of individuals [88, 89]. Applying

the same analogy, we say that the backing habits of investors in Kickstarter are influenced by their

social circle (or community). To validate this statement, we begin by explaining the procedure

for creating Kickstarter communities from Twitter. Later, we show the method that was used to

calculate the influence score between these communities and the individuals who back the projects.

To construct the communities, we use the promoters (i.e. twitter users) in S and create a

bipartite graph of projects and users where each edge denotes the action of a user s ∈ S tweeting

about a project k ∈ K. These tweets can be simply promotions, or it can signify the action of

backing. The bipartite graph is then projected into a unipartite graph resulting in a network that

consists only of the users s. The edge weight between the users (s1, s2) is computed using Jaccard

index, which is given by:

W =
|K(s1) ∩ K(s2)|
|K(s1) ∪ K(s2)|

(4.2)

where K(s1) and K(s2) denote the set of projects that are tweeted by users s1 and s2. To form

the communities from this network structure, we use the modularity metric, which is defined as

follows:

M =
1

2W

∑
i,j

Wij −
n(i)n(j)

2W

 δ(Ci, Cj) (4.3)
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where Wij is the weight of edge between vertices i and j, W is the summation of all the edge

weights. n(i) and n(j) are obtained by summing up all the edge weights of nodes i and j re-

spectively. Ci denotes the community that i belongs to and δ is the Kronecker delta. Lastly, we

use the Louvain method of community detection [90] over this unipartite network to obtain 160

communities. A snapshot of this procedure is shown in Figure 4.4.

Figure 4.4: A Twitter-based community formed by the backers of Kickstarter (right) by projecting
the bipartite graph of user and projects(left). The colors represent different topical categories of
communities, and the names denote the top users of the community.

To calculate the influence of these communities over the backing habits of the users, we use our

database B, and retrieve a subset of backers who have their Twitter account information embedded

in their Kickstarter profiles. We call this set as Btw, where |Btw| = 9, 266. To measure the influence

of the community c ∈ C over the user btw ∈ Btw, we calculate their Affinity score as follows:

Affinity(btw, c) = |F (btw) ∩ F (c)| (4.4)

where F (btw) and F (c) denote the set of all followers and followees of btw and c respectively;

|F (btw) ∩ F (c)| indicates the number of mutual friends between this backer and the members

of the community. Figure 4.6(a) shows the outcome of this analysis, where P (btw = k|c = k)

indicates the probability of the user btw ∈ Btw backing the project k, given k is backed by the

members of the community c. Figure 4.6(b) is simlar to 4.6(a) except, here, T denotes the project
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category. From these figures, it is conclusive that the stronger the Affinity of a user towards a

community, the greater the chance for this user to back the same project (or project category) that

was backed by the community.

Figure 4.5: Influence of Twitter-based Kickstarter communities over the backing habits of users.

4.6 Recommending Backers

In the previous section, we performed a thorough analysis of the Kickstarter crowdfunding

domain, where we explained various features that affect the success of projects. In this section,

we propose a content based recommender framework for recommending backers to Kickstarter

projects. We formulate our recommendation problem as a binary classification/regression prob-

lem, where given a backer-project pair, the trained model computes the score that represents the

likelihood of funding. Considering the complexity and heterogeneity of our data and the problem,

it is important to use the most suitable and powerful prediction model that are available. To this

end, we have employed a gradient boosting tree (GBtree)3 [91, 92]. A GBtree is an ensemble

method where an individual learner is a decision tree [93].

The reason for choosing a GBtree for our problem is as follows: First of all, an ensemble

method is known for its superior generalization capability for unseen data. Furthermore, a deci-

sion tree, our base learner, uses one variable at each node when it is trained/constructed as well as

when it is applied to test data. This characteristic prevents us from worrying about how to properly

consider heterogeneity in the features we generated. The drawback of using other learners, such as
3The GBtree implementation we used is available at https://sites.google.com/site/carlosbecker/resources/gradient-

boosting-boosted-trees
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Figure 4.6: Influence of Twitter-based Kickstarter communities over the backing habits of users.

logistic regression and support vector machines, is that heterogeneous features have to be normal-

ized via, say, standardization of their distributions by transforming each feature to have zero mean

and unit variance. Such normalization does not always make sense for binary and integer features,

and it also removes the nonnegativity of our feature representation that offers intuitive interpreta-

tion of them. It should be noted that the key contribution of this work is more about extracting the

important features and understanding the domain by providing novel insights, but not necessarily

about building a new predictive modeling algorithm.

4.6.1 Experimental Setup

We formulate the task of recommendation as a binary classification/regression problem. That

is, every backer-project pair (b, k) is an individual data item, and given such a pair, our task is to

predict how likely a user will back a project. Our aim is not only to show the superior prediction

performance of our model, but also to conduct an in-depth analysis on the features discussed in the

earlier sections. To achieve this, we create a dataset, D using a subset of backers from B, defined

as:

D = {(b, k)|k ∈ K(T ), (b ∈ B ∩ prof(b) = 1)}

where K(T ) is the set of all the project in K that are covered by our tweet database T , and

prof(b) = 1 indicates the existence of the complete profile information of the backer b. In to-

tal, the cardinality of set D is 795,347. To train and test our model, we only consider the features



58

available within the first three days of project duration. This setting is much more realistic when

compared to previous studies that use the complete set of features that are available only at the

end of the project duration. This includes the features from project-, temporal-, personal-, geo-

location-, and network-based traits that were discussed in the previous sections. However, we

eliminate comments, updates, and the number of Facebook shares from the project-based feature

since these features are generally not present in the initial stages of a project. It should be noted

that D consists of only the positive samples, which indicates the action of user b ∈ B backing a

project k ∈ K. Therefore, to create a balanced dataset, we augment D with 795, 347 randomly

selected negative instances. Out of this entire dataset, we test the following cases by filtering out

the data instances matching the conditions for each case.

Case 1: Evaluating the influence of social network. The influence from social network (Section

4.5.4) is much stronger on backers who have their Twitter profile. Additionally, the community-

based influence is applicable only for backers who are connected to the Twitter network. Therefore,

to evaluate this feature, we create a dataset Dtw, which is defined below:

Dtw = {(b, k)|(b, k) ∈ D ∩ (b ∈ Btw)}

where Btw is the set of backers who have their Twitter profiles.

Case 2: Evaluating the impact of geo-location. In Section 4.5.3, we showed that the geo-location

does not affect every category to a similar extent. To further support this result, we use the dataset

D and retrieve only those projects which have the following categories: 1. Theater, 2. Music,

3. Games, and 4. Technology. We chose these categories because theater and music strongly de-

pend on their geo-locations, while games and technology have very weak geo-location dependency

(Figure 4.2(f)). We term this dataset as Dg.

The datasets D, Dtw, and Dg are used for our evaluation which was performed using the stan-

dard 10-fold cross validation strategy.
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4.6.2 Performance Evaluation

Using our evaluation methodology, we want to understand how much each feature contributes

towards the recommendation performance. To achieve this, we use the set of attributes from Sec-

tion 4.5 and categorize them into the following groups:

(a) prj (13 dimensions): All the features from the project-based traits (Section 4.5.1) except

for updates, comments, and the number of facebook shares.

(b) crt-person (3 dimensions): Features from creator personality, which includes number of

projects created, projects backed by the creator, and success ratio of the creator.

(c) bck-person (4 dimensions): Features from the backer personality such as the number of

backings, categories of backed projects, topical preference, and creator preference.

(d) prjsoc (4 dimensions): Social network features on Kickstarter projects such as the number

of promoters, the tie strength, the bi-connected components, and the PageRank of promoters

from the first three days of the project duration.

(e) bcksoc (1 dimension): The influence score of community over the backers.

(f) geoloc (1 dimension): The influence score of geo-location over projects.

(g) tmpo (9 dimensions): The accumulation over the first three days in terms of the number of

backers, the funding amount, and the number of tweet promotions.

Therefore, every object in our dataset (i.e., a backer-user pair) is represented by a 35-dimensional

vector. In addition to these feature groups, we also split the Kickstarter users based on their backing

frequency to study the performance of recommendation depending on various funding experiences.

We begin by reporting the overall performance of our model, followed by the analysis of the vari-

able importance for various feature groups. We conclude the evaluation by reporting the ranking

performance of the recommendation model.

4.6.3 Predictive Performance

Overall performance: We test the performance of our model by gradually incorporating more

features described in Section 4.6.2 to the experiments for different backer types. Figure 4.7 shows

the performance results as the receiver operating characteristic (ROC) curve, and their AUC values
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(a) BF = 2-10 (b) BF = 10-100

(c) BF = 101-500 (d) BF = 501-1000

Figure 4.7: The ROC curve results for different backing frequency (BF ) values.

are summarized in Table 4.3.4 One can see that more features generally lead to better performances,

and the best AUC values ranges from 0.79 to 0.88 when using all the available features, indicating

the efficacy of the features inspired by our in-depth analyses.

Analysis of feature groups: The analysis on the variable importance of each feature group is

shown in Figure 4.8. We highlight the following insights about backing behaviors:

4The AUC value is computed using the trapezoidal approximation [94].



61

1. The temporal progression of funds, backers, and tweet promotions have the strongest vari-

able importance. This claim is supported by high variable importance of the temporal fea-

tures for all the different types of backers, as shown in Figure 4.8(a).

2. Backers strongly depend on their personal preferences to fund a project. This variable,

which is denoted by bck-person includes the topical preference, and the mutual trust

that were discussed in Section 4.5.2. In Figure 4.8(a), the inclusion of this feature has a

significant effect over all the backer types.

3. The impact of social network monotonically decreases with the increase in backing fre-

quency. This effect is shown by the prjsoc feature in Figure 4.8(a). From this trend,

we infer that experienced investors do not solely rely on social network-based promotions,

but instead they probably consider various other aspects of the projects for their backing

decisions. Contrary to this, inexperienced investors are easily attracted to fund projects

which have large promotional activity.

4. Social network has stronger influence over backers who have their Twitter profile. From

Figure 4.8(b), we can see that the variable importance of prjsoc is distinctly higher for

Twitter users (i.e. backers with Twitter profile) when compared to the non-Twitter users.

This is because the non-Twitter users are not exposed to the activities in social media and

therefore they seldom notice the tweets about Kickstarter projects. We also see that such

users rely more on project and personal features. This trend is similar for community-based

influence bcksoc. Nonetheless, it should be noted that, the very low variable importance

of this feature is due to the fact that users with this feature are extremely fewer in number.

5. The influence of geo-location strongly depends on the topical category of the project. Figure

4.8(c) confirms our analysis in Section 4.5.3 where projects belonging to theater and music

categories have a greater dependency on the geoloc feature when compared to games and

technology.
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Table 4.3: Cumulative AUC values obtained in the plots shown in Fig. 4.7.

Backing frequency
Feature 2-10 11-100 101-500 501-1000
prj 0.736 0.744 0.707 0.659
+crt-person 0.744 0.748 0.719 0.664
+bck-person 0.882 0.849 0.830 0.780
+prjsoc 0.883 0.862 0.832 0.780
+bcksoc 0.882 0.862 0.834 0.784
+geoloc 0.886 0.864 0.836 0.783
+tmpo 0.886 0.871 0.838 0.792

(a) Dataset D (b) Dataset Dtw (Case 1)

(c) Dataset Dg (Case 2)

Figure 4.8: Variable importance of various Kickstarter features. (a)-(c) shows the AUC value
improvements over 0.5 when using only a particular feature set.

