232 research outputs found

    Markerless Kinematics of Pediatric Manual Wheelchair Mobility

    Get PDF
    Pediatric manual wheelchair users face substantial risk of orthopaedic injury to the upper extremities, particularly the shoulders, during transition to wheelchair use and during growth and development. Propulsion strategy can influence mobility efficiency, activity participation, and quality of life. The current forefront of wheelchair biomechanics research includes translating findings from adult to pediatric populations, improving the quality and efficiency of care under constrained clinical funding, and understanding injury mechanisms and risk factors. Typically, clinicians evaluate wheelchair mobility using marker-based motion capture and instrumentation systems that are precise and accurate but also time-consuming, inconvenient, and expensive for repeated assessments. There is a substantial need for technology that evaluates and improves wheelchair mobility outside of the laboratory to provide better outcomes for wheelchair users, enhancing clinical data. Advancement in this area gives physical therapists better tools and the supporting research necessary to improve treatment efficacy, mobility, and quality of life in pediatric wheelchair users. This dissertation reports on research studies that evaluate the effect of physiotherapeutic training on manual wheelchair mobility. In particular, these studies (1) develop and characterize a novel markerless motion capture-musculoskeletal model systems interface for kinematic assessment of manual wheelchair propulsion biomechanics, (2) conduct a longitudinal investigation of pediatric manual wheelchair users undergoing intensive community-based therapy to determine predictors of kinematic response, and (3) evaluate propulsion pattern-dependent training efficacy and musculoskeletal behavior using visual biofeedback.Results of the research studies show that taking a systems approach to the kinematic interface produces an effective and reliable system for kinematic assessment and training of manual wheelchair propulsion. The studies also show that the therapeutic outcomes and orthopaedic injury risk of pediatric manual wheelchair users are significantly related to the propulsion pattern employed. Further, these subjects can change their propulsion pattern in response to therapy even in the absence of wheelchair-based training, and have pattern-dependent differences in joint kinematics, musculotendon excursion, and training response. Further clinical research in this area is suggested, with a focus on refining physiotherapeutic training strategies for pediatric manual wheelchair users to develop safer and more effective propulsion patterns

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research

    Past, Present, and Future of EEG-Based BCI Applications

    Get PDF
    An electroencephalography (EEG)-based brain–computer interface (BCI) is a system that provides a pathway between the brain and external devices by interpreting EEG. EEG-based BCI applications have initially been developed for medical purposes, with the aim of facilitating the return of patients to normal life. In addition to the initial aim, EEG-based BCI applications have also gained increasing significance in the non-medical domain, improving the life of healthy people, for instance, by making it more efficient, collaborative and helping develop themselves. The objective of this review is to give a systematic overview of the literature on EEG-based BCI applications from the period of 2009 until 2019. The systematic literature review has been prepared based on three databases PubMed, Web of Science and Scopus. This review was conducted following the PRISMA model. In this review, 202 publications were selected based on specific eligibility criteria. The distribution of the research between the medical and non-medical domain has been analyzed and further categorized into fields of research within the reviewed domains. In this review, the equipment used for gathering EEG data and signal processing methods have also been reviewed. Additionally, current challenges in the field and possibilities for the future have been analyzed

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    Data-Driven Framework for Understanding & Modeling Ride-Sourcing Transportation Systems

    Get PDF
    Ride-sourcing transportation services offered by transportation network companies (TNCs) like Uber and Lyft are disrupting the transportation landscape. The growing demand on these services, along with their potential short and long-term impacts on the environment, society, and infrastructure emphasize the need to further understand the ride-sourcing system. There were no sufficient data to fully understand the system and integrate it within regional multimodal transportation frameworks. This can be attributed to commercial and competition reasons, given the technology-enabled and innovative nature of the system. Recently, in 2019, the City of Chicago the released an extensive and complete ride-sourcing trip-level data for all trips made within the city since November 1, 2018. The data comprises the trip ends (pick-up and drop-off locations), trip timestamps, trip length and duration, fare including tipping amounts, and whether the trip was authorized to be shared (pooled) with another passenger or not. Therefore, the main goal of this dissertation is to develop a comprehensive data-driven framework to understand and model the system using this data from Chicago, in a reproducible and transferable fashion. Using data fusion approach, sociodemographic, economic, parking supply, transit availability and accessibility, built environment and crime data are collected from open sources to develop this framework. The framework is predicated on three pillars of analytics: (1) explorative and descriptive analytics, (2) diagnostic analytics, and (3) predictive analytics. The dissertation research framework also provides a guide on the key spatial and behavioral explanatory variables shaping the utility of the mode, driving the demand, and governing the interdependencies between the demand’s willingness to share and surge price. Thus, the key findings can be readily challenged, verified, and utilized in different geographies. In the explorative and descriptive analytics, the ride-sourcing system’s spatial and temporal dimensions of the system are analyzed to achieve two objectives: (1) explore, reveal, and assess the significance of spatial effects, i.e., spatial dependence and heterogeneity, in the system behavior, and (2) develop a behavioral market segmentation and trend mining of the willingness to share. This is linked to the diagnostic analytics layer, as the revealed spatial effects motivates the adoption of spatial econometric models to analytically identify the ride-sourcing system determinants. Multiple linear regression (MLR) is used as a benchmark model against spatial error model (SEM), spatially lagged X (SLX) model, and geographically weighted regression (GWR) model. Two innovative modeling constructs are introduced deal with the ride-sourcing system’s spatial effects and multicollinearity: (1) Calibrated Spatially Lagged X Ridge Model (CSLXR) and Calibrated Geographically Weighted Ridge Regression (CGWRR) in the diagnostic analytics layer. The identified determinants in the diagnostic analytics layer are then fed into the predictive analytics one to develop an interpretable machine learning (ML) modeling framework. The system’s annual average weekday origin-destination (AAWD OD) flow is modeled using the following state-of-the-art ML models: (1) Multilayer Perceptron (MLP) Regression, (2) Support Vector Machines Regression (SVR), and (3) Tree-based ensemble learning methods, i.e., Random Forest Regression (RFR) and Extreme Gradient Boosting (XGBoost). The innovative modeling construct of CGWRR developed in the diagnostic analytics is then validated in a predictive context and is found to outperform the state-of-the-art ML models in terms of testing score of 0.914, in comparison to 0.906 for XGBoost, 0.84 for RFR, 0.89 for SVR, and 0.86 for MLP. The CGWRR exhibits outperformance as well in terms of the root mean squared error (RMSE) and mean average error (MAE). The findings of this dissertation partially bridge the gap between the practice and the research on ride-sourcing transportation systems understanding and integration. The empirical findings made in the descriptive and explorative analytics can be further utilized by regional agencies to fill practice and policymaking gaps on regulating ride-sourcing services using corridor or cordon toll, optimally allocating standing areas to minimize deadheading, especially during off-peak periods, and promoting the ride-share willingness in disadvantage communities. The CGWRR provides a reliable modeling and simulation tool to researchers and practitioners to integrate the ride-sourcing system in multimodal transportation modeling frameworks, simulation testbed for testing long-range impacts of policies on ride-sourcing, like improved transit supply, congestions pricing, or increased parking rates, and to plan ahead for similar futuristic transportation modes, like the shared autonomous vehicles

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    "This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research.

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems
    • …
    corecore