4.6.4 Ranking the Backers

Although our experimental setting is a binary classification, the desired capability from learn-

ing the function f(b, k) by a GBtree is to compute the likelihood of funding, which allows us to

rank the most appropriate backer for a particular project. Therefore, to evaluate the performance

of ranking, we use the standard information retrieval measures. For every project, we compute:

1) P@k: The precision at rank k for our task is defined as the fraction of rankings in which the

true backers are ranked in the top-k positions, 2) MRR: The mean reciprocal rank is the inverse of

the position of the first true backer in the ranked set of backers produced by our model, 3) S@k:

The success at rank k is the probability of finding at least one true backer in the top-k ranked set,

and 4) DCG: The discounted cumulative gain [67] is based on the simple idea that highly relevant

backers are more important than marginally relevant ones.
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Table 4.4: Performance comparison between different sets of features using MRR and Precision
metrics.

Features MRR P@1 P@10 P@20
prj 0.5 0.314 0.322 0.321
+crt-person 0.505 0.324 0.329 0.323
+bck-person 0.816 0.707 0.684 0.623
+prjsoc 0.828 0.728 0.688 0.626
+bcksoc 0.834 0.722 0.71 0.62
+geoloc 0.89 0.818 0.706 0.618
+tmpo 0.892 0.824 0.708 0.627

Table 4.5: Performance comparison between different sets of features using Success at k and DCG
metrics.

Features S@1 S@10 DCG
prj 0.314 0.902 8.24
+crt-person 0.324 0.894 8.371
+bck-person 0.707 0.996 17.297
+prjsoc 0.728 0.998 17.424
+bcksoc 0.71 0.998 17.209
+geoloc 0.818 0.998 18.232
+tmpo 0.824 0.998 18.388

Table 4.4 shows the results of MRR and precision, while Table 4.5 reports the results of success

at k and DCG. We clearly see that the addition of features results in a performance boost for all

the measures. There is a clear increase in precision and MRR after the addition of backer personal

traits, and this increase is further boosted with the addition of social network, geo-location, and

temporal features. This trend is similar for all the other performance measures. It should be noted

that, unlike the previous research [71], our recommendation is purely based on the features from

the first three days of the project duration. Despite this fact, we can achieve a high precision value

of 0.82.

4.7 Summary

In this chapter, we performed a rigorous analysis of the Kickstarter crowdfunding domain to

reveal several unique insights about project-, social-, temporal-, and geo-location-based features

that affect the success of its project campaigns. We showed that backers are strongly influenced by

their topical preference and the trust relationship towards the creator of projects. In the analysis of
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network-based features, we used the network of promoters from Twitter to show that the success

of projects depends on the connectivity between the promoters. Additionally, we created Twitter-

based communities of Kickstarter users to study its impact on the backing habits of individuals.

Our analysis revealed that the backing habits are influenced by their social circle (or community).

Lastly, we reported that the effect of geo-location is not uniform for all the projects; instead, it

depends on their topical category. In the second part of this paper, we used the analyzed set of

features to build a model that recommends a set of backers to Kickstarter projects. Using the

gradient boosting tree, a state-of-the-art learner model, and the features from only the first three

days of project duration, we were able to achieve an AUC of 0.89, and a precision up to 0.8.
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CHAPTER 5: PROBABILISTIC GROUP RECOMMENDATION
5.1 Introduction

In the previous chapter, we performed a detailed analysis of the Kickstarter domain where we

studied the impact of backer personality, geo-location, project quality, and social network on the

success of projects. In addition to this, we developed a simple content-based recommendation

framework using gradient boosting tree classifier to recommend backers to Kickstarter projects.

In this chapter, we extend our study on recommendation in Crowdfunding domain by proposing

a Group recommendation model called CrowdRec [3] that recommends projects to a group of

investors by incorporating the on-going status of projects, the personal preference of individual

members, and the collective preference of the group .

Recommendation challenges in crowdfunding. Recommendation in crowdfunding poses a

number of challenges. Based on our preliminary study on analyzing Kickstarter user behaviors [2],

we found that a diverse set of factors collectively influence the users’ decision to back a project.

Hence, recommendation cannot be based on some simple set of straightforward features that are

directly available from the projects. Consider the decision making of a Kickstarter investor, as

illustrated in Figure 5.1; we can see that the user is influenced by (1) his own personal interest,

(2) the group (or community) that the user is associated with, and (3) the real-time status of the

project. The personal interest of a backer is attributed to his preferences over the topic or the geo-

location of the project. The group’s influence on the other hand is amplified by the pervasive growth

of social media such as Twitter and Facebook, where users’ decision to back a project depends not

only on their personal interests, but also on their relationship to a social-group of peer investors

they communicate with. Therefore, when designing a recommender system for crowdfunding, it is

important to incorporate the group’s influence. Finally, due to the transient nature of crowdfunding

projects, the real-time status of the project plays a critical role in determining the backing habits

of a user. Notice that, in conventional recommendation such as movies or books, it is reasonable

to apply collaborative filtering techniques since the recommended items usually can serve many

users for several years. This is not the case in crowdfunding; in Kickstarter, once the project

expires after its posting period, we cannot recommend the project to any user any more. For



66

instance, as shown in Figure 5.1, the project has a duration of 30 days. Recommending it after

expiration makes no sense. This transient nature of projects gives rise to some interesting real-time

properties such as (a) the popularity of projects and (b) the availability of rewards. In Kickstarter,

the popularity of a project could be measured based on the percentage of funds collected at a

specific time. In Figure 5.1, we see that, on Day 10 the project has already collected over 70% of

it’s goal amount, indicating high popularity. Therefore, there is a high chance for a user to fund

such popular projects. Nonetheless, the popularity is not the sole deciding factor. In the same

figure, we can also see that, on Day 20, although the project remains popular, most of the rewards

are already sold out (denoted by the phrase “All Gone”) due to the demand. This in-turn means

that people might not be interested in backing such projects (with no availability of certain type of

rewards), despite it’s popularity.

Figure 5.1: Impact of project, personal, and social network based features on Kickstarter users.

Overview of the proposed approach. To create a personalized recommendation system for

crowdfunding, we propose a group recommendation model called CrowdRec. Using a probabilistic

generative framework, we incorporate various heterogeneous features related to the project, users,
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and their social groups to precisely model the interests of investors. Notice that in the crowdfunding

scenario, projects are like living entities that survive for a finite duration, and are affected by

real-time actions such as popularity and reward availability. Therefore, we need to leverage the

information about the dynamic on-going status of a project when recommending it to the users.

Research Contributions. The major contributions of this chapter are summarized as follows:

1. We propose a group-recommendation model for crowdfunding domains, which incorporates

the dynamic-status of the on-going projects to recommend Kickstarter projects for a group

of investors.

2. We use a diverse set of features about the projects. These features include (1) topical prefer-

ence (2) geo-location preference (3) social-network links of backers and (4) various tempo-

ral information about the projects to incorporate rich prior information into our probabilistic

model.

3. Using comprehensive evaluation techniques, we show that our model outperforms a number

of baselines and a state-of-the-art group-recommendation model to provide effective and

meaningful recommendations for backer groups in Kickstarter.

The rest of this chapter is organized as follows. We review the related work on crowdfunding

and group recommendation models in Section 5.2. In Section 5.3, we discuss the notion of groups

in Kickstarter and the challenges associated with group recommendation. The CrowdRec model

and it’s generative process are introduced in Section 5.4, followed by the derivation of the model

parameters. In Section 5.5, we show the different ways of incorporating various prior information.

In Section 6.6, we explain the data collection methodology and report the experimental results for

performance evaluation. Finally, we conclude the chapter in Section 5.7.

5.2 Related Work

In this section, we review two lines of related research namely, crowdfunding and recommender

systems.

Crowdfunding and Kickstarter. Since crowdfunding is still an emerging research domain, most

works in this area are relatively new. The dynamics of Kickstarter are examined in a recent survey
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[85], while various types of crowdfunding platforms are compared in [74]. In [75, 76], the authors

analyze the crowdfunding platforms to learn the motivation behind the users who create and invest

in crowdfunding projects. Moreover, the effect of frequent updates over the success rate of projects

is explored in [72]; and the impact of social network on Kickstarter projects is delineated in [78].

Recommendation in Crowdfunding Platforms. So far, there are very few studies on developing

recommendation models for crowdfunding platforms. In [79], a personalized loan recommenda-

tion system for a micro-financial platform called Kiva.org is proposed. Recently, an SVM classifier

is trained using updates, comments, Facebook friends and other features from Kickstarter to rec-

ommend investors to Kickstarter projects [71]. In our previous work on Kickstarter [2], a variety of

traits based on backer personality, geo-location, project quality, and social network have been an-

alyzed and incorporated into a gradient boosting tree model to recommend backers to Kickstarter

projects. Finally, in our recent work [95], we formulate a survival analysis problem to predict the

success of Kickstarter projects.

Probabilistic Models for Recommendation. The original aspect model is proposed by Hofmann

for Probabilistic Latent Semantic Analysis (PLSA) [42, 96]. Since then, more complex machine

learning models have been proposed, including multinomial mixture models, latent dirichlet allo-

cation (LDA), markov models and latent factor models [97–99]. The PLSA aspect model has been

widely used in information retrieval and data mining applications [100]. For example, in [101], the

aspect model is used for recommending communities, while in [102], an additional latent variable

has been added to the aspect model to capture the influence of friends on a user’s topical interest.

Group Recommendation. Different from conventional recommendation which typically recom-

mends an item to a user, the group recommendation aims to either (a) recommend a group (or

community) to a user or (b) recommend an item to a group of users. In type (a), one usually rec-

ommends a set of groups (i.e., communities) to a user based on various measures such as (1) topical

similarity between the community and the user, (2) popularity of the community at a given time,

(3) proximity of geo-location between the user and the members of the community, etc., [101, 103–

106]. Our definition of the group recommendation belongs to type (b), which is new to the data
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mining research and thus very few studies have explored this research direction [107–109]. In

[102], a probabilistic aspect model is proposed to learn the interests of users using both their per-

sonal preference and the influence from their social network. Using score aggregation strategies

such as average and least-misery techniques [110], recommendation of items is made for a targeted

group of users. In [107], a unified group recommendation model is proposed and later extended

by incorporating a group-topic distribution [109] to provide an improved recommendation. The

group recommendation model proposed in this chapter is uniquely different from the aforemen-

tioned works as we incorporate the “live-status” of projects along with user preference and group

influence in the model.

5.3 Groups in Crowdfunding

To elucidate the need for group recommendation in Kickstarter, we obtain backers who have

their Twitter profiles and retrieve their friends and followers from Twitter search API. We then

create communities of these backers to analyze whether the backing habits of these investors are

influenced by their relationship to a community1. The process of community creation is detailed

in our previous work [2]. To measure the influence of a group over the backer, we calculate their

Affinity score as follows:

Affinity(b, g) = |F (b) ∩ F (g)| (5.1)

where F (b) and F (g) denote the set of all the followers and followees of a backer b and a com-

munity g, respectively; |F (b) ∩ F (g)| indicates the number of mutual friends between this backer

and the members of the community. Figure 5.2(a) shows the outcome of this analysis, where

p(M(b, v)|M(g, v)) indicates the probability of a user b backing a project v, given that v is backed

by the members of the group g. In this notation, M(b, v) denotes the action of a backer investing

in project v and M(g, v) denotes the same by a community g. From this figure, one can see that

the stronger affinity of a user towards a group leads to a greater chance for this user to back the

same project that was backed by the group. Therefore, given a project, the goal of our CrowdRec

recommendation model is to identify a group of users who may potentially back this project.
1we also refer these communities as groups, so these two terms are used interchangeably.
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Figure 5.2: Characteristics of groups in Kickstarter. (a) shows the influence of communities
(groups) over the backing habits of users and (b) shows the topical composition in groups.

Next, we analyze the preferences of individual members in a group. To proceed, for every

group in our dataset, we calculate the number of unique topical categories of projects backed by

the members of the group. As shown in Figure 5.2(b), although there are groups consisting of

members who are interested in just one single topic, a majority of them have diverse interests, i.e.,

the members have backed projects from multiple topical categories. In addition, we analyze the

expertise of individual group members by calculating the number of backers who are experts in a

specific topical category of projects. We say a backer to be an expert in a topic if she has backed

at least 3 projects from the same category and has over 15 backings in total. As depicted in Figure

5.2(b), a majority of groups consist of backers who are experts in multiple topical categories. We

aim to exploit these observations in the proposed CrowdRec model.

5.4 The CROWDREC Model

In this section, we introduce CrowdRec, a probabilistic generative model for recommending

crowdfunding projects to groups of users. The recommendation model aims to capture the fol-

lowing observations: (1) A crowdfunding group may support projects from multiple topical cat-

egories, (2) A user’s backing decision is based not only on her personal preference but also on

the collective preferences of her groups; (3) A group’s collective preference to support a project is

strongly correlated with the personal preferences of topically authoritative users (i.e., users exper-
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tise) within the group, (4) The dynamic status of a project impacts both the individual investor’s

personal preferences and the group’s collective preferences in backing crowdfunding projects.

Figure 5.3: Graphical representation of the CrowdRec model.

In this section, we first formulate the modeling problem and then present the generative process

captured in our CrowdRec model. Next, we show how the dynamic status of projects is incorpo-

rated into the model. Finally, we derive the parameters of the model to facilitate model learning

via Gibbs sampling.

Problem Statement: Given a set of projects V = {v1, v2, ..., v|V |}, a set of backersB = {b1, b2, ..., b|B|},

and a set of groups G = {g1, g2, ..., g|G|}, let Bg ⊂ B denote a group of backers in group

g, i.e., Bg = {bg1, b
g
2, ..., b

g
|Bg |}. The action of a group g backing a project v is denoted by

M(Bg, v) = {(b, v)|b ∈ Bg}, where (b, v) refers to an individual b from a group g choosing

to back a project v. The goal of our CrowdRec model is to recommend a ranked list of V projects

to a target (or new) group g̃.
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5.4.1 Generative Process

The Graphical representation of the CrowdRec model is shown in Figure 5.3. We describe the

generative process in our model as follows.

• Each group g ∈ G is composed of members who are interested in certain particular project

categories. Therefore, the collective preference of the group is captured by θg, which is

represented as a distribution over a universal set of latent topics in projects. Here, θg follows

a symmetric Dirichlet distribution, i.e., θg ∼ Dirichlet(α).
• Based on θg, the group g chooses a single topic z and nominates a user b to decide whether

to back a project v. The distribution φ1
z captures the expertise of this backer over the topic z.

• To decide whether to back a project v, the nominated user relies on either her own personal

interest or the collective preference of the group. This decision is governed by the random

variable D, which takes the binary value 0 or 1. Thus, we model d using a binomial distri-

bution with beta prior.
• If d is 0:

– The user picks the project based on (1) the group’s influence (i.e., collective prefer-

ence), which is a multinomial over the distribution φ2
z and (2) the current status of

the project. The current status of the project (in the dotted box) is denoted by a ψ,

ψ ∼ Dirichlet(σ).
• If d is 1:

– The user picks the project based on (1) her own topical interest (personal preference),

which is a multinomial over the distribution Ωb and (2) the current status of the project.

Incorporating Dynamic Status of Projects. Notice that the status of a project plays a key role

in the generative process described above. It is an external factor determined by the progression

of the project over time. In Figure 5.3, this is indicated by the project-status distribution ψ, which

is constrained by a dirichlet prior σ. ψ in-turn affects the project-topic distribution φ2 and user-

project distribution Ω. When the user relies on the group’s influence to back a project v, the

project-topic distribution φ2 (i.e. V ×K matrix) is multiplied by the project-status distribution ψ
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Algorithm 3: Generative process of CrowdRec model
1 for each project v ∈ V do
2 Draw ψv ∼ Dirichlet(σ)
3 end
4 for each topic zk, k ∈ K do
5 Draw φ1

z ∼ Dirichlet(η)
6 Draw φ2

z ∼ Dirichlet(ψβ1)

7 end
8 for each backer b ∈ B do
9 Draw Ωb ∼ Dirichlet(ψβ2γ)

10 Draw λ ∼ Beta(ρ)

11 end
12 for each group g ∈ G do
13 Draw θg ∼ Dirichlet(α)
14 for each backer,b in group g do
15 Draw z ∼Multinomial(θg)
16 Draw b ∼Multinomial(φ1

z)
17 Draw the decision d ∼ Bernoulli(λb)
18 if d = 0 then
19 Draw v ∼Multinomial(φ2

z)
20 end
21 if d = 1 then
22 Draw v ∼Multinomial(Ωb)
23 end
24 end
25 end

(i.e. 1 × V matrix). In other words, ψ becomes a prior for φ2. Alternatively, if the user backs a

project based on her own preference, Ω (i.e. B × V matrix) is multiplied by ψ.

In the CrowdRec model, β1 and β2 are concentration scalars that affects the extent to which a

group (or a user) relies on project status to make the backing decision. When β1 is high, the group

strongly relies on the on-going status to back the project, which means φ2 becomes similar to ψ.

Alternatively, if β1 is low, the group’s decision to back a project is independent of the on-going

status of the project. Same applies for the scalar β2, which affects the variable Ω. In the literature,

this type of formulation is known as the hierarchical Polya-Urn model, which has been used to

model the global and local topic distributions in LDA [111–113]. Algorithm 4 summarizes the

complete generative process and Table 6.1 provides the list of symbols used in this research.



74

Table 5.1: List of notations used in this chapter.

Symbol Description
V = {vi} project set, vi indicates a single project
G = {gj} crowdfunding groups, gj indicates a single group
D a binary decision variable, representing d=1 or d=0
Z = {zi} latent topics assigned to projects in Z
K number of topics specified as parameter
i = (b, v) a tuple that indicates backer b picks project v
θg topic distribution of a group g
φ1z B ×K latent matrix for a backer b
φ2z G×K latent matrix for a group g
Ωb B × V matrix for a backer b
λb prior for the binary decision variable D
ψ dynamic status distribution of a project v
α, η, γ, σ, ρ parameters of θ, φ1,Ω, ψ, λ
β1, β2 concentration scalars for φ2,Ω
ck,g,i # times i is assigned to topic k in group g
ck,g,b # times backer b is assigned to topic k in group g
ck,g,v # times project v is assigned to topic k in group g
cb,g,v # times project v is assigned to backer b in group g
cb,g,d # times choice d chosen by a backer b in group g

5.4.2 Parameter Estimation

To learn the parameters in the CrowdRec model, the eastimation of the posterior is given by:

p(z, d|b, v, α, η, γ, σ, ρ) =
p(z, d, b, v|.)
p(b, v|.)

(5.2)

The likelihood of the above equation is expanded as follows:

p(z, d, b, v|.)

=

∫
p(z|θ)p(θ|α)dθ︸ ︷︷ ︸

(A1)

.

∫
p(b|z, φ1)p(φ1|η)dφ1︸ ︷︷ ︸

(A2)

.

∫
p(d|λ)p(λ|ρ)dλ︸ ︷︷ ︸

(A3)

.

∫ ∫ ∫
p(v|b, d, z,Ω, φ2)p(Ω|γ, ψ, β2).p(φ2|ψ, β1)p(ψ|σ)dΩdφ2dψ︸ ︷︷ ︸

(A4)

(5.3)

To infer the parameters φ1,Ω, ψ, φ2 and λ, we obtain samples from this high-dimensional dis-

tribution using collapsed Gibbs sampling-based approach. It is important to note that there are

complex relationships between the latent-topic variable Z and the latent-decision variable D. To
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overcome this problem, we adopt the two-step Gibbs sampling method proposed by Yuan et. al.

[109] by decomposing the expression (A4) of Equation (5.3) as follows:∫ ∫ ∫
p(v|b, d, z,Ω, φ2).p(Ω|γ, ψ, β2).p(φ2|ψ, β1).p(ψ|σ)dΩdφ2dψ

=

∫ ∫
p(v0|z, d0, φ2)p(φ2|ψ, β1)p(ψ|σ)dφ2dψ︸ ︷︷ ︸

(B1)∫ ∫
p(v1|b, d1,Ω)p(Ω|γ, ψ, β2)p(ψ|σ)dΩdψ︸ ︷︷ ︸

(B2)

(5.4)

where expression (B1) corresponds to the decision variable d = 0; in other words, when a user

chooses to back a project v0 based on his group’s interest and expression (B2) corresponds to the

decision d = 1 i.e., when a user chooses a project v1 based on her own interest. Therefore, using

Gibbs sampling, we sample the latent variable d for two different cases: (a) when d = 0 and

(b) when d = 1. Similarly, we sample the latent variable z when (a) project v0 is chosen and

(b) when project v1 is chosen.

The derivation of the collapsed Gibbs sampling equation for the topic-latent variable z and the

decision-latent variable d is similar to [109]. The probability of a tuple i = (b, v) belonging to a

latent topic z is derived as follows:

p(zg,i = k|Z−(g,i), v0, b) ∝
c
−(g,i)
k,g,i∗ + αk

c
−(g,i)
k∗,g,i∗ + αk∗

·
c
−(g,i)
k,g∗,b + ηb

c
−(g,i)
k,g∗,b∗ + ηb∗

·

(
c
−(g,i)
k,g∗,v

c
−(g,i)
k,g∗,v∗

+ β1
c
−(g,i)
k∗,g∗,v + σv

c
−(g,i)
k∗,g∗,v∗ + σv∗

)
(5.5)

p(zg,i = k|Z−(g,i), v1, b) ∝
c
−(g,i)
k,g,i∗ + αk

c
−(g,i)
k∗,g,i∗ + αk∗

·
c
−(g,i)
k,g∗,b + ηb

c
−(g,i)
k,g∗,b∗ + ηb∗

(5.6)

In the above, the variable of type cx,y,z indicates a count as described in Table 6.1, and the sym-

bol ∗ over the subscript variables denotes the summation over the respective sub-script variables.

For example, ck,g,v indicates the number of times the project v is assigned to topic k in group g and

ck,g∗,v is the same variable that is summed across all the groups g ∈ G. The superscript symbol
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−(g, i) means that we exclude the ith tuple for group g when sampling. The probability of a tuple

i = (b, v) choosing a decision d is derived as follows:

p(dg,i = 0|D−(g,i), Z, v, b) ∝

c
−(g,i)
b,g∗,d0

+ ρ0

c
−(g,i)
b,g∗,d1

+ c
−(g,i)
b,g∗,d0

+ ρ0 + ρ1
·

(
c
−(g,i)
k,g∗,v

c
−(g,i)
k,g∗,v∗

+ β1
c
−(g,i)
k∗,g∗,v + σv

c
−(g,i)
k∗,g∗,v∗ + σv∗

)
(5.7)

p(dg,i = 1|D−(g,i), Z, v, b) ∝

c
−(g,i)
b,g∗,d1

+ ρ1

c
−(g,i)
b,g∗,d1

+ c
−(g,i)
b,g∗,d0

+ ρ0 + ρ1
·

(
c
−(g,i)
g∗,b,v + γv

c
−(g,i)
g∗,b,v∗ + γv∗

+ β2
c
−(g,i)
k∗,g∗,v + σv

c
−(g,i)
k∗,g∗,v∗ + σv∗

)
(5.8)

After obtaining sufficient number of samples using the above Gibbs update rules, we can finally

infer the parameters φ1
z,Ωb, ψ, φ

2
z and λb as follows:

φ1
z,b =

ck,g∗,b + ηb

ck,g∗,b∗ + ηb∗
(5.9a)

Ωb,v =
cg∗,b,v + γv

cg∗,b,v∗ + γv∗
+ β2

ck∗,g∗,v + σv

ck∗,g∗,v∗ + σv∗
(5.9b)

ψv =
ck∗,g∗,v + σv

ck∗,g∗,v∗ + σv∗
(5.9c)

φ2
z,v =

ck,g∗,v

ck,g∗,v∗
+ β1

c
−(g,i)
k∗,g∗,v + σv

c
−(g,i)
k∗,g∗,v∗ + σv∗

(5.9d)

λb =
cb,g∗,d1 + ρ1

cb,g∗,d1 + cb,g∗,d0 + ρ0 + ρ1
(5.9e)

Recommending projects: To recommend a set of projects to a new group g̃, we need to learn the

group-topic distribution θg̃. This is done by estimating the posterior distribution of topics z̃, given

the backers b̃ and the estimated backer-topic distribution φ1
z and the hyperparameter αk that was

obtained from our CrowdRec modelM.

p(z̃g̃,j = k|Bj = bj, Z̃
−(g̃,b),B−(j);M) ∝ φ1

k,b(c
−(g̃,i)
k,g̃ ,i∗ ) (5.10)
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Once we sample the topics for this new group g̃, we recommend a new project based on the

following equation.

p(v|g̃) =
∏
b∈Bg̃

ψv
∑
z∈Z

θg̃,z.(λb.Ωb,v + (1− λb).φ2
z,v) (5.11)

The above equation captures the following components when recommending a project to a group:

(1) the individual’s personal preference over a project Ω, (2) the influence of the group over a

backer is captured by φ2, (3) the topical preference of the group and the users are captured by θ

and Ω, and (4) finally, the dynamic status (or popularity) of the project ψ.

5.5 Prior Information

In this section, we discuss the approaches we adopt to estimate the priors incorporated in Crow-

dRec. Notice that we have priors for two different distributions: (1) a static prior γ for the distri-

bution Ωb, which is a B × V matrix indicating the preferences of backers towards the Kickstarter

projects; (2) a dynamic prior σ for distribution ψ, which is a 1 × V row matrix indicating the

on-going status of the project.

For the first case, we estimate the static prior γ by exploiting the backing history of all the

users b ∈ B. This backing history, denoted by Hb, contains the details such as a project’s topical

category, the geo-location of project, and the person who created the project.2 For most part, this

information remains static. Since it is extracted from the backing history of users, we call γ as

user-specific prior. On the contrary, in the second case, the prior information σ is not static due

to the transient nature of the projects. As σ is changed at regular time intervals, we term it as

dynamic-status prior. The calculation of these priors are detailed in the following sections.

User-Specific Priors: We incorporate three features from the users’ backing history to create the

user-specific prior γ, namely: (a) topical preference (b) creator preference, and (c) geo-location

preference.

Topical Preference: In our previous work [2], we observed that Kickstarter users have a strong

topical preference in their decisions to back a project. We assume users have a tendency to contin-

2In our experiments, we consider city and state as the geo-location of the projects.
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uously back projects in the same topical category. This tendency can be modelled as a conditional

probability of a user b to back a project in topic t, given t is present in the backing history of this

user, denoted by P ((b, t)|t∈Hb). Using Bayes′ theorem, it is derived as follows:

P ((b, t)|t∈Hb) =
P (t∈Hb|(b, t))P (b, t)

P (t∈Hb)
(5.12)

Creator Preference: Users tend to develop an inclination towards creators whom they have backed

in the past. We represent this as the conditional probability of a user b to back a creator e, given

that e is in the backing history of this user, denoted by P ((b, e)|e∈Hb). It is calculated in a similar

way as that of Equation (5.12).

Geo-location Preference: Geo-location has a strong impact on the success of projects, and the

level of impact depends on the topical category of the project [2]. For instance, we find that projects

based on technology are relatively less dependent on their geo-location, while projects on theatrical

arts are highly dependent. Therefore, we incorporate this information as prior by calculating the

probability of a user b to back a project v, given b and v are from the same geo-location. This

probability is represented by p((b, v)|Loc(b, v) = `, τ(v) = t), where Loc(b, v) indicates the geo-

location of the backer and project, τ(v) is the topic of the project v. This probability is calculated

using Bayes′ theorem by expanding the likelihood using the chain rule of probability.

Finally, the interest of a user b towards a project v is obtained as a linear combination of topic-,

creator-, and geo-location-based preferences as follows:

γb,v = p((b, t)|.) + p((b, e)|.) + p((b, v)|.) (5.13)

Dynamic-Status Priors: We incorporate two factors in the prior σ for the project status ψ, namely,

(1) the popularity of the project, and (2) the availability of popular rewards at specific time t.

Popularity of project: The popularity of a project at time t is derived as follows:

Pot(v) =
# pledged amount of project v at time t

Goal amount of the project v
(5.14)

where Pot(v) is the popularity score of project v at time t.
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Availability of rewards: As explained earlier in Figure 5.1, the status of the project cannot be

expressed purely based on it’s popularity, but the availability of rewards should also be considered.

To verify our claim, we extract the top 3 popular reward categories of projects and obtain the

additional percentage of backers backing the project on the day when the rewards are sold out. The

result of this analysis is given in Figure 5.4, which shows that the interest of users in backing a

project decays with the depletion of popular reward categories. Therefore, we calculate this prior

information as follows:

Rt(v) =
# rewards sold out at time t

# limited rewards
(5.15)

whereRt(v) is the reward score of the project v at time t.

Using Equations (5.14) and (5.15), we define the dynamic-status prior for a project v as follows:

σ(v,t) = Rt(v)× Pot(v) (5.16)

The score σ(v,t) is constantly updated at different time intervals {t1, t2..., tn} until the project

expires.

Figure 5.4: Decay of user interest with the depletion of popular reward categories.
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5.6 Experiments

In this section, we conduct comprehensive experiments to evaluate the performance of the

CrowdRec model in comparison with state-of-the-art models. In the following, we first describe

the datasets used in our experiments and then report the experimental results.

5.6.1 Dataset Description

For our experiments, we obtain six months of Kickstarter data (12/15/13 to 06/15/14) from

kickspy, which consists of 27,270 projects. We remove projects that were canceled or suspended,

with less than one backer, or with less than $100 of pledged amount. Next, we build a web-crawler

to fetch backers from this filtered set of projects. As such, we obtain over 1 million backers for the

remaining 18,143 projects after the removal process.

In our previous study [2], we show that backers in Kickstarter are distinguished by two im-

portant features: (a) the presence of social network profile,3 and (b) the backing frequency.

Therefore, in this work, we leverage this information to categorize the backers b ∈ B into two

types: (i) those who have linked their Kickstarter profiles to Twitter, and (ii) those without a Twit-

ter profile. We denote these two types by Twt and Kck, respectively. In addition, we classify

the backers into occasional backers who have backed 2-10 projects (denoted by Occ) and experi-

enced backers who have backed over 10 projects (denoted by Exp). Thus, we have four different

datasets: (1) Twt-Occ = {b|b ∈ Twt ∩ (2 < Backings(b) < 10)}; (2) Twt-Exp = {b|b ∈

Twt ∩ (Backings(b) > 10)}; (3) Kck-Occ = {b|b ∈ Kck ∩ (2 < Backings(b) < 10)} and

(4) Kck-Exp = {b|b ∈ Kck ∩ (Backings(b) > 10)}

Group Creation. A group consists of backers who have backed the same project. For the four

datasets described above, we create groups of Kickstarter users using the methodology described

in [110], i.e., in our group creation process, we calculate the inner group similarity between the

group members using Pearson correlation co-efficient (PCC) and filter out groups which have PCC

less than 0.2. The statistics of our backer-group datasets are shown in Table 5.2.

3we only consider Twitter profiles since Facebook data is not publicly available.
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Table 5.2: Statistics of Kickstarter groups formed by frequent and occasional backers.

Dataset #Bkrs/Grp #Grps Avg. #Prjs/Grp #Prjs
Kck-Occ 10 30,100 2 1,609
Kck-Exp 10 20,675 4 1,397
Twt-Exp 5 3,373 3 959
Twt-Occ 5 3,513 2 1,104

5.6.2 Performance Evaluation

In the following, we first discuss the performance metrics employed in our evaluation and a

number of recommendation models examined for comparison. Our evaluation is performed over

all the four datasets Twt-Occ, Twt-Exp, Kck-Exp, and Kck-Occ by randomly holding-off 20% of

the ground truth for testing. For most of our experiments we set the parameters β1 and β2 to be

0.5, the topic parameter K to 200 and the dynamic-status prior σ(p,t) is calculated using the 50%

of the total project duration. The CrowdRec model and all other baselines are implemented using

python’s numpy numerical module, and scikits machine learning module.4 The codes of our model

are publicly hosted in the Github page.5

Evaluation Metrics

To evaluate the performance of ranking, we use the standard information retrieval measures.

For every project, we compute: 1) P@N: precision at rank N is defined as the fraction of rankings

in which the true backers are ranked in the top-N positions, 2) MRR: The mean reciprocal rank

is the inverse of the position of the first true backer in the ranked set of backers produced by a

recommendation model, 3) S@N: The success at rank N is the probability of finding at least one

true backer in the top-n ranked set, and 4) DCG: The discounted cumulative gain [67] is based on

the fact that highly relevant backers are more important than marginally relevant ones.

4http://scikit-learn.org
5https://github.com/magnetpest2k5/Crec



82

Baseline Methods for Comparison

We compare the performance of our model with a simple collaborative filtering-based approach

that uses various aggregation strategies for group recommendation and other state-of-the-art group

recommendation models as described below:

(1) Collaborative Filtering with averaging (CFA): First we learn user-project preference using

user-based collaborative filtering. We then take the average of the recommended scores for

a group and rank the preference scores to recommend a project to the group.
(2) Collaborative Filtering with least-misery strategy (CFL): First we learn the user-project pref-

erence using user-based collaborative filtering. We then take the least scores as the recom-

mended scores for a group and rank the preference scores to recommend a project to the

group.
(3) Collaborative Filtering with relevance disagreement (CFR): First we learn user-project prefer-

ence using user-based collaborative filtering, and then takes the relevance score as CFA and

the disagreement is calculated as the difference between the preference scores of individuals

within a group.
(4) COM Model: The state-of-the-art group recommendation model that does not include the

dynamic-status component [109].

Experimental Results

Overall Performance: Figure 5.5 shows that the performance of CrowdRec and COM are dis-

tinctly better than the collaborative filtering-based group recommendation techniques. Although,

the collaborative filtering with averaging technique (CFA) produces better results than CFL and

CFR, the approaches that heuristically aggregate the individual scores of backers to determine the

groups’ preference towards projects do not produce reasonable results.6 It is also clear that the

CrowdRec performs better than COM model in terms of both precision and recall. This shows that

users strongly rely on the on-going status information of projects to make backing decisions.

6In [109] the authors report similar observations.
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Figure 5.5: The precision and recall performance over experienced and occasional backers with
Twitter profiles.

We also observe that the performance of CrowdRec over experienced backers (Figures 5.5(a)

and 5.5(c)) is better than occasional backers (Figures 5.5(b) and 5.5(d)), because the former have

a higher backing count, which provides a richer set of prior information about the backer’s prefer-

ence over topics, creators and geo-location compared to the occasional backers. Figure 5.6 shows

similar set of results for the Kck dataset. In comparison to results shown in Figure 5.5, we see that

the performance of our model slightly decreases in the dataset Kck. This is because the backers

with Twitter profiles (i.e. dataset Twt) constantly receive Tweets about Kickstarter projects from

their friends and followees, which leads to a better communication with their group members.

Since one of the key components of our model is to effectively incorporate the groups’ influence,
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it has a stronger impact over these type of users. Finally, in Table 5.3, we show the superior per-

formance of CrowdRec over all other models by averaging the Success@N measure over all four

datasets.

Figure 5.6: The precision and recall performance over experienced and occasional backers without
Twitter profiles.

Table 5.3: The Average Performance over all datasets using Success @ N .

Model Success@2 Success@5 Success@10
CFA 0.2638 0.3014 0.3352
CFR 0.2518 0.2857 0.3017
CFL 0.2698 0.3138 0.3369
COM 0.6347 0.7143 0.7584
CrowdRec 0.6926 0.7436 0.7832
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Figure 5.7: Effect of group sizes of Kickstarter users over the recall performance for all datasets.

Impact of Group Size: Depending on the number of backers in a group, a group can become

more diverse or conservative in terms of their topical-preference. Therefore, we show the impact

of group size on the performance of our model in Figure 5.7. Due to space constraints, we only

show the recall performance for top 10 recommended projects. We again observe that CrowdRec

performs better than COM and all other models irrespective of the group sizes. The performance

of CrowdRec increases as we move from group size 2 to group size 5. However, this improvement

becomes insignificant as the group size further increases. In fact, we observe that the performance

slightly reduces for group sizes of 15 and above, mainly due to the sparsity of the data.7

7Groups greater than 15 members are extremely few in number.
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Effect of Topic Size: To study the effect of topic size K over the performance of our model,

in Figure 5.8, we plot the DCG scores of the top 10 recommended projects by varying K from

25 to 300. Similar to our prior observations, we see that the CrowdRec outperforms COM and

all other models. Additionally, both CrowdRec and COM performs better on the backers with

Twitter profiles (i.e. Twt-Exp and Twt-Occ) when compared to backers without Twitter profile (i.e.

Kck-Exp and Kck-Occ). It is also important to note that the DCG values for experienced backers

(Figure 5.8(a)) are higher than the occasional backers (Figure 5.8(b)), mainly because experienced

backers have a much higher backing count (and thus richer prior information) than the occasional

backers. Finally, we observe that the increase in the number of topics does not necessarily translate

to a better performance. Although the DCG scores improves with the increase in topic count, the

performance becomes static at about 200 topics. In fact, there is a slight decrease in the DCG

scores when the topic count goes past 200.

Figure 5.8: Effect of topics on the DCG measure.

Effect of Prior Information: Figure 5.9 shows the effect of various user- and project-based fea-

tures that were used as priors in our model. In this figure, the y-axis denotes the priors and the

x-axis indicates the MRR scores of the top 10 recommended projects. We begin with a symmetric

prior (s-prior) and gradually add other features to the prior distribution, which is indicated by the +
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symbol. For instance, Topic+ implies that we are including the topical-preference of users, which

was calculated in Equation (5.12); similarly, Cr+ implies we add creator preference into the prior

information. We observe that simply by including the topic prior provides a significant boost to

the MRR scores indicating that backers strongly depend on their topical interest to fund a project.

Although, the addition of creator (Cr) and geo-location (Geo) preferences of backer improves the

performance of the model, though it is not as significant as the topical-preference. Finally, the

inclusion of the popularity prior (Pop) provides a significant boost yet again, which shows the

importance of the information about the on-going status of the Kickstarter projects.

Figure 5.9: Effect of prior information ((a) and (b)) and project duration ((c) and (d)) on the recom-
mendation performance. The terms Topic, Cr, Geo and Pop indicates the topical, creator, geolocation and
popularity based priors, respectively.
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Effect of Dynamic Status: Lastly, we show the effect of dynamically varying prior information in

Figures 5.9(c) and 5.9(d). We calculate the status prior Rt using the Equation (5.14) at various

intervals of the projects’ duration ranging from 1% to 75% of the total project duration, which is

indicated by the y-axis of this figure. It can be seen that, in general, the recommendation perfor-

mance increases with the progression of the project. This is because, as the project progresses,

we can obtain a much accurate estimation about it’s status both in-terms of popularity and the

availability of rewards.

5.7 Summary

In this chapter, we introduced a recommendation framework for a popular crowdfunding plat-

form, i.e., Kickstarter. We point out the challenges arising in Kickstarter, where the backing habits

of its users depend on a diverse set of features, including topical, geo-location, temporal, and social

traits. By exploiting the notion of groups, we proposed a recommendation model that effectively

incorporates all these features when recommending projects to groups of Kickstarter users. Using

a real dataset, we conducted a comprehensive evaluation to show that our model outperforms other

state-of-the-art group-recommendation models in terms of a variety of performance metrics. Fi-

nally, we also studied the impact of various prior information and show that the on-going status (or

popularity) of the projects plays an important role in improving the recommendation performance.
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CHAPTER 6: LOCATION RECOMMMENDATION FOR TRAVELERS
6.1 Introduction

Tour recommendation has become a new trend in the field of intelligent urban navigation. The

dramatic increase in the amount of publicly available check-in data has generated substantial inter-

est among different research communities to work on this problem. Different from conventional

way of recommending independent venues, the objective of tour recommendation is to suggest a

sequence of points of interest (POIs) that will serve as travel itineraries to users. Tour recommen-

dation is more challenging than the conventional one due to two main reasons. First, since most

users are not native to their tour destination (i.e. users are tourists), the check-in information of

these users is extremely sparse. Therefore, using simple collaborative filtering based techniques

will yield poor recommendation results. To overcome this problem, it is crucial to learn the topical

preference of users from their historical check-ins and incorporate them as content-based features

to create a hybrid recommendation model. Second, many researchers have shown that human mo-

bility exhibits a strong temporal pattern [114, 115]. Unlike conventional recommendation, where

POI suggestions are made in a disjoint manner, these temporal features play a critical role in

determining the next check-in spot when suggesting a sequence of POIs for travelers.

In addition to the above-mentioned traits of tour recommendation, LBSNs such as Foursquare

and Yelp enable travelers to communicate with other fellow travelers, interact with the residents

from their tour destination and add other users to their social network of friends to make an in-

formed choice about the travel destination. Therefore, it is essential to utilize the social network

of travelers as implicit meta-data information to create a robust recommendation framework. Fi-

nally, travelers have limited duration of stay and they tend to prefer venues that are popular and

well rated. Consequently, it is important to factor-in the POI-specific characteristics such as geo-

graphical distance between venues and their popularity. We illustrate the above-mentioned traits

using a toy example in Figure 6.1 that depicts a tourist who begins his journey at New York’s JFK

airport. Let us assume that the tourist plans to stay for just 1 day and his topical interests are

nature and history museums. Based on the time constraints and topical preference, one logical se-

quence would be to start with Prospect park, which is geo-graphically closer to his current location,
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and suggest venues such as the Old Stone house, Botanical garden and Brooklyn bridge. When

compared to the POIs in Manhattan, although these locations are not extremely popular, they are

well-rated and more importantly they match the topical interests of the user. Another option is to

recommend the set of POIs in route 2. Contrary to the sequence in route 1, the venues in route 2

are extremely popular, but they do not exactly match with the user’s topical interest. This is just

one scenario; as we can see, there are multiple travel routes. Nonetheless, the POIs suggested by

a good recommendation system should be a blend of geographical distance, personal choice of the

user, social preference of the user’s community and popularity of the venues. To achieve this, in

Figure 6.1: Travel pattern of a tourist who is interested in historical sites and nature.

this chapter, we propose a social sequential tour recommendation model, abbreviated as SSTREC,

that aims at providing personalized POI recommendations for travelers. Inspired by several state-

of-the-art generative models [3, 116, 117], we create a probabilistic framework that incorporates

a multitude of features such as (a) the topical preference of users from their historical check-ins,
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(b) their friend’s choice from the social network of travelers, (c) the sequential visiting patterns of

travelers, and (d) the trending popularity of venues, into a unified supervised topic model to make

effective suggestions of POI sequences.

The rest of this chapter is structured as follows. We begin by reviewing the related works on

location recommendation in Section 6.2 and provide some statistical insights about the behavior

of travelers in Section 6.3. In Section 6.4, we introduce the proposed SSTREC model and the

generative process. The description of the model is followed by the details of Gibbs sampling

and the derivation of parameters in Section 6.4.2. We also explain the algorithm for creating POI

sequences in this section. The data collection methodology and the results of our experiments are

discussed in Section 6.6. Finally, we conclude this chapter in Section 6.7.

6.2 Related Work

Research on location recommendation can be broadly classified into the following three cat-

egories: (a) simple POI recommendation that aims at suggesting individual and independent

landmarks, (b) travel package recommendation and (c) tour recommendation.

Recommending Independent POIs: There are numerous works on recommending independent venues.

Matrix factorization techniques to recommend POIs in LSBNs are proposed in [118–120], while

[118] incorporates temporal properties into these models. In [121], the authors propose a power-

law probabilistic model, [122] formulates the probability of a user’s check-in as a Multi-center

Gaussian model, and [123] integrates user preference and location into a Bayesian learning model.

The authors of [124] and [125] incorporate contextual information into a topic modeling based

framework, while [126] proposed a hybrid matrix factorization model to incorporate sentiments.

A more recent work on location recommendation addresses the cold start problem by viewing

non-visited locations as non-negative samples and proposes a content-aware collaborative filter-

ing [127]. Lian et al. [128] addresses the same problem by viewing mobility records as implicit

feedback and leverages them as weighted matrix factorization. The authors of [129–131] adopt a

different methodology of suggesting location by segmenting geographical areas into sub-regions

based on the characteristics of POIs. Topic models incorporating geographical and social informa-
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tion have also been shown to be effective for other tasks, such as opinion mining [132] and social

media information retrieval [133–135].

Travel package recommendation: utilizes the geo-location information of travelers to recommend

vacation packages such as a combined package of rental car plus hotel stay or flight travel hotels

and local transportation [136, 137]. Nonetheless, this body of work is different from ours, since

their goal is focused on creating combination of attractive packages that might draw the attention

of travelers. On the other hand, our goal is to recommend a combination (more specifically a

sequence) of points of interest for travelers. Although [138] and [139] consider the sequential

pattern of POI visits, they do not factor in other important features, such as popularity of locations

and social networks of users. Additionally, these methods recommend only single POI rather than

their sequence.

Travel Route Recommendation: Unlike the above mentioned body of works, travel route recom-

mendation is an emerging area, where most published papers are relatively new [140–144]. In

[142], the authors adopt a collaborative retrieval model that incorporates pairwise weighted ap-

proximate rank function, while [143] proposes a pairwise tensor factorization-based framework

that models user-POI, POI-time, and POI-POI interactions for successive POI recommendation.

The authors of [145] model the interests of travelers using the popular HITS algorithm. By uti-

lizing GPS logs from mobile devices various travel sequences are suggested for the users. Goinis

et al. [146] adopted a time-aware tour recommendation framework that optimizes travel routes

based on the best visiting times of POIs and [147] proposed algorithms that incorporate various

constraints, such as variety of venues, budget constraints of users and the satisfaction provided by

the POIs for recommendation. In a recent work, Wen et al. [148] incorporate the semantics of

keywords from user queries in a skyline travel route framework for creating sequential POIs.

Despite being novel, the recommendation frameworks proposed in these works provide a very

low degree of personalization. Some consider time-dependent factors, but ignore the topical pref-

erence of users; some capture user-level features, but do not incorporate temporal or sequential

visiting patterns. In summary, our research is uniquely different from the above mentioned works
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because of the following reasons: (1) we propose a novel topic-model based approach that in-

corporates the temporal quality of sequential visits, influence from social network of the user, the

topical preference of users and the popularity of POIs. (2) using the proposed generative model,

we recommend a series of travel sequences that will interest tourists. The paper that is closest to

our work [149] uses a combination of a topic model and a Markov model to recommend sequences

of venues. Therefore, in this work, we treat this model as the state-of-the-art tour recommendation

system and compare it with the proposed SSTREC recommendation framework.

6.3 Learning Traveler Behavior

Before designing a recommendation model for travelers, it is important to understand their

check-in behavior. In other words, we try to answer the question “What motivates travelers to visit

a POI?” from four different perspectives namely: (a) sequential travel patterns, (b) topical interest

of users, (c) impact of users’ social circle and (d) popularity of POIs.

Impact of Travel Sequence: One of the main goals of this research is to incorporate Markovian

relationships between POIs into our recommendation model. Therefore, the first step is to under-

stand the nature of decision making of travelers. In particular, we are interested in determining

whether they follow sequential patterns when traveling or visit POIs randomly. To answer this

question, we employ hypothesis testing and perform the following steps: (1) obtain the global

travel pattern by calculating conditional probabilities of traveling from the source venue X to tar-

get venue Y for all POI combinations; (2) for each user, obtain the top 10 ranked global travel

patterns that correspond to his POI visits. If the user has pursued at least 50% of the POI se-

quences from this global pattern, categorize him as followed, if not, categorize as not followed;

(3) randomly sample 100 travelers for 1,000 iterations and count the number of users who fol-

lowed and those who did not. The result of this experiment is shown in Figure 6.2(a), where we

notice that the median number of users who adhere to a travel pattern are higher than those who do

not. To test the significance of this result, we set our null hypothesis H0 as: “the average number

of users who follow the sequence is same as those who don’t”. By applying a two-sample t-test,
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the null hypothesis was rejected with a significance value of 2.2 × 10−16 thereby concluding that

the majority of travelers visit POIs sequentially.

Figure 6.2: Behavior of travelers: (a) Variation in the distribution of follower versus non-followers;
(b) Topical composition of tourists; (c) Impact of social circle on check-in behavior of tourists; (d)
Influence of prominent reviewers over user check-ins.

Topical Composition: The decision to visit a landmark certainly depends on the topical interest

of travelers. Nonetheless, to understand the topical variability of user interests, we extract the

POI categories from their check-in history and plot the histogram of the topical compositions in

Figure 6.2(b), where the x-axis is the number of unique topical categories liked by the travelers. In

general, we see that the travelers are interested in multiple topical categories of POIs. However, a

majority of them are restricted to about 5-10 categories and people who are interested in over 30

topical categories are extremely few in number.

Impact from the Social Circle: For every traveler u ∈ U in our dataset, we obtain their list of friends

Fu using the Foursquare API1. We then calculate the percentage of friends who have visited a

1https://developer.foursquare.com/
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location v ∈ V , and the probability of this user u to visit v. The outcome of this analysis is

depicted in Figure 6.2(c), which shows that the probability of a user visiting a POI increases as the

cardinality of set Fu get larger. In other words, the social circle of a user plays an important role

in influencing the check-in habits of travelers.

Presence of Prominent Reviewers: Reviewers play a critical role in attracting tourists; therefore,

we also investigate whether check-ins are influenced by POI reviews by authoritative reviewers.

Consequently, for every POI, we calculate the number of authoritative users based on the upvotes

of their tips (or reviews) and plot it against the number of check-ins in Figure 6.2(d). This plot

indicates that POIs having large number of such authoritative users have the potential to attract

many tourists.

6.4 The SSTREC Model

In this section, we introduce SSTREC, a probabilistic generative model for recommending

POIs for travelers. Our model is designed to capture the following behavioral traits of tourists:

(1) traveling habits of users exhibit a strong sequential pattern, where the selection of a POI is

dependent on the previously visited POI. (2) topical interests of users are strongly dependent on

their level of relationship to their friend’s circle. (3) the interest of users is confined to a limited

set of topical categories, which can be obtained from their history of POI visits. (4) the choice of

POIs are heavily dependent on their popularity.

Problem Statement: Given a set of POIs V = {v1, v2, ..., v|V |}, a set of travelersU = {u1, u2, ..., u|U |},

the goal of the proposed SSTREC model is to recommend a ranked list of V sequential POIs to a

target (or new) traveler ũ.

6.4.1 Generative Process

The behavior of a traveler is presented as a graphical model (SSTREC) in Figure 6.3. We

describe the generative process of our model as follows:

• A traveler u can decide to visit a venue v based on his own decision or based on the decision

of his friends Fu. This is determined by the distribution of social correlations φUF between
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Figure 6.3: Plate diagram for generative process of SSTREC.

this user and his friends. Here, φUF is a multinomial distribution with symmetric Dirichlet

prior, i.e., φUF ∼ Dirichlet(γ).
• Based on the distribution of social correlations, the user chooses a friend fj,i and selects a

POI i by first choosing its category (or topic) zi. If the social correlation between the user

and his friends is high, zi is drawn from the topical distribution of his friends θUZf ; if the

correlation is low, zi selected from his own distribution θUZu .
• The topical preference of the travelers (obtained from their history of POI visits), is incor-

porated in the form of supervised labels L, which acts as a constraint over the topic distri-

bution θUZ . The label Lu of a user u follows a Bernoulli distribution with beta prior, i.e.,

Lu ∼ Bernoulli(β).



97

• A traveler can select a POI in two different ways: (a) based on his (or friend’s) topical

interest or (b) by simply choosing a POI purely based on it’s popularity. In our model, this

decision is governed by the variable di that takes a binary value 0 or 1.

• If d is 0:
– The user chooses the venue based on the popularity distribution ψV ∼ Dirichlet(σ).

• If d is 1:
– The user chooses the venue vi based on (1.) the distribution over the previous POI vi−1

and (2.) the topical distribution of POIs, which is a multinomial φZV .

Algorithm 4: Generative process of SSTREC
1 for each POI v ∈ V do
2 Draw ψv ∼ Dirichlet(σ)
3 end
4 for each topic zk, k ∈ K do
5 Draw φZV ∼ Dirichlet(δ)
6 end
7 for each tourist u ∈ U do
8 for each topic zk, k ∈ K do
9 Draw L(u) ∈ {0, 1} ∼ Bernoulli(β)

10 end
11 Initialize α(u) ← L× α
12 Draw λ ∼ Beta(ρ)

13 Draw θ(u) ∼ Dirichlet(α)
14 for each position i of POI v, in sequence V u do
15 Draw f ∼Multinomial(φUF )
16 Draw switch d ∼ Bernoulli(λu)
17 if d = 0 then
18 Draw v ∼Multinomial(ψV )
19 end
20 if d = 1 then
21 Draw z ∼Multinomial(θ(uf))
22 Draw v ∼Multinomial(φvi−1zi)

23 end
24 end
25 end
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6.4.2 Parameter Estimation

We adopt a collapsed Gibbs sampling for posterior inference of SSTREC parameters

(φUF , θUZ , λ, φZV and ψV ). The posterior probability of our model is:

p(z, f, d|v, β, α, σ, δ, ρ, λ) =
p(z, f, d, v|.)

p(v|.)
(6.1)

Direct multinomial relationship between the variables f and z creates complex inter-dependencies

of two latent variables. To overcome this problem, we first estimate the social correlations φUF

by using the traditional LDA topic model [44], where the observed words are the set of friends in

our data, and the documents are the users. After this step, we treat φUF as an observed variable

(denoted by the shaded circle in Figure 6.3).

Using the generative process, the total likelihood can be expanded as follows:

p(f, z, d, v|.) (6.2)

=

∫
p(f |φUF )p(φUF |γ)dφUF ·

∫
p(d|λ)p(λ|ρ)dλ

·
∫
p(z|f, θUZ)p(θUZ |α,L)dθUZ

·
∫ ∫

p(vi|vi−1, d, z, ψV , φZV )p(ψV |σ)p(φZV |δ)dψV φZV

According to Algorithm 4, the selection of POI by a user is based on two distinct choices,

namely, popularity and personal choice. This allows to decompose the last multiplier in Equa-

tion (6.2) into a product of two independent components:

∫
p(v

(0)
i |d, ψV )p(ψV |σ)dσ·︸ ︷︷ ︸

popularity

∫
p(v

(1)
i |vi−1, d, z, φZV )p(φZV |δ)dδ︸ ︷︷ ︸

personal choice

(6.3)

In the above equation, v0i indicates the POI that is selected when d = 0 and v1i corresponds to the

POI chosen when d = 1. There are two important notes about Equation 6.2: first, the labeling prior

β does not have a direct impact over the model; hence, it is not included in the equation. This is

because, once the labels L are observed, β becomes d-separated [117]. Second, since we infer the
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φUF using an independent LDA model, the distribution of friendship correlation is now observed,

which makes the γ d-separated as well.

Since f is a multinomial that directly affects z, we first sample z for all combinations of f .

Based on Equations (6.2) and (6.3) the posterior is given by:

p(zi = k, fi = ê|v(1), z¬i, f¬i) (6.4)

=

∫
p(f |φUF )p(φUF |γ)dγ∫
p(f¬j|φUF )p(φUF |γ)dγ

·

∫
p(z|f, θUZ)p(θUZ |α)dθUZ∫
p(z¬i|f, θUZ)p(θUZ |α)dθUZ

·

∫
p(v1i |vi−1, d, z, φZV )p(φZV |β)dφZV∫
p(v1i |vi−1, d, z¬i, φZV )p(φZV |β)dφZV

∝
nUFu,f,¬i + γfu

F∑
f ′

(nUFu,f ′,¬i + γf ′u)

·
nZFz,f,¬i + αz

K∑
z=k

(nZFz,f,¬i + αz)− 1

·
nZVzi,vi|vi−1,¬i + δvi|vi−1

V∑
v′

(nZVzi,v′,¬i + δv′)− 1

Once we sample the topics z for all combinations of friends, we then sample for the decision

variable d = 1 and d = 0 as follows:

p(di = 1|d¬i, z, v, f) = (6.5)∫
p(d|λ)p(λ|ρ)dλ∫
p(d¬i)p(λ|ρ)dλ

·

∫
p(v

(1)
i |vi−1, d, z, φZV )p(φZV |δ)dφZV∫

p(v
(1)
i |vi−1, d¬i, z, φZV )p(φZV |δ)dφZV

∝
nUDu,(1),¬i + ρ

nUDu,(1),¬i + nUDu,(0),¬i + 2ρ− 1
·

nZVzi,vi|vi−1,¬i + δv

V∑
v′

(nZVzi,v′,¬i + δv′)− 1

p(di = 0|d¬i, z, v, f) (6.6)

∝
nUDu,(0),¬i + ρ

nUDu,(0),¬i + nUDu,(1),¬i + 2ρ− 1
·

nVv,¬i + σv

V∑
v′

(nVv′,¬i + σv′)− 1

Once the topics z and decision variables d are sampled, the estimated parameters of the model

θ̂UZ , λ̂, φ̂ZV , and ψ̂V can be derived by normalizing the counts nNF , nUD, nZV , and nV , respec-

tively.
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Recommending POIs: Given a traveler ũ, and his current venue vi−1 the recommendation score

of an unseen (or next) POI ṽi is calculated as:

p(ṽ′i|vi−1, ũ) =
∑
z∈K

θ̂UZũ,z · φ̂ZVz,ṽ′i|vi−1
· λ̂ũ + (1− λ̂ũ) · ψ̂Vv (6.7)

One can observe that Equation (6.7) supports the set of all behavioral traits of travelers that were

outlined in Section 6.3. First, parameter ˆθUZ captures the favorite categories of travelers, ˆφZV vi|vi−1

captures the sequential relationship between the POIs, and ψ̂V captures the popularity-based POI

preference. It is important to note that the distribution ˆθUZ also encompasses the social component

of our model, since according to our generative model, the topical space of users is constrained by

the selection of friends.

Table 6.1: List of notations used in this chapter.

Symbol Description
V = {vi} set of POIs, vi indicates a single POI
U = {ui} set of travelers, ui indicates a single traveler
F = {fj} set of friends of users, where F ⊂ U
D binary decision variable, representing d=1 or d=0
Z = {zi} set of latent topics
K number of topics
L set of observed categories from the history of travelers
θUZ topic distribution of travelers
φUF distribution of social correlation between U and F
φZV topical distribution of POIs
λ U ×D social circle-popularity preference matrix
ψV popularity distribution of POIs
α, β, γ hyper-parameters of Dirichlet priors for θUZ , φUF

ρ, δ, σ hyper-parameters of Dirichlet priors for λ, φZV , ψV

nUFu,f # times user u preferred friend f ’s choice

nZUz,f # times a user (or his friend) preferred topic z

nZVzi,vi|vi−1
# times POI vi is assigned to topic zi given vi−1

nUDu,d # times decision d is picked by user u

nVv # times POI v is picked only based on popularity
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6.4.3 Incorporating Prior Information

Our proposed model is a semi-supervised generative framework, which allows us to incorporate

traveler and POI-specific features as priors.

Prior Information for Travelers: the traveler-based features are two-fold: (a) POI categories from

the historical visits of users, which form the supervised topical labels L and (b) strength of friend-

ship, which correspond to the prior information for the distribution φUF . The prior β for the label

L is defined as follows:

β(u, c) =
# times user u visits POI with category c

total POI visits by u
The priors for social relationship γ is determined using three different features, namely (1) the

presence of a friendship link between users, (2) the number of overlapping topical categories (ob-

tained from historical POI visits) and (3) the number of lists that are commonly followed by the

users. In Foursquare, lists are like folders which enable the users to organize POIs that share

similar characteristics in the form of geographical proximity or topical categories. This feature is

extremely useful since it expresses the explicit action of users’ interest over a collection of POIs.

Consequently, the strength of friendship between users a and b is formulated as a linear combina-

tion of the above features as follows:

γ(a, b) = I(a, b)w + Cat(a, b) + `(a, b)

In the above equation, w is a weight factor, I is the indicator variable which denotes the presence

of link between users a and b, Cat and ` denote the categorical and lists features respectively.

Prior Information for POIs: Popularity based features are introduced as prior σ into our model. We

formulate the popularity score of a POI v as a function of the two features namely, the number of

prominent reviewers for a POIR (explained in Section 6.3) and the total number of check-insM.

Formally, this prior is calculated as σ(v) = R(v) +M(v).

6.5 Creating POI Sequences

The ultimate goal of the proposed method is to recommend a series of POIs that can serve

as travel itineraries to the users. Inspired by the algorithm proposed in [149], we assume that a



102

traveler will provide the following inputs to our model: (1) the current location, (2) the arrival

time, (3) the number of route options, and (4) the spare time, which indicates the total time a

traveler is willing to spend during his current trip. The procedure for route generation is shown

in Algorithm 5, where the spare time is indicated by B, [ denotes buffer time, and K denotes the

number of route options. The algorithm starts by inserting the start location of the user vstartu to the

priority queue Q as the very first sequence (a single POI is a special case of a sequence). It then

generates K travel routes by performing the following set of operations. First, it pops the sequence

with highest weight (i.e. the first POI vstartu in this case) from the priority queue and checks if it

meets our distance criteria (line 5). This distance dr should be greater than the total travel time,

which is the spare time plus the buffer time. If yes, then the algorithm acknowledges this as a

route for recommendation (line 6); if not, it looks for alternative sequences of routes in lines 9-15,

where it calculates the posterior according to the SSTREC model and the total distance for each

new route in lines 11 and 12 and adds this new route along with other metadata to the priority

queue. In this algorithm, rv+ denotes a new POI v being added to route r, r[vl] is the last visited

venue in the route, prv+ and drv+ indicates the updated probability and distance for the sequence

rv+ respectively. To reduce the number of POI combinations in our Gibbs sampling algorithm,

we only consider POIs that meet the distance threshold.

6.6 Experimental Results

In this section, we report the results of comprehensive experimental evaluation of the proposed

SSTREC model and compare it with other baselines and the state-of-the-art probabilistic model.

We begin by discussing the details of our data collection methodology, which is then followed by

the explanation of the evaluation metrics and the results of our experiments.

6.6.1 Dataset Description

For our experiments, we obtained the tweets of foursquare check-ins from the authors of [131],

which spans from March-July 2014. We then augmented this raw data with a variety of POI and

user-profile information by querying the Foursquare API. Information about POI includes textual

description, rating, etc. Information about user includes friends, number of check-ins, and lists.
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Algorithm 5: T-Route: Recommending POI sequences
Input: B,[,K
Output: ö

1 Initialize: k←0, A←array[ ], Q←PriorityQueue( )
2 Assign: Q← vstartu

3 while k ≤ K do
4 r←get sequence with highest probability from Q
5 if B− [ ≤ dr ≤ B + [ then
6 Insert r into ö
7 k ← k + 1

8 end
9 else if dr ≤ (B + [) then

10 for v ∈ Vu do
11 Set prv+ ← p(v|u, r[vl]) using Equation (6.7)
12 Set drv+ ← dr+ TravelTime(r[vl], v)

13 Insert tuple < rv+, prv+, drv
+
> in Q

14 end
15 end
16 end

In total, we obtained 1,247,847 check-ins by 108,341 unique users and 170,472 venues (POIs)

distributed over 20 cities. In this section, we perform our experiments over a subset of this data,

which pertains to the top four cities based on the frequency of check-ins. The statistics of our

dataset is shown in Table 6.2, where Mn denotes mean, Md the median, Chk indicates check-ins,

Frns denotes friends and Cats corresponds to the categories (or topics) of POIs. Using this dataset

as the base, we mimic a real-world scenario of travelers by taking every location, and creating

three new cases based on the following conditions: (1) Tourist dataset (D1): Every user should

have checked-in for at least 2 consecutive days and at most 6 days. The home location of the user

should be different from the target city. For instance, if we are recommending POIs in Chicago,

the user location should not be from Chicago. (2) Localè dataset (D2): We relax the constraint

on consecutive check-ins; meaning, we do not care about whether a person has checked-in on

consecutive days. However, for this case, the home location of the user should be the same as

the target location. (3) Social dataset (D3): We remove constraints that was set for D1 and D2.

Nonetheless, for this case, every user should have atleast 4 friends (social connection) with every
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member who is a part of this dataset. It should be noted that the statistics shown in Table 6.2 vary

for each of the above cases (i.e. D1-D3). Researchers can download the raw datasets used in our

experiments from our public Github repository2.

Table 6.2: Statistics of our Foursquare dataset.

City #Users #POI
Mn
Chk

Md
Chk

Mn
Frns

Mn
Cats

NY 1521 2076 10.75 8 10.04 17.14
Moscow 1132 1574 13.05 7 5.80 9.36
LA 794 976 8.51 6 9.37 13.45
Chicago 822 1079 8.9 6 7.4 13.36

6.6.2 Evaluation Metrics

The evaluation methodology for our model consists of two types; the first type is called the

uni-step recommendation and the second type is termed as the multi-step recommendation. In

the uni-step evaluation, we use the first n-1 visited POIs in the sequence for training and the last

visited POI for testing. In multi-step evaluation, instead of removing only the last visited POI,

we use the last 3 contiguous POI sequences for testing. We make sure that the testing POIs fall

within the spare time plus the buffer time that was mentioned in Section 6.5. Our evaluation is

performed over all cases of the dataset, namely, Tourist (D1), Locale (D2) and Social (D3). The

SSTREC model and all other baselines are implemented using Python’s numpy numerical module,

and Scikit-Learn machine learning module3.

Evaluation Metrics

To evaluate the performance of ranking, we use the standard information retrieval measures.

For every traveler, we compute: (1) P@N: precision at rank N is the fraction of POIs that were

actually visited by users in the top-N ranked POI instances, (2) R@N: recall at rank N is the

fraction of the visited POIs that were retrieved at every top-N ranked POI instances, (3) S@N:

The success at rank N is the probability of finding at least one truly visited POI in the top-N

2https://github.com/magnetpest2k5/WSDM17
3http://scikit-learn.org
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ranked set, (4) DCG: The discounted cumulative gain is based on the fact that highly relevant POIs

are more important than marginally relevant ones and (5) Edit distance: The minimum number of

operations that are required to transform the recommended sequence of POIs to the sequence of

POIs in the actual ground-truth (i.e., test set) of the user.

Baseline Methods for Comparison: We compare the performance of our proposed model with

the following baselines:

• Random Multinomial Choice (RC) recommends a location by naively drawing a location v

from a multinomial distribution of global location weights vi ∼ Multi{v1, ..., vn}. These

weights are not user-specific and simply based on the number of check-ins for each location.
• Markov Model (MM) predicts the next visiting venue of the user using a Markov model that

calculates the probability p(vt|vt−1), where vt is the next (to be visited) landmark, vt−1 is the

previously visited landmark. This model completely ignores the topical interests of users.
• Photographer Behavior Model (PBM) is a state-of-the-art topic model that uses a combination

of Markov model and PLSA topic model [100] to recommend sequence of POIs [149].

6.6.3 Recommending POI Sequences

Figure 6.4: Performance comparison of SSTREC model: (a)-(d) shows the recall scores and (e)-(h)
show the precision scores.

Single POI Recommendation We begin this section, by presenting the performance of the model

in terms of recall in Figure 6.4. In general, the proposed SSTREC model outperforms other models

on all dataset types, while the random multinomial choice (RC) has the worst performance. Al-
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though PBM performs better than the Markov model (MM), it is important to note that the results

are not consistent. For instance, in Figure 6.4(b), the performance of PBM is lower than MM on

D1 and D2 datasets. On the other hand, the results of the proposed model are consistent through-

out all the scenarios. A possible explanation for such inconsistency is that PBM relies on a naive

combination of Markovian and the topic probability; this makes the topic space disjoint from the

POI transition probability. Contrary to this, SSTREC learns the preference of POIs using a unified

generative framework where the topic space of travelers and POIs are constrained on Markovian

transition probabilities, popularity of POIs and categorical choice of users. The best performance

of SSTREC (and all other models) is observed over the social dataset D3. This is mainly due to

the nature of this dataset, where the presence of friendship links between the users results in many

commonly visited POIs. Additionally, our model is able to leverage this social linkage to over-

come sparsity and yield better results. The precision performance of the models shown in Figures

6.4(e)-(h) are similar to their recall counterparts with SSTREC outperforming other models by

achieving a precision up to 10%. The PBM closely follows our model, but not for all scenarios;

its poor consistency is yet again revealed in Figures 6.4(f) and 6.4(g), where MM outperforms all

other models except SSTREC.

Quality of Ranked POIs: DCG is a classic performance measure that is used widely in evaluating

information retrieval systems. In our setting, we use this measure to penalize incorrectly ranked

POIs based on their positions. Unlike information retrieval, where documents are assigned differ-

ent relevance levels, our data is binary (i.e. 1 if user visits a POI and 0 otherwise); consequently, we

set a constant relevance score of 3 for all POIs. The comparison of DCG scores between SSTREC

and PBM for top 50 ranked POIs is shown in Figures 6.5(a)-(d), where the x-axis denotes the topic

size. We see that SSTREC performs better than PBM over both the data set types D1 and D3.

It should be noted that SSTREC is a supervised model where the topic space corresponds to the

number of unique POI categories. Therefore, the topic count for this model corresponds to the

number of unique POI categories. The DCG scores of PBM reaches a saturation point at about 20

topics. Contrary to this, SSTREC performs better with more topics since this essentially translates
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into more supervised information. In our experiments, we were able to see a steady improvement

in DCG even beyond 100 topics, although the improvement was marginal. Originally, we have 320

unique categories of POIs from Foursquare.

Figure 6.5: (a)-(d) shows the performance comparison of SSTREC model in terms of DCG. (e)-(f)
shows the variation in the recommended POI sequences for travelers.

Multiple POI Recommendation

In this experiment, we focus on evaluating the exact order of POI sequences generated by

Algorithm 5; i.e., a recommended sequence is deemed as a true positive instance, only if it matches

with the exact order of the POIs sequentially visited by a user in the test data. The outcome

of this experiment is depicted as edit distance in Figure 6.5, which is based on the following edit

operations: insert into a sequence, delete from a sequence, and replace one POI with another. From

the results, we observe that the proposed SSTREC model has the lowest edit distance among all

models. As the spare time increases, the number of recommended venues increases as well, which

in-turn increases the number of mismatches in the recommended sequences. Unlike the precision

and recall scores, we did not find any major performance increase between datasets D1 and D3.

6.6.4 Visual Interface for Travelers

In this section, we present the qualitative results of our model using a visual interface shown in

Figure 6.6. Due to space limitations, we restrict our example to just one user and one city. In this

interface, the user provides the input city as New York, a spare time of 4 hours and the start location
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as Union square (denoted by red star) and the number of route options as 3. Based on the topical

interest of the user (not shown in the Figure, since it is background information) and the travel time

between POIs, the interface shows 3 recommended sequences of POIs with varying travel times.

The topics associated with the sequences are presented above them. For instance, route 1 consists

of Chelsea market, 9/11 Memorial, Rockwood Music Hall that are associated with Historical sites,

Music and Shopping. It can be seen that all routes that are recommended have historical site

and music as common topical categories. Although there is some mismatch between topics and

POI sequences, for most part they are coherent. In addition to the recommended route sequences,

the figure also shows the topics and POIs from the user’s social network, which is provided by

leveraging the distribution of social correlations. It should be noted that the travel times indicated

on the routes are not the exact travel times; instead, they correspond to a combination of travel and

visiting time. For example, the travel time of 1.5 hours between POI 5 and 6 indicates the time

taken to reach POI 6 from 5, plus the time to tour

POI 6.

Figure 6.6: A visual example of travel routes recommended by the SSTREC model.
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6.7 Summary

In this chapter, we developed a social sequential tour recommendation SSTREC model, which

provides personalized POI recommendations for travelers. Using a novel generative approach, the

proposed model utilizes diverse features, such as temporal sequences, social relations, topical pref-

erences and popularity of POIs, to provide quality POI recommendations to travelers. The model

was then extended using a best first search algorithm to recommend a sequence of POIs that could

serve as travel itineraries. Using extensive set of experiments, and a rich dataset of Foursquare

check-ins, we showed that our model outperforms a state-of-the-art probabilistic model in almost

all scenarios.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the major contributions of our research work. We started this

Thesis with the review of the memory and the model based recommender systems in chapter 2. We

then proposed a hybrid recommendation model called ListRec that leveraged the dynamically

varying tweet content, the network of twitterers and the popularity of lists to collectively model

the users preference towards social lists. We categorized the users into two types (a) persistent

twitterers who tweet frequently and consistently and (b) active consumers who are characterized

by a sparse tweet history, but they actively consume information from Twitter by following other

users. For persistent twitterers, we obtained the user-topic vector and topic-list vector by running

the dynamic topic model over the tweet content and measured the interest of users as a scalar

product of these two vectors. For active consumers, we projected the user space into a followee

space and utilized the followees list subscriptions to indirectly measure the interest of the users.

We also added a trend based score that measures the popularity of lists in the Twitter domain.

The final score was calculated as a linear combination of these three individual scores (based

on content, network, and popularity). The coefficients in this linear combination was estimated

using a cyclic ridge regression estimation approach. In Section 3.4 of chapter 2, we proposed the

LIST-PAGERANK model to recommend auxiliary set of lists that are authoritative and topically

similar to the lists that are subscribed by the twitterers. The main novelty of this model was the

formulation of the list graph structure, where lists were considered as nodes and the edge between

two lists exists if the member of a list is a subscriber of another list. Finally we used a variant of

topic-specific PAGRERANK called the LIST-PAGERANK that leveraged the network structure of

Twitter lists to recommend authoritative lists that match the topical interest of the users.

In Chapter 4, we explored the popular reward-based crowdfuding platform Kickstarter to un-

derstand “what set of features determine a project’s success?”. To answer this question, we scraped

about 6 months of data consisting of 27K projects and 1 million users. The data included a variety

of static and temporal features such as the duration of project, the goal amount, the number of Face-

book shares, the number of backers, the number of updates about the project progress, progression
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of rewards and funds, the geo-location, etc. By utilizing this exhaustive dataset, we were able to

find several interesting aspects about the Kickstarter crowdfunding domain. We summarize our

finding in the following points. (1) Deadline Effect: where we showed that campaigns in Kick-

starter follow a U-shaped distribution of fund progression. (2) Herding instinct: which showed that

the average time delay between the first 5 consecutive tweet determines the spread of promotions.

(3) Mutual Trust: which explained that investors do not just randomly choose projects for backing;

instead, they look for a long-term connection to the creator. (4) Tie Strength and Structural Cohe-

sion: which explained that accumulation of backers is not only based on the number of promoters

in Twitter, but also on the connectivity between these promoters and (5) Influence of Prominent

Promoters: which revealed that projects promoted by influential twitter users have the potential

to attract many backers. In the second part of this chapter, we formulated a binary classifica-

tion/regression problem, where given a backer-project pair, the trained model computed the score

for the likelihood of funding. Utilizing the gradient boosting tree, a state-of-the-art learner model,

we achieved a practically useful level of performance up to 0.89 AUC (area under the curve) value.

The extension to this work was discussed in chapter 5 in the form of Group Recommendation

model for crowdfunding domain, which unlike the conventional recommendation, recommends

projects to a group of investors. We proposed a recommendation model called CROWDREC that

integrated the personal interest of users, the social group (or the community), and the real-time

status of the project into a unified generative process to provide meaningful contextual recommen-

dation for Kickstarter users. Our model was built on four key observations: (a) a crowdfunding

group may support projects from multiple topical categories. (b) users backing decision is based

not only on his personal preference but also on the collective preferences of his groups. (c) groups

collective preference to support a project is strongly correlated with the personal preferences of top-

ically authoritative users (i.e., users expertise) within the group. (d) the dynamic status of a project

impacts both the individual investors personal preferences and the groups collective preferences in

backing crowdfunding projects. To learn the parameters of the model, we adopted a two-step gibbs

sampling procedure and the final recommendation was based on the weighted score of the groups
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influence, the individual’s preference and real-time trend of the project. The experimental results

of our model revealed the following conclusions: 1. Temporal progression of funds, backers, and

tweet promotions have the strongest variable importance. 2. Backers strongly depend on their top-

ical preferences (obtained from the backing history of the users) to fund a project. 3. The impact of

social network monotonically decreases with the increase in backing frequency. 4. The influence

of geo-location strongly depends on the topical category of the project. For instance, projects on

games, comics, and technology are relatively less dependent on their geo-location, while projects

on theater, food, and dance are highly dependent.

In Chapter 6, we focused on a new form of recommendation called the Tour Recommendation,

where the objective is to suggest a sequence of point of interests (POIs) that will serve as travel

itineraries to tourists. We explained various challenges associated with Tour Recommendation.

First, most users are not native to their tour destination (i.e. users are tourists), which makes the

check-in information of these users extremely sparse. Second, unlike conventional recommenda-

tion where POI suggestions are made in a disjoint manner, these temporal features play a critical

role in determining the next check-in spot when suggesting sequence of POIs for travelers. To over-

come the above challenges, we proposed a probabilistic social sequential model called SSTREC

that incorporated a multitude of features such as (a) the topical preference of users from their

historical check-ins, (b) friends choice from the social network of travelers, (c) the sequential vis-

iting patterns of travelers and (d) the trending popularity of venues into a unified supervised topic

model to make effective suggestions of POI sequences. Using extensive evaluation techniques, we

showed that the model achieves an impressive recall performance over a wide array of datasets by

seamlessly integrating collaborative and content-based recommendation. We also demonstrated a

mock-up interface that provided different route options consisting of POI sequences that were not

only optimized for geographical distance, but also for the user’s topical interest, time constraints

provided by the user and the real-time popularity of the POIs.
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Content recommendation has risen to a new dimension with the advent of platforms like Twit-

ter, Facebook, FriendFeed, Dailybooth, and Instagram. Although this uproar of data has provided

us with a goldmine of real-world information, the problem of information overload has become a

major barrier in developing predictive models. Therefore, the objective of this Thesis is to propose

various recommendation, prediction and information retrieval models that are capable of leverag-

ing such vast heterogeneous content. More specifically, this Thesis focuses on proposing models

based on probabilistic generative frameworks for the following tasks: (a) recommending back-

ers and projects in Kickstarter crowdfunding domain and (b) point of interest recommendation in

Foursquare. Through comprehensive set of experiments over a variety of datasets, we show that

our models are capable of providing practically useful results for recommendation and information

retrieval tasks.
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